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Abstract 

For time-varying non-regressive linear dynamic equations on a time scale 
with bounded graininess, we introduce the concept of the associative operator 
with linear systems on time scales. The purpose of this research is the charac-
terizations of the exponential dichotomy obtained in terms of Fredholm 
property of that associative operator. Particularly, we use Perron’s method, 
which was generalized on time scales by J. Zhang, M. Fan, H. Zhu in [1], to 
show that if the associative operator is semi-Fredholm then the correspond-
ing linear nonautonomous equation has an exponential dichotomy on both 

+  and − . Moreover, we also give the converse result that the linear sys-
tems have an exponential dichotomy on both +  and −  then the associa-
tive operator is Fredholm on  . 
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1. Introduction and Preliminaries 

Exponential dichotomy is at the heart of the fundamental perturbation results 
for linear systems of Coppel (see [2] [3]) and Palmer (see [4] [5] [6] [7] [8]), of 
the spectral theory of Sacker and Sell [9] [10], of the geometric theory of Feni-
chel [11], of perturbation results for invariant manifolds [12], of the fundamen-
tal perturbation results for connecting orbits of Beyn and Sandstede (see [13] [14] 
[15]), and it has proven also a formidable ally to justify and gain insight into the 
behavior of various algorithmic approaches for solving boundary value problems, 
for approximating invariant surfaces and for computing traveling waves, among 
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other uses (see [16] [17] [18]). Hence, it is important to find the conditions for 
dynamical systems are exponential dichotomy. In 1988, K. J. Palmer presented 
Fredholm operator concept to show conditions of systems which have exponen-
tial dichotomy (see [4]). Using this concept for nonuniform exponential dicho-
tomies case is presented by L. Barreira, D. Dragicevic and C. Valls (see [19] 
[20]). 

Theory of dynamic equations on time scales was introduced by Stefan Hilger 
[21] in order to unify and extend results of differential equations, difference eq-
uations, q-difference equations, etc. There are many works concerned with di-
chotomies of dynamic equations on time scales (see [22] [23] [24]). The purpose 
of this paper is to setup and characterize exponential dichotomy in term of 
Fredholm operators for dynamic equations on time scales. 

We now introduce some basic concepts of time scales, which can be found in [25] 
[26]. A time scale T is defined as a nonempty closed subset of the real numbers. The 
forward jump operator :σ →   is defined by ( ) { }inf :t s s tσ = ∈ >  and 
the graininess function ( ) ( )t t tµ σ= −  for any t∈ . In the following discus-
sion, the time scale   is assumed to be unbounded above and below. We have 
the following several basis definitions (see [25] [26]). 

Definition 1.1. Let A be an m n×  matrix-valued function on  . We say 
that A is rd-continuous on   if each entry of A is rd-continuous on  , and 
the class of all such rd-continuous m n×  matrix-valued funtions on   is de-
noted by 

( ) ( ), .m n
rd rd rdC C C ×= =    

We say that A is differentiable on   provided each entry of A is differentia-
ble on  , and in this case we put 

( ) ( ), , 1 ,11 ,1
 where i j i j i m j ni m j n

A a A a∆ ∆

≤ ≤ ≤ ≤≤ ≤ ≤ ≤
= =  

Definition 1.2. (Regressivity). An n n× -matrix-valued function A on a time 
scale   is called regressive (with respect to  ) provided 

( ) ( )  is invertible for all ,I t A t t κµ+ ∈  

and the class of all such regressive and rd-continuous function is denoted 

( ) ( ), .n n×= =      

Throughout this paper we only consider ( ) rdA t C∈ ∩ . 
Definition 1.3. Assume A and B are regressive n n× -matrix-valued functions 

on  . Then we define A B⊕  by 

( )( ) ( ) ( ) ( ) ( ) ( )  for all ,A B t A t B t t A t B t t κµ⊕ = + + ∈  

and we define A  by 

( )( ) ( ) ( ) ( ) 1
 for all .A t A t I t A t t κµ

−
= − + ∈     

Remark 1.1. ( )( ), ,n n× ⊕  is a group. 
Definition 1.4. (Matrix Exponential Function). Let 0t ∈  and assume that 
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A∈  is an n n× -matrix-valued function. The unique matrix-value solution of 
the IVP 

( ) ( )0, ,Y A t Y Y t I∆ = =  

where I denotes as usual the n n× -identity matrix, is called the matrix exponen-
tial function (at 0t ), and it is denoted by ( )0,Ae t⋅ . 

