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Abstract 
A measure for the efficiency of a thermoelectric material is the figure of merit 
defined by 2ZT S T ρκ= , where S, ρ  and κ  are the electronic transport 
coefficients, Seebeck coefficient, electrical resistivity and thermal conductiviy, 
respectively. T is the absolute temperature. Large values for ZT have been 
realized in nanostructured materials such as superlattices, quantum dots, 
nanocomposites, and nanowires. In order to achieve further progress, (1) a 
fundamental understanding of the carrier transport in nanocomposites is 
necessary, and (2) effective experimental methods for designing, producing 
and measuring new material compositions with nanocomposite-structures 
are to be applied. During the last decades, a series of formulas has been 
derived for calculation of the electronic transport coefficients in composites 
and disordered alloys. Along the way, some puzzling phenomenons have 
been solved as why there are simple metals with positive thermopower? and 
what is the reason for the phenomenon of the “Giant Hall effect”? and what is 
the reason for the fact that amorphous composites can exist at all? In the 
present review article, (1), formulas will be presented for calculation of 

( )1σ ρ= , κ , S, and R in composites. R, the Hall coefficient, provides 
additional informations about the type of the dominant electronic carriers 
and their densities. It will be shown that these formulas can also be applied 
successfully for calculation of S, ρ , κ  and R in nanocomposites if certain 
conditions are taken into account. Regarding point (2) we shall show that the 
combinatorial development of materials can provide unfeasible results if 
applied noncritically. 
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1. Introduction 

The performance of a thermoelectric material for cooling of power generation 
applications, or more generally, for energy conversion, are directly related to the 
dimensionless figure of merit defined by  

2

,S TZT
ρκ

=                               (1) 

where 1ρ σ= . S, κ , σ  and ρ  are the Seebeck (or thermopower) 
coefficient, thermal conductivity, electrical conductivity, and electrical resitivty, 
respectively. T is the absolute temperature. The larger is ZT, the larger the 
thermoelectric performance of the material is. For many decades, 1ZT ≈  was a 
practical upper limit realized in real materials. A further increase of ZT was 
limited by the fact that the transport coefficients occurring in Equation (1) are 
generally not independent from each other. In spite of these restrictions, during 
the last decade, progress was achieved by so-called nanostructured materials 
such as superlattices, quantum dots, nanocomposites, and nanowires. 

In order to achieve further progress in the field of nanostructured materials 
with improved ZT, (1) a fundamental understanding of the carrier transport in 
these complex materials is necessary, and (2) effective experimental methods for 
designing, producing and measuring new material compositions with nanocom- 
posite-structures are to be applied. 

Regarding point (1), today it is generally accepted that application of the 
established classical theories for calculation of the electronic transport as the 
Boltzmann transport equation (BTE) can no longer be applied for the nanocom- 
posite materials, because many of the characteristic lengths in the nanocom- 
posite materials are smaller than the electron de Broglie wavelength (see, e.g., [1], 
Figure 6 therein). Instead, modelling transport in nanocomposites is generally 
assumed to require more powerful tools such as non-equilibrium Green’s 
functions, which explicitly take account of electron wave effects [1]. 

Regarding point (2), the combinatorial development of materials seems to be a 
proper method for experimental studies. From this method (applied to a certain 
material system) a large range of different compositions can be realized concur- 
rently on one large substrat, for instance by deposition of thin films by simul- 
taneous co-sputtering from two or three targets on a large substrat. Subsequently 
the transport coefficients can be measured with high lateral resolution applying 
measuring equipment such as the Potential-Seebeck Microprobe, the 3-Omega- 
method and the 4-point method for S, κ , and σ , respectively. The advantage 
of these methods is the fact that quick and precise measurements of the transport 
coefficients at identical positions over the complete substrate is possible. How- 
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ever, there is also a disadvantage of this method. Because in a continuous sample 
with a lateral concentration gradient the electrochemical potential µ�  is the 
same in the whole sample, both the topological structure (atomic configuration) 
and electronic structure may be completelly different from those ones, if the 
samples with a certain composition are produced individually. 

In the following we shall challenge these two points of view. We shall show 
that (1), the classical theories can, after all, be applied successfully for nanocom- 
posites, particularly with respect to the electronic transport and its relation with 
the atomic structure and (2), the combinatorial development of materials can 
provide unfeasible results if applied noncritically. 

On the way to this awareness, studies of amorphous alloys, as for instance 
a-Cr1−xSix alloys, have played an important role. Additional microstructure 
analyses of a series of amorphous transition-metal-alloys [2] [3] [4] [5] [6], have 
shown that, for large concentration ranges, they are real nanocomposites 
composed of different (amorphous) phases, where the phase grains are found to 
be of the order of 1 - 2 nm [5] [6]. In correspondence to these analytical results, 
the a-Cr1−xSix thin films can be described as nanocomposites consisting of the 
phases 1-Cr Si

A Ax xa −  (≡phase A) and 1-Cr Si
B Bx xa −  (≡phase B) where 0.25Ax ≈  

and 1Bx ≈ . 
In Sections 2.1-2.4 formulas for σ , κ , S and R (the Hall coefficient) in 

composites will be derived and, in Section 2.5, compared with other published 
formulas. In Section 2.6 percolation elements will be additionally introduced in 
the formulas for two-phase composites. In Section 3.1 the classical formulas for 
the transport coefficients of the phases will be summarized applicable to large 
phase grains, which in Section 3.2 are extended to nanocomposites. In Sections 
4-6 it will be shown that under certain conditions a discontinuity in the 
concentration dependence of the thermopower can occur, that the classical 
thermopower formula is to be supplemented by an additional term to be 
complete and that a noncritical application of the method of the combinatorial 
development of materials can provide unfeasible results. 

The puzzling phenomenons: why there are simple metals with positive 
thermopower? and what is the reason for the phenomenon of the “Giant Hall 
effect”? and what is the reason for the fact that amorphous composites can exist 
at all? have been considered in the Section 5 and Section 3.2.1. 

2. Electronic Transport in Composites 

Let us consider a two phase-composite consisting of the phases ,i A B=  in a 
symmetrical fashion regarding the average geometric form of the phase grains 
and without preferred orientations. Let us assume that each phase can be 
characterized by a set of transport coefficients iσ , ,e iκ , iS  and iR  for the 
phase i, which are the electrical conductivity, electronic contribution to the 
thermal conductivity, Seebeck coefficient and the Hall coefficient, respectively, 
in the phase i. The corresponding transport coefficients of the composite, σ , 
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eκ , S and R are to be calculated, if the iσ , ,e iκ , iS  and iR  are known. The 
discussion will be restricted to small temperature gradients, small and constant 
electric and magnetic fields, E  and H , respectively. 

2.1. Electrical Conductivity 

Applying effective medium theory (EMT), let us derive the relation between iσ  
and σ , the electrical conductivities in the phases i and the composite, 
respectively. The strategy underlying the EMT is the following: a single phase 
grain of the phase i is considered to be completely embedded in an effective 
medium consisting of the two phases randomly arranged and characterized by 
the total transport coefficients. At the boundary face between this single phase 
grain and the surrounding effective medium continuity of the current densities 
and potentials and their gradients are to be saved. 

The local electric current density Ji  can be written as  

J E grad .i i i i iσ σ ϕ= = −                         (2) 

In analogy to Equation (2) we write for the electric current density J in the 
specimen  

J E grad .σ σ ϕ= = −                          (3) 

iϕ  and ϕ  are the local and total electrostatic potential and gradi iE ϕ= −  
and gradE ϕ= −  are the local and total electric field, respectively. 