We collect some fundamental properties of the exponential function on time 
scales. 

Theorem 1.1. (see [25]). If ,A B∈  are matrix-valued function on  , then 
(1) ( )0 ,e t s I≡  and ( ),Ae t t I≡ , 
(2) ( )( ) ( ) ( )( ) ( ), ,A Ae t s I t A t e t sσ µ= + , 
(3) ( ) ( ) ( )*

*1
, , ,A A A

e t s e s t e s t
−  = =    

, 
(4) ( ) ( ) ( ), , ,A A Ae t s e s e tτ τ= , 
(5) ( ) ( ) ( ), , ,A B A Be t s e t s e t s⊕=  if ( ),Ae t s  and ( )B t  commute. 
If 1n = , one have the equivalent definition of the exponential function on 

time scales by 

( ) ( ) ( )( ) ( ) ( )
                       if 0

, exp  with
log 1     if 0

t

p h
s

z h
e t s p z

hz h hµ τξ τ τ ξ
=  = ∆ =   + ≠  

∫  

For any ( ),p∈   and ,s t∈ , where log is principal logarithm. 
Throughout this paper, we assume that the graininess of underlying time scale 

is bounded on + , i.e., ( )sup
t

G tµ
+∈

= < ∞


. This assumption is equivalent to the 
fact that there exist positive numbers 1 2,m m  such that for every t +∈ , there 
exists ( )c c t += ∈  satisfying 1 2m c t m≤ − <  (also see ([27], pp. 319)). We 
refer [25] [26] for more information on analysis on time scales. 

Next, we define several concepts functional analysis which is useful later. The 
operator :T X Y→  (where ,X Y  are Banach space), we define 
 ( )N T  is nullspace of T and ( )( )nul dimT N T= , 
 ( )R T  is range of T and ( )( )def codimT R T=  in Y, 
 Ind nul defT T T= −  (if at least one of them is finite). 

Definition 1.5. Let ( ),T X Y∈ . We say that T is Fredholm operator if 
(1) ( )R T  is closed, 
(2) NulT  and def T  are finite. 
If the condition (2) replace either nulT < +∞  or def T < +∞  then T is said 

that semi-Fredholm. 
In this paper, we only consider the time scales satisfy sup = +∞  and 

inf = −∞ . We also denote [ )0,+ = +∞ ∩  , ( ],0− = −∞ ∩  .  
Definition 1.6. The equation 

( )x A t x∆ =                           (1) 

is said to have an exponential dichotomy or to be exponentially dichotomous on 
J ( ), orJ + −=     if there exist projections matrix ( ){ }t J

P t
∈

 on n
  such 

that ( ) ( ) ( ) ( ), ,A Ae t s P s P t e t s=  for any 0t s t≥ ≥  and  
( ) ( ) ( ) ( )

Ker
, : Ker KerA P s

e t s P s P s→  is an isomorphism for any , ,t s t s J≥ ∈  
and there exist a positive constants iK  and , 1, 2i iα = , such that 
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(1) ( ) ( )
11, ,Ae t s x K e t s xα≤   for all ( )Rangex P s∈  and any , ,t s t s J≥ ∈ , 

(2) ( ) ( )
22, ,Ae t s y K e s t yα≤   for all ( )Kery P s∈  and any , ,t s t s J≤ ∈ . 

where ,t s∈  and ( ),Ae t s  is fundamental solution matrix of Equation (1) 
and I is the identity matrix. When previous inequality hold with 1 2 0α α= = . is 
said to possess an ordinary dichotomy. The definition of exponential dichotomy 
can be seen in [1] [22] [24]. 

We denote several Banach spaces which shall be used later. 
 ( ) { }: |  is bounded and rd - continuousnBC J x J x= →   with the norm 

 ( )sup .
t J

x x t
∈

=  
 ( ) ( ){ }0 |  has compact support in BC J x BC J x J= ∈ . 

 ( ) ( ){ }1 |  is bounded and rd - continuousBC J x BC J x∆= ∈  with the norm 

 ( ) ( )sup sup .
Kt J t J

x x t x t∆

∈ ∈

= +  

 ( ) ( ) ( ){ }0 | 0 whenC J x BC J x t t= ∈ → → +∞ . 

 ( ) { }: |  is a Bochner measurable function on p nL J x J x J= →   with the  

norm 

( )
1

.
p

p

p
J

x x t t
 

= ∆ 
 
∫  

where 0p >  and ,J + −=    or  . 
Remark 1.2. ( )0C J  is a closed subspace of ( )BC J  in which ( )0BC J  is 

dense. 
With the system (1) we define the bounded associative linear operator 

( ) ( )1:L BC J BC J→  as following 
( ) ( ) .L x x A t x∆= −  

Remark 1.3. NullL  is always finite. Hence the assumption that L is 
semi-Fredholm means that the range ( )R L  of L is closed. 

Follow [24], we say the pair ( ) ( )( ), pBC J L J  is admissible for (1) if for every 
( )pf L J∈  there exists a function ( )x BC J∈  such that the pair ( ),x f  satis-

fies 

( ) ( ) ( ) ( ) ( )
0

0 0 0 0, , , , , .
t

A A
t

x t e t t x t e t f t t t t Jτ τ τ= + ∆ > ∈∫  

We say that ( )pL J  is the input space and ( )BC J  is the output space. 
The main aim of this paper is to show that the nonautonomous equations 

have exponential dichotomy on time scales if and only if its associative operator 
is Fredholm. We now give an outline of the contents of this paper. In Section 2, 
we use Perron’s method, which was generalized on time scales by J. Zhang, M. 
Fan, H. Zhu in [1], to show that if the associative operator is semi-Fredholm 
then the corresponding linear nonautonomous equation has an exponential di-
chotomy on both +  and − . As a consequence, we obtain that Fredholm 
property implies the admissibility of the pair ( ) ( )( ); pBC L+ +  . In Section 3, 
we give the converse of the main theorem of section 2 on the lines. Particularly, 
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the system (1) has an exponential dichotomy on both +  and −  then the 
associative operator L is Fredholm on  . 

2. The Sufficient for Exponential Dichotomy on Both Two 
Half Lines 

Firstly, we need prove two lemmas that are very useful for the main theorem in 
this section. 

Lemma 2.1. Let ( )A t  be an n n×  matrix-value function, bounded, 
rd-continuous and regressive on an interval J, when , ,J + −=    . Let 

( )0f BC J∈  then the following statements are satisfy 
(1) If J is a half line then there exist ( )1

0x BC J∈  such that ( )L x f= , 
(2) If J =   then there exist ( )1

0x BC J∈  such that ( )L x f=  if and only 
if 

( )( ) ( )*
* * ,0 , .n

A
e fξ σ τ τ τ ξ

+∞

−∞

∆ ∀ ∈∫ 


 

Proof. (1) Let J +=  . Then the solution of the nonhomogenneous equation 

( ) ( )x A t x f t∆ = +                       (2) 

can be written as 

( ) ( ) ( )( ) ( ) ( )
0

,0 ,
t

A Ax t e t e t f tξ σ τ τ τ += + ∆ ∈∫             (3) 

Since f has compact support, so there exist 0r ≥  such that ( ) 0f t =  for all 
t r≥  and t +∈ . Then, for t r≥ , we obtain 

( ) ( ) ( )( ) ( )
0

,0 ,A Ax t e t e t fξ σ τ τ τ
+∞

= + ∆∫  

( ) ( ) ( )( ) ( )
0

,0 0,A Ax t e t e fξ σ τ τ τ
+∞ 

⇔ = + ∆ 
 

∫  

so ( )x t  has compact support on +  if and only if ( )( ) ( )
0

0,Ae fξ σ τ τ τ
+∞

= − ∆∫ . 

This proves the lemma for J +=  . The proof for J −=   is similar. 
(2) Let J =   then (3) is a solution of (2) for all t∈ . Therefore, x has 

compact support on   if and only if x has compact support on both +  and 
− . It means that 

( )( ) ( ) ( )( ) ( )
0 0

0, 0, .A Ae f e fξ σ τ τ τ σ τ τ τ
+∞ −∞

= − ∆ = − ∆∫ ∫  

Hence, 

( )( ) ( )0, 0Ae fσ τ τ τ
+∞

−∞

∆ =∫  

or 

( )( ) ( )*
* * ,0 0 for all .n

A
e fξ σ τ τ τ ξ

+∞

−∞

∆ = ∈∫ 
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This completes the proof of the lemma.                                
We now consider ( )( )1

0L C J−= . Since L is continuous and ( )0C J  is 
closed in ( )BC J  so   is also a closed subspace. Then we define  

( )0:T C J→  to be the restriction of L to   and we have  
( ) ( ) ( )0R T C J R L= ∩ . In the following lemma, we characterize ( )*N T , where 

( )* * *
0:T C J →  is the conjugate operator. 