Now we demand that the total current density is equal to the average of the 
local current density,  

J J ,i=                               (4) 

and the same for the potential  

grad grad .iϕ ϕ=                           (5) 

Let us assume a spherical inclusion of the phase i with the radius 0r , 
embedded in an uniform medium with the average conductivity σ  and that 
for this enclosed phase i the local transport equation Equation (2) holds. With 
Equations (3)-(5) we get  

J grad grad .i i iσ ϕ σ ϕ= − = −                     (6) 

The local potential iϕ  obeys the Laplace equation  

0,iϕ∆ =                                (7) 

where the boundary conditions  

,iϕ ϕ=                                (8) 

J Jn n
i=                                (9) 

at 0r r=  are to be fulfilled, which is equivalent to  

grad gradr i r iσ ϕ σ ϕ=                         (10) 

at 0r r= . gradr  is the gradient into the radial direction. Jn
i  and Jn  are the 

normal components of the current density in the sphere i and the surrounding 
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effective medium, respectively. Equation (7) has the solution  

0 cosi iraϕ ϕ ϑ= +                           (11) 

within the sphere i, and  

( )3 2
0 0 cosbr cr rϕ ϕ ϑ= + +                      (12) 

within the effective medium. ϑ  is the angle between the direction of E  and 
the position vector r  with r=r . , ,ia b c  and 0ϕ  are constants. With  

grad cosr i iaϕ ϑ=                          (13) 

following from Equation (11), Equation (6) can be written as  

.i i ia aσ σ=                           (14) 

With the boundary condition Equation (8) it follows that  

,ia b c= +                             (15) 

and with Equations (10)-(12) for 0r r= ,  

( )2 .i ib c aσ σ− =                          (16) 

Equations (15), (16) resolved for ia  providing  

3
2i

i

ba σ
σ σ

=
+

                           (17) 

and introduced in Equation (14) provide  

1 .
2 2

i

i i

σ
σ

σ σ σ σ
=

+ +
                     (18) 

Replacing the averages …  by i iυΣ …  we get  

0,
2

i
i

i i

σ σ
υ
σ σ

−
=

+∑                          (19) 

where iυ  is the volume fraction of the phase i. 
Equation (19) is the EMT formula for σ . It holds for composites with more 

than two phases as well. The first authors who derived Equation (19) indepen- 
dently from each other, were Odelevskii [7] and Landauer [8]. 

2.2. Thermal Conductivity 

The schema shown in Section 2.1 can be applied to all the other transport 
parameters provided that a current density can be defined which is a function of 
a gradient of a potential, analoguously to Equation (2). For the thermal conduc- 
tivity the corresponding relations read  

QJ grade Tκ= −                          (20) 

and  

Q ,J grad ,i e i iTκ= −                         (21) 

where QJ  and QJ i  are the total and local electronic thermal current density, 
respectively. Applying the same formalism as described in Section 2.1, however 
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where the potentials ϕ  and iϕ  are replaced by the potentials T and iT , 
respectively, it follows that 

,

,

0.
2

e i e
i

i e i e

κ κ
υ
κ κ

−
=

+∑                         (22) 

For the total thermal conductivity composed of both an electronic con- 
tribution eκ  and an nonelectronic one neκ , it follows an analogous formula  

0,
2

i
i

i i

κ κ
υ
κ κ

−
=

+∑                         (23) 

where iκ  is given by  

, ,i e i ne iκ κ κ= +                          (24) 

provided that interactions between the various modes of heat transport can be 
neglected. ,ne iκ  is the non-electronic contribution to iκ . 

2.3. Thermopower 

The following derivation will be based on J and SJ , the electric and entropy-flux 
density, respectively. The corresponding local flux densitities, Ji  and ,JS i , can 
be written as [9] [10]  

( )J grad grad ,i i i ie S Tσ µ = − �                 (25) 

( ) ( )2
, ,J grad grad ,S i i i i i i e iS e S T Tσ µ σ κ= − +�            (26) 

where e  is the elementary charge. ( e−  is the charge of the electron.) iµ�  is 
the electrochemical potential in the phase i. 

According to the strategy underlying the EMT, we demand continuity of the 
entropy-flux density and the electrochemical potential and their gradients, at the 
boundary face between a single phase grain and its surrounding (effective medium), 
where additionally J J 0i= =  is to be fulfilled. Setting J 0i =  in Equation (25), 
and inserting into Equation (26), one obtains for the local entropy-flux density,  

( ),
,J grad .e i

S i i
i

e
S T
κ

µ= − �                    (27) 

In analogy to Equation (27) we write for the total entropy-flux density JS  in 
the specimen  

( )J grad ,e
S e

ST
κ

µ= − �                     (28) 

where µ�  is the electrochemical potential of the composite. 
The Equations (27) and (28) have the same structure as Equations (2) and (3); 

that is why, we can apply the same formalism as described in Section 2.1, 
however with other starting equations,  

,J J ,S S i=                          (29) 

grad grad ,iµ µ=� �                        (30) 

https://doi.org/10.4236/ojcm.2019.91002


J. Sonntag et al. 
 

 

DOI: 10.4236/ojcm.2019.91002 27 Open Journal of Composite Materials 
 

and we obtain finally  

,

,

0.
2

e i i e
i

i e i i e

S S
S S

κ κ
υ
κ κ

−
=

+∑                     (31) 

Considering the Wiedemann-Franz rule, Equation (31) can be transformed to  

0.
2

i i
i

i i i

S S
S S

σ σ
υ
σ σ

−
≈

+∑                     (32) 

Equation (32) was derived on basis J & QJ , Equation (31) on basis J & SJ  
(Sonntag, [11] and [12], respectively). For the one-band models, it makes little 
difference whether one chooses to interpret thermoelectric phenomenons on the 
basis of J & QJ  or J & SJ . However, for two-band or multiband models 
characteristic for semiconductors, the use of J & QJ  leads to complications, 
which are not to be expected, if J & SJ  is used as a basis (Harman and Honig 
[9], p. 28). 

2.4. Hall Coefficient 

Let us consider a non-magnetic two-phase composite. Under the same condi- 
tions as assumed in Section 2.1 the local electric current density in a single grain 
of the phase i (i = A or B) can be written as  

J ,i i iσ= � E                           (33) 

where iE  and iσ
�  are the electric field and the magnetoconductivity tensor 

[13] in this grain. For the electric current density outside of this grain we write 
analogously 

J ,σ= �E                            (34) 

where E  and σ�  are the electric field and the magnetoconductivity tensor 
outside of this grain (effective medium). For the determination of the coeffi- 
cients in iσ

�  we start with the equation for Ji  under the influence of an 
electric and magnetic field, [9] [14] [15]  

( ) ( )
3 4

2
11, 12, 13,2J K K K .i i

i i i i i i i i
i i

e e
e

m m
= + × + ⋅E E B B E B           (35) 

,Krs i  are the transport integrals defined by  

( ) ( )
0

, 2 2

,4K d
3 1

r s
ii

rs i i
i i

f E TE
N E E

m E
τ
µ

∂
= −

∂+∫ B
             (36) 

with the Fermi-Dirac distribution function,  

( )0 1, .

1 e
i

B

i E
k T

f E T µ−=

+
�

                       (37) 

( )iN E , im  and iτ  are the density of states, the effective mass and the 
relaxation time, respectively, of the carriers in the phase i. E and Bk  are the 
energy and the Boltzmann constant, respectively. ie e= −  and e+  for elec- 
trons and holes, respectively. The third summand in Equation (35) disappears 
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only if iE  (or iE ) is always perpendicular to B . In a composite, however, B  
and iE  (or iE ), are generally not perpendicular to each other because of the 
spherical boundary between a phase grain and its surrounding. Without loss of 
generality, the external fields applied to the sample, extE  and B , have the 
directions of the X and Z axes, respectively. Then Equation (33) and Equation 
(35) lead to  

2
2

1 0
1 0 ,

1
0 0 1

i
i

i i
i

i i

ξ
σ

σ ξ
ξ

ν ξ

 
 = − +  + 

�                   (38) 

where i i i iB R Bξ µ σ≡ = . Analogously we write for σ� ,  

2
2

1 0
1 0

1
0 0 1

ξ
σσ ξ
ξ

νξ

 
 = − +  + 

�                    (39) 

with B RBξ µ σ≡ = . 1 cosi iν α= +  and 1 cosν α= + , where iα  and α  are 
the angle between iE  and B , respectively between E  and B . µ  and iµ  
are the average Hall mobility in the composite and the local Hall mobility in the 
phase i, respectively. 

At the interface between a single phase grain and its surrounding continuity of 
the normal components of the current density and the tangential components of 
the potential gradient are to be fulfilled. For the limiting case 0=B , this 
demand is fulfilled by  

( ) ( ) ( ) 2, 3 1 3 1 2 0i A B A A B Bf σ σ σ σ σσ υ σσ υ σ≡ + − + − − =          (40) 

following from the EMT formula for σ , Equation (19). 
For the case 0≠B , the tensor properties of iσ

�  and σ� , Equation (38) and 
Equation (39), are to be taken into account. Equation (40) expressed in tensor 
form reads  

( ) ( )3 1 3 1 2 0,A B A A B Bσ σ σσ υ σσ υ σσ+ − + − − =
� � � � � � � �             (41) 

where the identities A B B Aσ σ σ σ=
� � � �  and i iσσ σ σ=

� � � �  have been used. Equation 
(41) determines the coefficients of Equation (39) as a function of the coefficients 
of Equation (38). Inserting Equation (38) and Equation (39) into Equation (41) 
and comparing coefficients for the tensor elements, we get  

( ) ( ) ( )
( ) ( )2

3 1 3 1
,

4 3 1 3 1
A B A B A A A B B B

A A B B

σ σ ξ ξ σσ ξ υ σσ ξ υ
ξ

σ σσ υ σσ υ
+ + − + −

=
− − − −

        (42) 

following from the tensor elements xyσ  or yxσ , where quadratic and higher 
powers of ξ , iξ  are neglected, i.e., Equation (42) and the following Equations 
(43), (44) are low-field approximations. Within this approximation the para- 
meters iν  and ν  do not have an influence on the result. From the tensor 
elements xxσ , yyσ , or zzσ , Equation (40) follows. 

Substituting ξ  and iξ  in Equation (42) by R and iR  and considering 
Equation (40) we get the R formula for two-phase composites:  
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( ) ( )
( )

2 2

2

3 1 3 1

2
A A B A B B A B

A B

R R
R

σ σ σ υ σ σ σ υ

σ σ σ σ

+ − + + −      =
+

         (43) 

The same formalism can also be applied to composites with more than two 
phases leading to relatively complex formulas for R. A self-contained and more 
manageable description of these R formulas is given by  

( )2 2

, ,
, 0i i i

i A B i

R R fσ σ σ σ
σ σ=

 ∂ ∂
+ = ∂ ∂ 
∑
�

              (44) 

with  

( ) ( )
, ,, ,

, 2 .
2

i
i i i

i A Bi A B i

f
σ σ

σ σ σ σ υ
σ σ==

   −
= +    +  

∑∏
��

           (45) 

Equations (43)-(45) were firstly published by Sonntag [16]. 

2.5. Comparison with Other Transport Formulas for Composites 
2.5.1. Thermopower 
As we are interested in a direct comparison between the different thermopower 
formulas for composites or heterogeneous materials, the transport coefficients in 
the phase, iκ , iS , and iσ , are set to be constant, although this is not realized 
in real composites caused by the condition of a common electrochemical 
potential as well as because of the specific features at 1 3iυ <  as discussed in 
Section 3.2.2. Additionally, ,i e iκ κ=  is set. 

The thermopower formula derived by Airapetiants ([17], Equation (12) 
therein), called AirS , is  

1 2
i i ii

Air
ii

S g
S

g
σ

σ
=

−
∑

∑
                        (46) 

with  

( )( )
3

.
2 2

i
i

i i

g
υ κ

σ σ κ κ
=

+ +
                     (47) 

In Figure 1, AirS  vs Bυ  is shown for a composite consisting of two phases, 
A and B, with the coefficients, 18.5 V KAS = − µ , 370 V KBS = − µ ,  

1 17450 cmAσ − −= Ω ⋅ , 1 17 cmBσ − −= Ω ⋅ , 1 10.022 W K cmAκ
− −= ⋅ ⋅ ,  

1 10.070 W K cmBκ
− −= ⋅ ⋅  which were applied by Airapetiants [17], already, 

where κ  and σ  are calculated by Equation (23) and Equation (19), res- 
pectively. For comparison the thermopower is calculated with our formula, 
Equation (31) and Equation (23) for κ  applying the same numbers for iκ  
and iS  [ iσ  does not occur in Equation (31)]. The result S is drawn in Figure 1 
as well. 

( )Air BS υ , Equation (46), and our ( )BS υ , Equation (31), agree very well in 
the concentration range 0.62Bυ < , however, with increasing Bυ  beyond 

0.62Bυ =  there is increasing difference between ( )Air BS υ  and ( )BS υ . 
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Figure 1. Comparison of AirS , HerS , and S vs. Bυ  calculated 
by Equation (46), Equation (56), and Equation (31), respec- 
tively, where 18.5 V KAS = − µ , 1 17450 cmAσ − −= Ω ⋅ ,  

1 10.022 W K cmAκ
− −= ⋅ ⋅ , 370 V KBS = − µ ,  

1 17 cmBσ − −= Ω ⋅ , 1 10.070 W K cmBκ
− −= ⋅ ⋅  [the numbers for 

iS , iσ , and iκ  are taken from [17] (Figure 2 therein); the 
quotients of them, B AS S , B Aσ σ , and B Aκ κ  correspond 
nearly to those applied in [webman] (Figure 2 therein). 

 
The thermopower formula derived by Webman et al. ([webman], Equations 

(2.16), (2.17) therein),  

6
1 3

i i ii
Web

i i ii

S D
S

D
κ υ

υ κ
=

−
∑
∑

                      (48) 

with1  

( )( )
,

2 2
i

i
i i

D
σ

κ κ σ σ
=

+ +
                   (49) 

provides the same concentration dependence as those of Airapetiants [17], 
( )Air BS υ , shown in Figure 1, if κ  and σ  in Equations (48), (49) are again 

 

 

1We have replaced the averages …  in the original equations by Webman et al. [webman] and 

Herring [herring] by ii
υ∑ … , Equations (48) and (55), respectively. 
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calculated by Equation (23) and Equation (19), respectively. This result seems to 
be surprizing, because at the end of the derivation of theirs formulas Webman et 
al. have written: “Our effective-medium result… differs from that previously 
derived by Airapetiants [17], as the latter treatment did not involve a completely 
self-consistent averaging procedure.” 

Also the thermopower formula derived by Halpern [19] (Equation (10) 
therein),  

( )
( )

,A B B AA A B B B A
Halp

A B B A A B B A

S SS SS
σ σ κσ κ σ κ

σ κ σ κ σ σ κ σ κ
−−

= +
− −

             (50) 

provides the same concentration dependence as those by Airapetiants [17], AirS ; 
the same refers also to the thermopower formula derived by Balagurov ([20], 
Equation (7) therein),  

( )A B A B A
Bal A

A B B A A

S S
S S

σ σ κ κ
σ κ σ κ σ σ

−  
= + − −  

                 (51) 

as well as to those by Bergman and Levy ([21], Equation (50) and Equation (9) 
therein),  

( ) ,B B
Berg B A B

A A B B

S S S S γ σ γ σ
γ σ γ σ

−
= + −

−
                (52) 

with  
2 ,T Sγ κ σ= +                           (53) 

2
i i i iT Sγ κ σ= +                           (54) 

if κ  and σ  in Equations (50)-(53) are again calculated by Equation (23) and 
Equation (19), and iγ  and γ  in Equation (52) are replaced by iκ  and κ , 
respectively, i.e., the second term in Equation (53) and Equation (54) is 
neglected [22] [23] (quantity of higher order). 

Additionally, in Figure 1 it is drawn the concentration dependence of HerS  
calculated by the formula by Herring ([24], second equation of Equation (38) 
therein]), 

( ) 1 2
3 3HerS S S S κ ρ
κ ρ

 
= − − +  

 
                (55) 

with 1ρ σ −= , derived for a randomly inhomogeneous medium. If S , κ  
and ρ  are interpreted as i ii Sυ∑ , i iiυ κ∑  and i iiυ ρ∑ , respectively, then 
Equation (55) leads to   

1 2
3 3Her i i j j i i

i j i i i i ii i

S S S S κ ρυ υ υ
υ κ υ ρ

  = − − +     
∑ ∑ ∑ ∑ ∑

        (56) 

with 1
i iρ σ −= . It is noteworthy that Bergman and Levy [21] have concluded that 

for a two-component isotropic composite their result, Equation (52), agree in 
first order of A Bσ σ−  and A Bγ γ−  with that by Herring [24], Equation (55), 
but disagree in the next order. 
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Fishchuk [25] received for the conducting range of a two-component system 
in the form of a semiconductor with random insulating inclusions [25], AS S= , 
in correspondence with AirS  and S in Figure 1. 

Summarizing, for the example considered in Figure 1, the surprising result 
follows: Although the formulas for , , ,Air Web Halp BalS S S S , and BergS  look very 
differently, all provide the same concentration dependence of the thermopower 
in the complete concentration range 0 1Bυ≤ ≤ , whereas there are considerable 
differences to both ( )Her BS υ  and ( )BS υ , Equation (31). 

Which are the reasons for the differences between the thermopower formulas 
considered? All the thermopower formulas cited contain iS , iκ  and iσ , 
whereas our Equation (31) contains only iS  and ,e iκ  (or iS  and iσ , Wie- 
demann-Franz rule is used, Equation (32)). Also the thermopower formula 
derived by Xia and Zeng [26] for polycrystals, contains iS , iκ  and iσ . 

The reason for the differences is the neglection of the quadratic term of the 
thermopower-coefficient in the heat current density (“quantity of higher order”) 
before J 0i =  is set. Neglection of this term, “ 2

i iSσ ”, leads to an additional 
term in the resulting ,JS i , Equation (27), after setting J 0i = ; this additional 
term depends on σ  as well. Such a term does not occur, if all the terms are 
maintained, before J 0i =  is set. This statement is independent of the question 
whether the EMT formula is derived on the basis of J & QJ  or J & SJ . 