Lemma 2.2. Let ( ) , ,A t J T  are defined as before. Then 
(1) when J +=   or −  then ( ) { }* 0N T = , 
(2) when J =   then ( )*N Tα ∈  if and only if there exist nEξ ∈  such 

that 

( )( ) ( ) ( )( ) ( )* *
* *,0  and ,0 .

A A
e f e fσ τ ξ τ α ξ σ τ τ τ

+∞ +∞

−∞ −∞

∆ < +∞ = ∆∫ ∫ 
   (4) 

Proof. (1) First, let J +=   and consider ( )0f BC J∈ . By Lemma 2.1, the 
Equation (1) with this f has a solution ( )1

0x BC J∈ . Obviously, x∈  and 
f Tx= , i.e., ( )f R T∈ . Therefore, for any ( )*N Tα ∈ , 

( ) ( ) ( )( ) ( )*
00, .f Tx T x f BC Jα α α= = = ∀ ∈  

Note that ( )0BC J  is dense in ( )0C J . By the continuity of α , we see that 
( ) 0fα =  for all ( )0f C J∈ . Thus, as a linear functional on ( )0C J , α  

must be zero and ( ) { }* 0N T = . A similar discussion can be given in the case of 
J −=  . 

(2) We now consider J =   and take ( )*N Tα ∈  and ( )0f BC J∈ . Let 

( ) ( ) ( ) ( ) ( )( ) ( ),Af t f t t e t fφ σ σ τ τ τ
+∞

−∞

= − ∆∫            (5) 

where φ  is a certainly chose function of compact support with ( ) 0tφ ≥  and 
( )d 1t tφ

+∞

−∞

=∫ . 
Clearly, f  has compact support and 

( )( ) ( )

( )( ) ( ) ( ) ( )( ) ( ) ( )( ) ( )

*

*

*

*

,0

,0 0, ,

0

A

A AA

e f

e f e e s f s s

σ τ τ τ

σ τ τ τ φ τ σ τ σ τ σ τ

+∞

−∞

+∞ +∞ +∞

−∞ −∞ −∞

∆

= ∆ − ∆ ∆

=

∫

∫ ∫ ∫






 

Thus, ( )f R T∈ . By Lemma 2.1, it implies f Tx=  with ( )1
0x BC J∈ . Since 

( )*N Tα ∈  so 

( ) ( ) ( )( )* 0f Tx T xα α α= = =  

From the formula (5) and direct computations, we obtain 

( ) ( )( ) ( )*
* * ,0 .

A
f e fα ξ σ τ τ τ

+∞

−∞

= ∆∫ 
 

For all functions ( )0f BC J∈ , 

( ) ( )( ) ( )*
* * ,0 .

A
f e f fα ξ σ τ τ τ α

+∞

−∞

= ∆ ≤∫ 
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It follows that ( )( )* ,0e A σ τ ξ τ α
+∞

−∞

∆ ≤ < ∞∫  . Then α  and  

( )( ) ( )*
* * ,0

A
f e fξ σ τ τ τ

+∞

−∞

→ ∆∫ 
 are both bounded linear functionals defined  

on ( )BC J  and coinciding on the dense subset consisting of the functions of 
compact support. So (4) holds for all ( )f BC J∈ , as required. 

Conversely, suppose there exist nξ ∈  such that (4) is true. Then 

( )( ) ( ) ( )( )

( ) ( )( )

* *

*

*

*

,0 ,0

sup ,0

A A

At

e A t e

A t e

τ τ σ τ ξ τ

σ τ ξ τ

+∞ +∞

−∞ −∞

+∞

∈ −∞

∆ = ∆

≤ ∆ < +∞

∫ ∫

∫


 



 

so that ( )( )*

0

,0
t

A
e τ ξ τ

∆
∆∫ 

 has limits as t → +∞ , hence ( )* ,0
A

e τ ξ


 is also. 

On the other hand, 

( ) ( ) ( ) ( )( )* *
*,0 ,0

A A
e t I t A t e tξ µ σ ξ = +  

 

( ) ( ) ( )( )* *,0 1 ,0
A A

e t M e tξ χ σ ξ⇔ ≤ +
 

 

( ) ( ) ( )( )* *,0 1 ,0 .
A A

e M eτ ξ χ σ τ ξ
+∞ +∞

−∞ −∞

⇔ ≤ + < ∞∫ ∫ 
 

Therefore, ( )*lim ,0 0
At

e t ξ
→∞

=


. 
Now α  defined by (4) is certainly in ( )*

0C J . Moreover, if x∈  we have 

( )( ) ( ) ( )( ) ( ) ( ) ( )( )