The starting equations applied by Webman et al. [18] (Equations (2.2b) and 
(2.2a) therein) read  

J grad grad ,P Tσ ϕ= − +                       (57) 

J grad grad ,Q T PTκ ϕ= − +                      (58) 

where P Sσ= . Setting J 0= , it follows that  

gradgrad ,T
S
ϕ

=                          (59) 

and replacing gradT  in Equation (58) by Equation (59) we get  

J grad ,Q ST
S
κ σ ϕ = − + 

 
                     (60) 

Equation (60) contains σ , κ  and S. This does not occur if the complete 
formula,  

( )2J grad grad ,Q S T T PTκ σ ϕ= − + +                (61) 

is applied as the starting formula instead of Equation (58). In Equation (28) only 

eκ  and S occur. 
Also the other authors have applied analogous formulas: Bergman and Levy 

([21], Equation (50) and Equation (9) therein); Xia and Zeng [26] (Equation (5) 
therein). Halpern has also neglected the quadratic term in S (first line in [19] on 
page L219), although he comes to the reasonable result that for (two-phase) 
metal-insulator composites, AS S≈ , where AS  is the thermopower of the 
metallic phase. This result agrees with the result of Sonntag for metal-insulator 
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composites ([11], Equation (59) therein). 
The basis of all the derivations done in [11] [18] [19] [21] [26] was J & QJ . As 

pointed out by Harman and Honig ([9], p. 28), for desribing thermoelectric 
phenomenons, SJ  is more universal as QJ . That is why, in [12] J & SJ  has 
been applied as a basis. There are differences between Equation (31) derived in 
[12] on basis J & SJ  and the formula derived on basis J & QJ  (Equation (30) in 
[11]). While in the last one the chemical potentials of the phases, 0

iµ� , occur, in 
the former one only the common electrochemical potential, µ� , occurs 
mediated through the iS  described by Equation (73). 

2.5.2. Hall Coefficient 
The EMT formula for the Hall coefficient of two-phase composites derived by 
Cohen and Jortner [27] is  

( )

2 2

2
,

0.
2

i i
i

i A B i

R Rσ σ
υ

σ σ=

−
=

+
∑                         (62) 

As will be argued in the following, Equation (62) seems to be a good 
approximation for two-phase composites if A Bσ σ≈ , but not if A Bσ σ� , as 
typical for metal-insulator composites. 

For three examples of two-phase composites, in Figure 2(b), Figure 2(d), and 
Figure 2(f), the concentration dependence of R related to its value at 1Aυ =  is 
shown, calculated by Equation (43), and compared with Equation (62), denoted 
as “C&J”. In Figure 2(a), Figure 2(c), and Figure 2(e), the corresponding 
concentration dependence of the Hall mobility µ  ( Rσ= ) related to its value 
at 1Aυ =  is shown, where σ  is calculated by Equation (19). There are two 
essential differences between the the two solutions Equation (62) and Equation 
(43): 

(1) The most striking difference appears in Figure 2(a) and Figure 2(c): The 
“C&J” curves decrease dramatically with increasing Aυ  and pass through a 
pronounced minimum at 1 3Aυ = , although A Bµ µ=  and A Bµ µ> , respec- 
tively. In contrast, the µ  curves calculated by Equation (43) agree with the 
expectation: Figure 2(a): µ  agrees with Aµ  for all Aυ ; Figure 2(c) and 
Figure 2(e): µ  increases and decreases with increasing Aυ , respectively. 

A possible interpretation for such dramatic decrease of µ  at 1 3Aυ =  
(“C&J” curves) could be additional scattering centres in the added phase 
boundaries. Such an effect by the phase boundaries is expected to be the more 
pronounced the smaller the sizes of the phase grains, iD . However, the C&J 
formula [27] [28] does not contain iD . 

The differences between Equation (43) and the curves “C&J” increase with 
increasing difference between Aσ  and Bσ . On the other hand, for the limiting 
case, A Bσ σ= , Equation (62) and Equation (43) agree. 

(2) Another striking difference between Equation (43) and Equation (62) is 
represented by the boundary case “ 0Bσ =  and 0Aσ ≠ ”, for which one obtains  

https://doi.org/10.4236/ojcm.2019.91002


J. Sonntag et al. 
 

 

DOI: 10.4236/ojcm.2019.91002 34 Open Journal of Composite Materials 
 

 
Figure 2. Aµ µ  and AR R  versus Aυ  calculated by Equation (62) (“C&J”) and 
Equation (43), where i i iR Rµ µ σ σ= . The “C&J”-curves in (a) and (c) agree with [27] 
(Figure 1(b), Figure 1(c) therein) and [28] (Figures.13,14 therein), where the same 
examples are chosen. 
 

( )
(43)

3 11 1 ,
2
A

ARR
υ −

=                         (63) 

and  

( )
C&J

3 11 1 ,
4
A

ARR
υ +

=                        (64) 

respectively, and for σ , Equation (19) gives  

( )3 1
.

2
A

A

υ
σ σ

−
=                         (65) 

Starting at 1Aυ = , with decreasing Aυ  both σ  and (43)

1
R

 decrease con-  
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tinuously until they vanish at 1 3Aυ = . This result corresponds to the fact that 
for 1 3Aυ <  there is no longer a connected metal cluster through the 
composite (in correspondence with the assumption made earlier that the phase 
grains are spherical without preferred orientations and arranged in a 
symmetrical fashion). This result is, however, not reflected by Equation (64)  

which gives C&J

1 0
R

>  even for 1 3Aυ < , where all the metallic granules are  

separated by adjacent insulating phase regions, that is, electron transport 
through the sample does not happen, if additional tunneling is excluded. 

These two differences, (1) and (2), suggest the fact that Equation (63) 
represents the physical situation better than Equation (64). 

2.6. Composites with Non-Spherical Phase Grains 

An essential assumption for the derivation of the EMT formulas, Equations (19), 
(22), (31), (32), (43) and (44) was the fact that the phase grains are spherical. In 
real composites this assumption is often not fulfilled, especially not for man- 
made composites with large phase grains. A typical feature for these composites 
is the fact that the transition from an infinite phase i cluster through the 
composite does not occur at 1 3iυ =  but at larger values called the percolation 
edge. For such cases McLachlan and co-workers [30] [31] have modifyed the 
EMT formulas by introduction of percolation elements in the formulas for 
two-phase composites leading to the generalized form (GEMT)  

1 1 1 1

1 1 1 1 0
t t t t

A B
A Bt t t t

A BA A
σ σ σ σ

υ υ
σ σ σ σ

− −
+ =

+ ⋅ + ⋅
                (66) 

and  
1 1 1 1

1 1 1 1 0
t t t t

A B
A Bt t t t

A BA A
κ κ κ κ

υ υ
κ κ κ κ

− −
+ =

+ ⋅ + ⋅
                 (67) 

where A is given by ( )1 c cA υ υ= − . cυ  is the volume fraction of the phase A, 
where the actual percolation threshold is assumed to occur. t represents the 
asymmetry of the microstructure. Vaney et al. [29] have applied this idea to the 
EMT formula for the thermopower. With this modification Equation (32) reads 
now 

( ) ( )
( ) ( )

( ) ( )
( ) ( )

1 1 1 1

1 1 1 1 0,
t t t t

A A B B
A Bt t t t

A A B B

S S S S

S A S S A S

σ σ σ σ
υ υ

σ σ σ σ

− −
+ ≈

+ ⋅ + ⋅
        (68) 

Vaney et al. [29] have studied real composites composed of a crystalline phase 
“Bi0.4Sb1.6Te3” (≡phase A) and a glassy phase “Si10As15Te75” (≡phase B) produced 
by spark plasma sintering (SPS) of powder mixtures with different volume 
fractions 0.1, ,0.5Aυ = � . 

Inserting the iσ  and iS  data (given by Vaney et al. [29]) in Equation (32), 
it follows the concentration dependence of S on Aυ  as drawn in Figure 3(a). 
For 1 3Aυ >  the calculated S on Aυ  curve agree with the experimental data. 
For 1 3Aυ <  the EMT formulas are no longer a good description, because the  
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Figure 3. S versus Aυ  for [ ] [ ]0.4 1.6 3 10 15 75 1

Bi Sb Te Si As Te
A Aυ υ−

 

composites produced by spark plasma sintering (SPS) [29] and 
comparison with the experimental data (full points, 300 KT = ). 
(a), calculated by Equation (32), (b), calculated by the GEMT 
equation, Equation (68), for 0.16cυ =  and 0.10cυ = ; 2t =  
for both curves. For the calculations the same values have been 
applied as given by Vaney et al. [29]: 1 1

1 0.040 mσ − −= Ω ⋅  and 
165 V KAS = µ  for the crystalline phase (Bi0.4Sb1.6Te3),  

9 1 1
2 2.95 mσ − − −= Ω ⋅  and 1400 V KBS = µ  for the glassy phase 

(Si10As15Te75). 
 
phase grains in the man-made composites as studied in [29] are arranged 
randomly (accidentally), that is, the transition from a continuous A phase cluster 
through the composite to separated A phase grains does not occur at 1 3Aυ = , 
but it is shifted to smaller values of Aυ . These percolation effects are considered 
by the generalized form (GEMT), Equation (68). 

In Figure 3(b), S versus Aυ  is drawn calculated by Equation (68) for 2t =  
and 0.16cυ =  (as applied in Figure 7(a) of [29]) as well as for 2t =  and 

0.10cυ = . As can be seen in Figure 3(b), for the parameters 2t =  and 
0.10cυ =  there is an excellent agreement with the experimental data. 

Both in [29] and in Figure 3, the values for iS  and iσ  were assumed to be 
independent of iυ . This is, however, only an approximation, because the 
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electrochemical potential, µ� , in the two phases is generally different, as long as 
the phases are separated from each other. In the composite, however, µ�  must 
be uniform. This is ensured by an electron transfer nδ  between the phases. 
The temperature dependent part of nδ  leads to a change of d dTµ� . This  

provides an additional contribution to the thermopower, 1 d
d

S
e T

µ
∆ =

�
 as will be  

discussed in Section 3.1. For a calculation of d dTµ� , knowledge of the band 
structure data of the phases is necessary. For the composite considered by Vaney 
et al. [29], the contribution of d dTµ�  to S is surely small, because AS  and 

BS  have the same sign. However, for composites with different signs of AS  
and BS , the effect of d dTµ�  can be essentially larger. That is, a really sensitive 
hardness test of Equation (32), respectively Equation (68), would be a composite 
with 0AS >  and 0BS <  or vice versa. 

3. Formulas for the Transport Coefficients of the Phases 
3.1. Composites with Large Phase Grains 

“Large phase grains” means that the classical transport theory can be applied 
separately to each of the phase grains. This fact is immediarely plausible for 
crystalline phases, but also for amorphous phases as argued in [11] [32] [33]. 
First, we focus our attention on σ , eκ  and S. In the framework of the kinetic 
transport equations, for a zero-magnetic field situation the transport coefficients 
of the phase i can be written as [9] [10] [14] [15] [34] [35] [36] [37]  

2
11,K ,i i ieσ =                              (69) 

2
31, 21, 11,

,

K K K
,i i i

e i T
κ

−
=                         (70) 

0
21, 11,0 K K

.i i i
i

i

S
e T

µ−
=

�
                         (71) 

where 0
iµ�  is the chemical potential for the phase i. 

0
iS  is the Seebeck coefficient of the phase i for the (hypothetic) case that 

electron transfer does not happen between the different phases and that the band 
edge does not depend on T. Therefore an additional term, S∆ , is to be 
introduced considering these effects realizing a common electrochemical po- 
tential in the composite,  

.iµ µ=� �                                (72) 

In the composite the Seebeck coefficient of the phase i is given by [12]  

0 0 1 d ,
di i iS S S S

e T
µ

= + ∆ = +
�

                      (73) 

where 0
iS  is a scattering term. 1 d

de T
µ�  is an additional term taking into  

account the change of µ�  with temperature. One consequence of Equation (73) 
is the fact that the thermopowers of the phases, iS , dependent on iυ . For a 
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calculation of d dTµ� , knowledge of the band structure data of the phases is 
necessary. Assuming a two-phase composite consisting of the phase A with 
electron conductivity and the phase B with hole conductivity, d dTµ�  can be 
calculated by ([38], Section 3.3. therein)  

0 0
, ,

0
,

0

0

d ,
d

1

C A V BA B

C A A

B B
A

B

A A
B

E E
E T T T T

T T T
e

p n

e
n n

µ µ
µµ

µ ϕυ

µ ϕυ

∂ ∂∂ ∂
+ + −∂ ∂ ∂ ∂ ∂ ∂= + −

∂ ∂  ∂ ∂
− ∂ ∂ +

 ∂ ∂
− ∂ ∂ 

� �
��

�

�

           (74) 

where ,C AE T∂ ∂  and ,V BE T∂ ∂  are the band edge shifts with temperature. n 
( An≡ ) is the electron density in the phase A. p ( Bn≡ ) is the hole density in the 
phase B. ,C AE  and ,V BE  are the energies of the band edges of the conduction 
band (CB) and valence band (VB) in the phase A and phase B, respectively. In 
Equation (74), 0i Tϕ∂ ∂ = , , 0C AE n∂ ∂ = , and , 0V BE p∂ ∂ =  is assumed. The 
first assumption corresponds to the fact that the electrostatic potential does not 
depend on T, the second and third ones are equivalent to the assumption that 

,C AE  and ,V BE  do not depend on occupation of the CB and VB. From Equation 
(73) and Equation (74) it follows immediately the fact that iS  depends on iυ . 

Now, d dTµ�  can be calculated by Equation (74) if  
0 2 2

,

π
,

6
i B

F i

k T
T E
µ∂

= −
∂
�

                         (75) 

0
,2

,
3

F ii

i i

E
n n
µ∂

=
∂
�

                          (76) 

are taken into account and if the band edge shifts for the CB and VB, ,C AE T∂ ∂  
and ,V BE T∂ ∂ , are known. Equations (75) and (76) follow from the Fermi- 
Dirac-statistics, where 0

iµ�  is given by  

( )
,

2 2 2 2 2 2
0

, ,
,

π πd ln
6 d 12E EF i

B B
i F i i F i

F i

k T k TE N E E
E E

µ
=

= − = −  �         (77) 

(lowest order in the powers of ,B F ik T E ) with  
2 32

2 3
,

3 ,
8 πF i i

i

hE n
m

 =  
 

                      (78) 

where ,F iE  is the Fermi energy and im  the effective mass in the phase i, 
respectively. h is Planck’s constant. The second equation in Equation (77) 
corresponds to the NFE-approximation. 

For metallic phases, Equations (69)-(71) provides (NFE-approximation, [9] 
[10] [15])  

1 3 2
2 3π e2 ,

3i i iL n
h

σ  =  
 

                     (79) 

3
, 2

, 3

16π ,
9

i i F i
e i B

m L E
k T

h
κ =                     (80) 
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( )2 2
0

,

π 1
,

3
B i

i
i F i

k T r
S

e E
+

=                         (81) 

ir  characterizes the scattering mechanism and represents the energy 
dependence of the mean free path iL  in the phase i, according to ir

iL E∝ . 
For composites with semiconducting phases, the iσ , ,e iκ  and 0

iS  are to be 
calculated according to the rules for semiconducting solids, in correspondence 
with the two-band (or multiband) model (see, e.g., Harman and Honig [9], pp. 
37 and 129), where additionally the condition Equation (72) is to be taken into 
account. 

For metallic phases, the non-electronic contribution to iκ , ,ne iκ , can often 
be neclected compared to ,e iκ , if the carrier densities are not too small. If not, 
κ  is to be calculated by Equation (23) under consideration of Equation (24), 
where the ,ne iκ  are to be determined separately; that becomes especially im- 
portant for semiconducting phases and if the phase i does not form a macro- 
scopic cluster. 

For the Hall coefficient of the phase i in a nonmagnetic composite, iR  in 
NFE-approximation is given by  

,i
i

i i

CR
e n

µ
σ

= − =
⋅

                         (82) 

where iµ  is the Hall mobility of the phase i and C is a parameter of the order of 
one depending slightly on the magnetic field. [14] [15]. 

The volume fractions of the phases, iυ , can be calculated from the atomic 
concentrations of the composite and the phases, x and ix , respectively. For a 
two-phase composite, the iυ  can be determined by  

( )
( )

1

1 1 ,A A
A B

B B

x x
x x

υ υ
−

 −
= − = + 

−  




                  (83) 

where A  and B  are the atomic densities in the phases A and B, 
respectively. 

3.2. Nanocomposites 
3.2.1. Electron Density in Nanocomposites 
Let us consider the class of amorphous transition-metal-metalloid alloys in more 
detail: it was one of the most important results that amorphous transition-metal- 
metalloid alloys do generally not consist of randomly mixed atoms, but they form 
composites consisting of amourphous phases which differ regarding their short 
range order (SRO). Interpreting a series of transport data of amorphous transition- 
metal-metalloid alloys, Sonntag [32] has drawn the following conclusions: 

For large ranges of concentration there is 
(i) amorphous phase separation between two different amorphous phases 

called phase A and phase B, where each phase has its “own” short-range order 
(SRO), 

(ii) the amorphous phase separation leads to band separation in the con- 
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duction band (CB) and valence band (VB) connected with the phases A and B, 
respectively, and the electrons are freely propagating and the corresponding 
wave functions are extended with respect to connected phase ranges.  