( )( ) ( ) ( ) ( )( ) ( ){ } ( )

( ) ( ) ( )( ){ } ( )

*

* * *

* *

* * *

* * *

*
*

,0

,0 ,0 ,0

,0 ,0 0

A

A A A

A A

T x Tx e x A x

e t x t e e A x

e A e x

α α ξ σ τ τ τ τ τ

ξ τ ξ σ τ ξ τ τ τ

τ ξ τ σ τ ξ τ τ

+∞
∆

−∞

+∞ +∞ ∆

−∞ −∞

+∞ ∆

−∞

= = − ∆

   = − + ∆   

 = + ∆ = 

∫

∫

∫



  

 

 

It means ( )*N Tα ∈  so the proof is complete.                         
We now prove the main theorem of this section. 
Theorem 2.1. Let the system (1) with ( )A t  is rd-continuous, bounded and 

regressive on time scales  . Suppose that the associative operator L of (1) is 
semi-Fredholm. Then 

(1) When J +=   or −  then (1) has exponential dichotomy on J, 
(2) When J =   then (1) has exponential dichotomy on both ,+ −  . 
Proof. Since ( )R L , the range of the semi-Fredholm operator, is closed. 

Hence, ( )R T  is also. Then by Theorem 4.6-C in Taylor [28], 

( ){ } ( ) ( ) ( ) ( ){ }0 * *
0: : 0,  R T C J f f T N Tα α= ∈ = ∀ ∈ =  

(1) Suppose now J +=  . Then by Lemma 2.2, ( ) { }* 0N T = . So by the 
Hahn-Banach theorem, ( ) ( )0R T C J= . That is, for all ( )0f BC J∈  then the 
equation (2) has a solution bounded on J. Then it follows from Theorem 3.6 in 
[1] that equation (1) has an exponential dichotomy on + . In case J −=   is 
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similar. 
(2) We now consider J =  . By Lemma 2.2 then nul *T < +∞ . Furthermore, 
( ){ } ( )0 *R T N T= . It follows that 

( ) ( ){ } ( ) ( ) ( ){ }0 * *
0 : 0,R T N T f C J f N Tα α= = ∈ = ∀ ∈  

so ( ) ( ) ( )*0,f R T f N Tα α∈ ⇔ = ∀ ∈ . By Lemma 2.2 again, 

( ) ( )( ) ( )*
* * ,0 0

A
f R T e fξ σ τ τ τ

+∞

−∞

∈ ⇔ ∆ =∫ 
 

for some nEξ ∈  satisfies ( )( )* ,0
A

e σ τ ξ τ
+∞

−∞

∆ < +∞∫ 
. 

Let any ( )0f C +∈   we are going to extend the function f as following 
Let 1 2, , , mφ φ φ  be a basis for subspace 

( )( ) ( )( )* *: ,0 : ,0 .
A A

V e eσ τ ξ σ τ ξ τ
+∞

−∞

 
= ∆ < +∞ 
 

∫ 
 

We now choose a function ( )0g C −∈   such that 

 ( ) ( ) ( ) ( ) ( )
0

* *

0

, 1, ,i ig f i mφ τ τ τ φ τ τ τ
+∞

−∞

∆ = − ∆ =∫ ∫   

 ( ) ( )0 0g f=  

We define 

( ) ( )
( )

for 0
for 0

f t t
f t

g t t
 ≥=  <

  

Hence, ( )0f C∈   and ( ) ( )* 0i fφ τ τ τ
+∞

−∞

∆ =∫   when 1, ,i m=  . It means 
that the equation Lx f=   has solution on ( )BC   of the equation 

( ) ( )x A t x f t∆ = +   

has bounded solution on  . Restricting to +  we conclude that equation 

( ) ( )x A t x f t∆ = +  

has bounded solution for all ( )0f C +∈  . By the results in [22] (Theorem 3.6) 
used earlier, it follows that Equation (1) has exponential dichotomy on + . A 
similar argument shows that it has an exponential dichotomy on − . So the 
proof of the theorem is complete.                                       

By Theorem 3.1 in [24], one has the following corollary about relation be-
tween semi-Fredholm property and admissibility. 

Corollary 2.1. If the associative operator of (1) is semi-Fredholm operator 
and J +=   then pair ( ) ( )( ), pBC J L J  is admissible for (1). 