(iii) Between the two coexisting phases there is electron redistribution (elec- 
tron transfer) which can be described by  

( ) ( )exp ,An nζ βζ= −                       (84) 

where ζ  is the quotient of the volume or atomic fractions of the two coexisting 
phases. ( )n ζ  is the electron density in the phase A with ( )0An n= . β  is a 
constant for a given alloy, which is determined by the average potential dif- 
ference between the two phases. 

For a series of amorphous transition-metal-metalloid alloys, conclusion (i) 
and conclusion (ii) are now confirmed experimentally or supported by inde- 
pendent authors [2] [3] [4] [5] [6] [43] [44] [45] [46] [47]. For details see [33] 
(Section 1 therein). Although the conclusion (iii) is not yet confirmed or sup- 
ported by independent authors, there are a series of experimental findings 
supporting this conclusion (iii), as demonstrated in [32], where for some 
amorphous transition-metal-metalloid alloys it is shown that ρ  versus  

( )1x x−  follows an exponential concentration dependence (see Figures 1-6 in 
[32]). For instance, a-Cr1-xSix thin films measured by Helms et al. [39] and 
shown in Figure 4 follow an exponential dependence of ρ  versus ( )1x x− . 
As argued in [32], one can assume that for 0.25x >  a-Cr1-xSix thin films consist 
of the two amorphous phases a-Cr3Si (=phase A) and a-Si (=phase B), i.e., the 
silicon concentrations in the two phases are characterized by 0.25Ax =  and 

1Bx = , respectively, whereas for 0 0.25x≤ < , the films are one-phase. In the 
two-phase range, ζ  ( B AX X= ) can be calculated by  

B A

A B

X x x
X x x

ζ
−

= =
−

                       (85) 

As can be seen in Figure 4(b) (lower grafic), ρ  follows an exponential 
dependence on ζ  ( B AX X= ). This result is in correspondence with Equation 
(84) if the effect of Bσ  (about Equation (19)) as well as the effect of a variation 
of the electronic mean free path L can be neglected. Because the scattering in 
a-Cr1-xSix is very strong, L is very small. However, L cannot be smaller than the 
average atomic distance, d; therefore one can assume that it is nearly inde- 
pendent of x, that is, d L≈  and Aσ  ( 1 Aρ= ) is expected to be directly 
proportional to the electron density, n. The effect of the second phase (a-Si = 
phase B) on ρ  ( 1 σ= ) (about Equation (19)) can be neglected, because in 
a-Cr1−xSix the concentration dependence of Bσ  is similar to Aσ . This con- 
clusion follows from calculations done in [11] (see Figure 4(c) therein). 

Support for Equation (84) comes also from Hall coefficient measurements of 
metal-insulator composites as shown in Figure 5. The sizes of the phase grains 
are of the order of some atomic distances as well. In Figure 5(a) and Figure 5(b) 
the experimental original data of Cu1-y(SiO2)y and Ni1-y(SiO2)y taken from [40]  
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Figure 4. Experimental data ρ  versus ( )1x x−  (upper diagram) 

and ρ  versus B AX X  (lower diagram) for a-Cr1-xSix thin films at 
300 KT =  taken from Helms et al. [39]. B AX X  is calculated by 

( ) ( )B A A BX X x x x x= − −  with 0.25Ax =  and 1.00Bx = . BX  

and AX  are the atomic fractions of the amorphous phases a-Cr3Si 
(=phase A) and a-Si (=phase B). 

 
and [41] are drawn versus ( )1y y− , and in Figure 5(c) and Figure 5(d) the 
corresponding AR  drawings calculated by Equation (63) ( 0Bσ = , because SiO2 
is an insulator). The exponential concentration dependence of AR  in Figure 
5(c) and Figure 5(d) reflects immediately Equation (84) because of Equation 
(82). 

R and AR  versus ( )1y y−  follow an exponential dependence also for 
Ni1-y(SiO2)y, although we had assumed non-magnetic materials for the derivation 
of Equation (43), wherease Ni is a magnetic material. This is however not a  
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Figure 5. Experimental Hall coefficient data at 5 K versus ( )1y y−  for Cu1-y(SiO2)y, (a), 

(c), and Ni1-y (SiO2)y, (b), (d), taken from [40] (circles), [41] (triangles) and [42] 

(diamonds). (c), (d): AR  calculated by ( )3 1
2
A

AR R
υ −

=  according to Equation (43), 

where 1A yυ = −  is set. 
 
discrepance. For magnetic metal-insulator composites Equation (82) holds 
approximately if “=” is replaced by “∝ ” considering the effect of the additional 
internal magnetic field due to the magnetization: An electron sees the effective 
magnet field w iH H H= + , where iH H� . H is the external field applied to 
the specimen and iH  is the internal field produced by the quantum mechanical 
exchange forces ([48], p. 341). An electron does not distinguish between H and 

iH . It moves according to the Lorentz force determined by wH  and the electric 
field E. One can assume that wH  is nearly proportional to H as long as iH  is 
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nearly proportional to the magnetization produced by H. 
This assumption is supported by the experimental finding by Xiong et al. [49] 

that (for not too small fields H), in the granular Co-Ag system, the Hall 
resistivity xyρ  is linearly proportional to H. If so, the measured R values differ 
from the calculated R values, Equation (82), only by a factor which is nearly 
constant. Therefore, we assume that the EMT formula for R, Equation (43), can 
be applied to magnetic composites as well. 

If the metallic phase of a M-I composite is a noble metal, the NFE-appro- 
ximation is a good one for the metallic phase, above all as the Fermi surface 
moves away from the Brillouin zone boundary as n decreases. For the metallic 
phase in Ni-SiO2 the NFE-approximation is surely also a good one, because Ni 
has only 0.55 4s valence electrons per Ni atom ([48], p. 271). 

Additional support for Equation (84) comes from experimental resistivity data 
of amorphous (Cr1-xSix)1-zNz and (Cr1-xSix)1-yOy thin films (in preparation).  

Amorphous Metals  
The electron transfer nδ  between the phases described by Equation (84) 

leads to a lowering of the total energy of the composite compared with a 
situation, where the phases exist alone. This is the reason for the fact that 
metallic composites with an amorphous structure can exist at all. Almost inva- 
riably, amorphous metals contain a metalloid as one of the constituents. e.g., 
Au-Si, Pd-Si, Fe-P-C, …[50]. That is, one-phase amorphous metals practically 
do not exist. If yet (for instance after an evaporation process at extremely low 
temperatures), then there is the strong suspicion that during the preparation 
process impurities as oxygen and nitrogen are incorporated in the metal film. 

Of course, for the crystalline state the energy gain is surely larger compared 
with that of the amorphous state. However, the transition from the amorphous 
state to the crystalline one realized by atomic diffusions processes requires 
additional energy to overcome energy barriers.  

The Giant Hall Effect (GHE)  
As reasons for the very large values of the Hall coefficient in metal-insulator 

composites as shown in Figure 5 for the examples Cu1-y(SiO2)y and Ni1-y(SiO2)y 
(known as the “Giant Hall effect”), quantum size effects and quantum inter- 
ference effects on the mesoscopic scale have been discussed. [40] [51] [52] [53] 
[54] [55] However, to our knowledge, until now, there is no explanatory model 
which can interpret the phenomenon of GHE. Now, we believe that Equation 
(84) gives a simple and plausible explanation for the GHE. 

3.2.2. Electronic Transport in Nanocomposites 
For many alloys with phase separation the phase grains are very small so that an 
application of the classical transport equations to the phase grains (Section 3.1) 
does not seem to be appropriate. In spite of this reservation, both the BTE and 
the approximation of free electrons (NFE-approximation) may be good 
descriptions for a phase i of a composite, as long as it forms an infinite cluster in 
the composite and the scattering processes are elastic. For amorphous transition- 
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metal-metalloid alloys this condition is fulfilled for 1 3iυ > . This point of view 
is justified in [33] (Section 4.2 therein) and [12] (Section 5.2. therein). That is, 
formulas for the transport coefficients of the phases, Equations (79)-(82), may be 
a good description if the phase i forms a macroscopic cluster through the 
composite corresponding to 1 3iυ > . For this case the phase i can form a 
quasi-continuous energy band and the scattering is elastic. With decreasing iυ , 
the macroscopic i phase cluster decomposes into separate phase grains; for 
amorphous composites, this transition occurs very precisely at 1 3iυ = . The 
reasons are the following [12] [33]: 

(1) As the grain diameters are very small (of the order of ~1 - 2 nm [5] [6], the 
number of grains (of the same sort i) must be very large to form a cluster for 
which a quasi-continuous energy band is realized. Accidentially formed 
agglomerates of some (for instance 10 or 100 or 1000) neighbouring grains (with 
~1 - 2 nm diameter) are not sufficient for forming a quasi-continuous energy 
band. 