With the results above, we showed that if the associative operator is 
semi-Fredholm then the corresponding linear nonautonomous equation has an 
exponential dichotomy on both +  and − . As a consequence, we obtain that 
Fredholm property implies the admissibility of the pair ( ) ( )( ); pBC L+ +  . 

3. The Sufficient for Fredholm Property on the Line 

In this section, we assume that the Equation (1) has exponential dichotomy on 
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both +  and − . Then there exist two projections P and Q that satisfy Defini-
tion 1.6. Then the adjoint equation 

( )*x A t xσ∆ = −                          (6) 

has exponential dichotomy on +  and −  with the corresponding proposi-
tions *I P−  and *I Q− . Now the subspace of initial values (at 0t = ) of 
bounded solutions of (1) is 

( ){ } ( ) ( ): sup ,0A
t J

E e t R P N Qξ ξ
∈

= < +∞ = ∩  

and for (6) is 

( )( ){ } ( ){ }* *: sup ,0 : sup ,0 .
A At J t J

F e e tξ σ τ ξ ξ ξ
∈ ∈

= < +∞ = < +∞
 

 

Theorem 3.1. Let ( )A t  be an n n×  matrix function bounded, 
rd-continuous and regressive on   such that the system (1) has an exponential 
dichotomy on both +  and − . Then 

(1) ( )f R L∈  if and only if 

( )( ) ( )*
* * ,0 0,    ,

A
e f Fξ σ τ τ τ ξ

+∞

−∞

∆ = ∀ ∈∫ 
              (7) 

(2) The associative operator L is Fredholm on  . 
Proof. Proof of the part (ii) is similar to Palmer [2]. For the part (1), let 

( )f R L∈  so that there exists x in ( )BC   such that 

( ) .Lx f x A t x∆= = −  

Then if Fξ ∈  we obtained 

( )( ) ( ) ( ) ( )( )

( )( ) ( ) ( ) ( )( ) ( ){ } ( )

*

* * *

* *

** * * *

,0

,0 ,0 ,0

0

A

A A A

e x A x

e x t e e A x

ξ σ τ τ τ τ τ

ξ σ τ τ ξ ξ σ τ τ τ τ

+∞
∆

−∞

+∞+∞ ∆

−∞
−∞

− ∆

 = − + ∆ 

=

∫

∫



  
 

Conversely, suppose ( )1f BC∈   and satisfy  

( )( ) ( )*
* * ,0 0, .

A
e f Fξ σ τ τ τ ξ

+∞

−∞

∆ = ∀ ∈∫ 
 

Note that if η  is a vector satisfying 

( )* 0,P I Qη − − =                       (8) 

then the function 

( )
( )( )( )
( )( )

*

*

*

*

,0  for 0

,0  for 0
A

A

e t I P t
t

e t Q t

σ η
ψ

σ η

 − ≥= 
≤





 

satisfies (7). It follows that 

( )( ) ( ) ( ) ( )( ) ( )* *

0* * *

0

,0 ,0 0
A A

Qe f I P e fη σ τ τ τ σ τ τ τ
+∞

−∞

 
∆ + − ∆ = 

 
∫ ∫ 
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for all vectors satisfying (8). This means that the linear algebraic equations 

( ) ( )( ) ( ) ( ) ( )( ) ( )* *

0 * *

0

,0 ,0
A A

P I Q Qe f I P e fξ σ τ τ τ σ τ τ τ
+∞

−∞
− − = ∆ + − ∆   ∫ ∫ 

 

have a solution ξ . We consider the function 

( )

( ) ( ) ( )( ) ( )

( )( ) ( )( ) ( )

( )( ) ( ) ( )( ) ( )

( )( ) ( )( ) ( )

*

*

*

*

*

0

*

*

0
*

,0 ,0 ,0
 for 0

,0 ,0

,0 ,0 ,0
 for 0

,0 ,0

t

A A A

A A
t

t

A A A

A A
t

e t P e Pe f
t

e I P e f
x t

e t I Q e Qe f
t

e I Q e f

ξ τ σ τ τ τ

τ σ τ τ τ

ξ τ σ τ τ τ

τ σ τ τ τ

+∞

−∞


+ ∆

 ≥
− − ∆


= 
 − + ∆
 ≤

− − ∆


∫

∫

∫

∫









 

is a bounded solution of nonhomogenneous linear system Lx f=  so that 
( )f R L∈  as required. The Theorem is proved.                           

As a consequence of the Theorem 3.1, we obtain that the system (1) has an 
exponential dichotomy on both +  and −  if and only if the associative op-
erator L is Fredholm on  . 
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