(2) During the film deposition of a composite, the atoms of the different atom 
sorts arrive at the substrate equally distributed; therefore the different phase 
grains (A and B) can also be assumed to be locally equally distributed in the 
amorphous composite, because the diffusion paths during solidification are very 
short, which is a prerequisite for forming amorphous composites. 

A phase is an “electronic phase” determined by a solution of the Schrödinger 
equation; after hitting at the substrate, the atoms move locally only so long until 
they can form a phase which corresponds to a solution of the Schrödinger 
equation. That is why, the phase grains of the same sort i are also locally equally 
distributed, as the compositions of the different phases are very different, i.e., the 
local distribution of the i phase grains is not completely random, as, e.g., 
assumed within the framework of the classical percolation theory. For such a 
locally equally distributed arrangement of the i phase grains in an amorphous 
matrix (formed by the rest of the composite), it follows that this merging to a 
macroscopic cluster through the sample occurs very precisely at a specific 
concentration iυ ; and this specific concentration is 1 3iυ = , as follows, for 
instance, from Equation (19) setting 0jσ = , but 0iσ ≠  ( j i≠ ). (For a 
comparison with the classical percolation theory concerning this critical value of 

iυ , see also [33] (Section 4.1 therein). 
(3) A macroscopic i phase cluster is only realized, if all the atoms in this i 

phase cluster are directly connected to atoms belonging to the same phase sort i. 
When, for instance, two grains of the same phase sort i are separated by a 
monoatomic layer of a different(!) phase (j), these two i phase grains cannot be 
considered as (nearly) one i phase cluster, because the overlap of the electron 
wave functions is interrupted by this monoatomic layer. Within an i phase grain 
or i phase cluster the wave functions, ( )i rψ , overlap, but they do not overlap 
between two i phase grains or i phase clusters separated by a monoatomic layer 
of a different(!) phase (j). 
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If a sufficiently large number of i phase grains form a macroscopic cluster, the 
overlapping wave functions ( )i rψ  form a quasi-continuous energy band, while 
the wave functions fall off exponentially in a very short distance rδ  outside 
this macroscopic cluster. This “falling off” is comparable with the decrease of the 
molecular orbitals of (large) molecules at their molecule boundaries (see, e.g., 
[56], pp. 409 and pp. 435, or [57]). Because of this “non-overlapping” of the 
( )rψ  belonging to different phases, they do not “penetrate” each other, i.e., 

there are sharp boundaries between the different (electronic) phases. 
Considering the fact that the phase i does not form a quasi-continuous energy 

spectrum for 1 3iυ < , but there is a discrete energy spectrum typical for 
separate grains, then there are no electronic states immediately above and below 
µ�  (within the energy range Bk T ), i.e., the electrons cannot be activated to 
higher energies (at the hot end of the sample) and cannot deliver energy (at the 
colder end), if 1 3iυ < . Under this condition it follows that (at the temperature 
T) , 0e iκ =  for 1 3iυ < . For iS  the situation is analogous: for 1 3iυ < , 

0 0iS = , i.e., at the transition from 1 3iυ >  to 1 3iυ < , both ,e iκ  and iS  
change discontinuously. Such discontinuities are especially to be expected in 
composites with metallic phases. 

For amorphous transition-metal-metalloid alloys, “ , 0e iκ = ” and “ 0 0iS = ” for 
1 3iυ <  is only an approximation, because, at the boundary faces between the 

different phases, there are p-d bonds, i.e., d orbitals of the Cr atoms (of the A 
phase grains) overlap with p orbitals of the boundary faces atoms on the B phase 
grains resulting to a p-d band, which is incompletely occupied. (For a detailed 
discussion see Section 2.1 of [33]). Because of this p-d overlapping, this 
(incompletely occupied) p-d band exists also if 1 3Aυ < : although the energy 
levels of the s states in the separate A phase grains are discret, the electrons can 
be activated to higher energies (at the hot end of the sample) and deliver energy 
(at the colder end) by a transition to the p-d band. That is why, , 0e Aκ ≠  and 

0 0AS ≠ , also for 1 3Aυ < . However, the real values of ,e Aκ  and 0
AS  (for 

1 3Aυ < ) are expected to be essentially smaller than calculated by Equations (80) 
and (81), because the d states are localized. 

4. Discontinuity in the Concentration Dependence of the  
Thermopower 

A specific feature of composites with 0AS >  and 0BS <  or vice versa is the 
fact that a discontinuity (step) in the calculated S vs. iυ  can occur, which is an 
additional possibility to check experimentally the thermopower formula. One 
example for a composite with different signs of AS  and BS  is a-Cr1-xSix con- 
sisting of the two amophous phases [33] 1-Cr Si

A Ax xa −  and 1-Cr Si
B Bx xa −  with 

0.25Ax ≈  and 1Bx ≈ . (Amorphous phase separation is typical for many amor- 
phous transition-metal-metalloid alloys [2] [3] [4] [5] [6]). In [12] S versus x had 
been calculated for a-Cr1-xSix applying Equation (31) for 0.25Ax =  and  

0.90Bx =  (bold line in Figure 1 of [12]). 
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Now, the calculations of [12] we have done once more, but for 0.25Ax =  
and 1.00Bx =  shown in Figure 6 commonly with the result of the calculations 
for 0.25Ax =  and 0.90Bx = . Both the discontinuity (step) at 0.49x =  and 
the general trend of the calculated curves agree with the experimental data. 

The discontinuity of S versus iυ  for composites with 0AS >  and 0BS <  
or vice versa has its origin in the mathematic structure of the formula   

( )
( ) ( ) ( ) ( )

2
, , , , , ,

4

3 1 3 1 3 1 3 1 8

e

e A e B e A e B e A e B
A B A B

A B A B A B

S

S S S S S S

κ

κ κ κ κ κ κ
υ υ υ υ

⋅
± =

⋅ 
− + − ± − + − +  ⋅ 

  

(86) 

following from Equation (31) for two-phase composites, where 1B Aυ υ= − . 
Equation (86) has two solutions, ( )S −  and ( )S + , which both show a 
discontinuity (step) at the same concentration, when ( )S −  and ( )S +  passes 
the value “0” coming from negative values crossing to positive values or vice 
versa. The physics follows only one of them, ( )S − , as suggested by the results of 
[11] (compare Figure 4(g) and Figure 4(h) with Figure 5 therein). 

As this discontinuity occurs at 0S = , this phenomenon opens the possibility  
 

 
Figure 6. Thermopower versus x for a-Cr1-xSix at 300 KT =  
calculated by Equation (32) with 0.25Ax =  and 0.90Bx =  
(bold line) and 0.25Ax =  and 1.00Bx =  (dotted line) and 
comparison with experimental data. Details of the calcu- 
lations and experimental data are described in [11] (section 
IVB therein). 
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to produce reference standards for absolute thermopower 0S =  even for  

cT T>  ( cT  stands for the transition temperature of any superconductor). 

5. Extension of the Classical Thermopower Formula 

In the limit 0Bυ = , the composite degenerates to a homogeneous alloy con- 
sisting exclusively of the phase A. On the opposite side, for 1Bυ =  we get a 
homogeneous alloy consisting exclusively of the phase B. For these two limiting 
cases the formulae must hold as well. Setting 0Bυ = , it follows from Equation 
(74) that  

0
,d ,

d
C A AE

T T T
µµ ∂ ∂

= +
∂ ∂

��
                      (87) 

and taking into account Equations (73), (81), (68) and Equation (22),  

( ) ( )2 2 0
,

,

π 1 1 .
3

C AB A A
A

A F A

Ek T r
S S

e E e T T
µ∂+  ∂

+ = = + + ∂ ∂ 

�
          (88) 

Analogously it follows for 1Bυ =  that  
0

,d ,
d

V B BE
T T T

µµ ∂ ∂
= −

∂ ∂
��

                      (89) 

( ) ( )2 2 0
,

,

π 1 1 .
3

V BB B B
B

B F B

Ek T r
S S

e E e T T
µ∂+  ∂

+ = = + − ∂ ∂ 

�
          (90) 

Inserting Equation (75) in Equations (88), (90) we get  

( )2 2π d1 ,
3 d
B C

F

k T z r E
S

e E e T
+

= − +                   (91) 

( )2 2π d1 ,
3 d
B V

F

k T z r E
S

e E e T
+

= +                    (92) 

with 3 2z = , where the index i is omitted and ,C AE T∂ ∂  and ,V BE T∂ ∂  are 
replaced by d dCE T  and d dVE T , respectively, because a homogeneous metal 
consists only of one phase. Each of the two limiting cases, Equation (91) and 
Equation (92), represents a homogeneous metal with electron conductivity and 
hole conductivity, respectively, and constant carrier density, i.e., interband 
transfer of electrons (in dependence on temperature) are not considered. 

The term “ 0
i Tµ∂ ∂� ” reflects the lowering of the chemical potential with T 

described by the Fermi-Dirac-statistics. In Equations (87)-(92) it is assumed that 
Equation (81) does exclusively represent the scattering part of S. It is, however, 
not completely clear, whether Equation (81) does indirectly contain this term 
“ 0

i Tµ∂ ∂� ”, already. If so, then in Equations (88), (90)-(92) the term “ 0
i Tµ∂ ∂� ”  

(respectively “
2 2

,

π
6

B

F i

k T
E

− ”) is to be deleted, and the value for z is to be replaced by  

1z = . 
Equation (81) agrees with the first term in Equation (91) if 1z =  is set. It 

represents the contribution of the scatterring on the thermopower, whereas the 
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second term in Equation (91) represents the effect of the temperature depen- 
dance of the band edge on the thermopower. Therefore, we can say that for 
normal metals positive sign of thermopower will be measured if d d 0CE T >  
and if this effect overcompensates for the influence of the first term in Equation 
(91). This conclusion holds exactly if 1z = . If 3 2z = , this fact is to be 
considered as a tendency. 

As mentioned earlier, it is not yet completely clear whether 3 2z =  or 1z = . 
We believe that for metals 3 2z =  is correct. However, the final answer 
depends on the question whether or not Equation (81) contains exclusively the 
scattering contribution [corresponding to 0S , Equation (81)]. This question is a 
matter of future studies.  

Simple Metals with Positive Thermopower  

It is a widely forgotten mystery, why the thermopower of a metal as simple as 
lithium is positive [10] [58] [59] [60] [61]. Considering only the scatterring term 
of Equation (91) (as it was classical standard theory according to Equation (81)), 
positive sign was incomprehensible. However, considering the second term of 
Equation (91), this puzzle is now solved. Positive sign of thermopower can also 
be expected for crystalline metals: As a trend, positive sign of thermopower will 
be measured, if the conduction band edge shifts to higher values with increasing 
T and if this effect overcompensates for the influence the scatterring term. Thus, 
for the crystalline Cu, Ag, Au, and Li the experimental thermopowers also have 
positive sign; at 0˚C they are +1.7, +1.4, +1.1, and +11.5 μV/K, respectively ([48], 
p. 316). For more details see [38]. 

6. Constraints of the Combinatorial Development of  
Materials 

The combinatorial development of materials is a very effective method to get 
experimental data about a certain material system, because a large range of 
different compositions can be realized concurrently on one large substrat, for 
instance by deposition of thin films by simultaneous co-sputtering from two or 
three targets on a large substrat. On the other hand, this method is to be used 
with great caution because the results can be completely different from a 
situation where the different compositions are produced separated in single 
manufacturing processes. The reasons are the following ones. 

In a composite a common electrochemical potential is realized by electron 
transfer between the different phases. This can lead to the fact that in one of the 
phases another topological structure (atomic configuration) is more favorable 
than for the case that this phase exists alone (as homogeneous material). And in 
nanocomposites the electron transfer has an essential larger effect on the carrier 
densities and therefore on the transport coefficients in the phases compared with 
composites with large phase grains. 

Figure 7 shows two series of resistivity measurements of Cr1-xSix thin films  
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Figure 7. Experimental resistivity data of Cr1-xSix thin 
films cosputtered from a chromium target and a silicon 
target. By variation of the sputtering rates two different 
concentration ranges about 4 inch glass wafers are 
realized, 1) 0 0.30x< < , and 2) 0.22 0.80x< < . Details 
of film deposition, analysis and resistivity measurements 
are described in [62]. Additionally the resistivity data of 
co-sputtered Cr1-xSix thin films by Helms et al. [39] are 
shown (circles; already shown as a logarithmic repre- 
sentation in Figure 4), where the single samples were 
separated from each other during the deposition process. 

 
cosputtered from a chromium target and a silicon target and deposited on 4 inch 
glass wafers (the deposition conditions are specified in [62] [63]). Three parallely 
lying measuring lines have been measured with a distance of 4.5 mm to each 
other. The first series extend continuously about the concentration range 
0 0.30x< < , the second one about 0.22 0.80x< < . The corresponding film 
thickness were 200 nm > d > 80 nm and 165 nm > d > 131 nm, respectively. 
Additionally resistivity data received from Helms et al. [39] are drawn. These 
data were produced by co-sputtering on glass as well, but with the difference that 
each measuring point represent a single sample; these single samples were 
separated from each other during the deposition process, i.e., there were no 
electrical connections between the single samples. The structure of all the films 
were detected to be X-ray amorphous, where for the chromium rich samples 
microcristalline precipitations has been found; number and average size of these 
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precipitations decrease with the silicon content. 
As can be seen in Figure 7, in the overlapping range between the two series 

“ 0 0.30x< < ” and “ 0.22 0.80x< < ”, there are very large ρ  differences, 
nearly a factor of 1.7 … 1.8. The factor between the “ 0 0.30x< < ” series and the 
Helms samples is even 3.0 … 3.1. 

Figure 8 shows experimental thermopower data of the same samples as 
shown in Figure 7 supplemented by a third series for the concentration range 
0.49 0.96x< <  with the corresponding film thickness of 70 nm < d < 260 nm 
[62]. The structures were detected to be X-ray amorphous. S has been measured 
applying the Potential-Seebeck Microprobe (PSM) from the company LOT-Oriel 
Group Europe [64] [65]. 

The S curves for the concentration ranges 0 0.30x< <  and 0.22 0.80x< <  
as well as for the single samples (triangles) correspond relatively well. However, 
between the second series and the third one there are large differences. The 
discontinuity at 0S =  occurring in the S curve of the single samples does not 
occur in the co-sputtered samples. 
 

 
Figure 8. Experimental thermopower data of Cr1-xSix 
thin films for the same samples as shown in Figure 7 
supplemented by a third series 0.49 0.96x< < . Details of 
film deposition, analysis and thermopower measurements 
are described in [62]. Additionally it is drawn the experi- 
mental S data of the Cr1-xSix thin films shown in Figure 6 
already. 
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Figure 9 shows thermopower data of a-(Cr1-xSix)1-yOy thin films co-sputtered 
as described in [62] for Cr1-xSix thin films, where additionally an oxygen gradient 
was realized, lateral and perpendicular to the wafer. S has been measured at the 
complete wafer and after that the wafer was sawed producing single 8 × 2 mm2 
pieces. Now S was measured once more at these pieces. The S vs. ( )1x x−  
curves for the “wafer” and the “pieces” are shifted nearly parallely to each other, 
where the zero-crossing of S is shifted from 0.31x =  to 0.59x =  (corres- 
ponding to ( )1 0.45x x− =  to ( )1 1.45x x− = . 

The experimenal results shown in Figures 7-9 demonstrate strikingly that the 
combinatorial development of materials can provide results which can be dif- 
ferent from samples produced by single procedures with a given composition. 

7. Conclusions 

Formulas have been presented for calculation of σ , κ , S, and R in composites. 
We have shown that these formulas can also be applied successfully to 
nanocomposites if certain conditions are taken into account, especially the 
 

 
Figure 9. S vs. ( )1x x−  of a a-Cr1-xSix-O thin film 

with an additional O gradient vertical to the wafer 
surface as well as in the same direction as those of 
silicon concentration gradient (measured for the com- 
plete wafer and the pieces after sawing to 8 × 2 mm2 
pieces). The measuring positions with respect to the 
wafer, before and after sawing, were the same ones. 
This figure is taken from [62]. 
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phenomenon of electron transfer between the different phases in the nano- 
composite. It is argued that, under certain conditions, an noncritically appli- 
cation of the combinatorial development of materials can provide unfeasible 
results. 

The formulas and the theory described in the present article give answers to 
some mysterious puzzles, for which the scientific research had no final answers: 

1) Why there are simple metals with positive thermopower? 
2) What is the reason for the phenomenon of the “Giant Hall effect”? 
3) What is the reason for the fact that amorphous metals can exist at all? 
4) Until to the end of the twentieth century amorphous metallic alloys were 

assumed to be a random and homogeneous distribution of the metal atoms in 
the amorphous matrix. On this basis, a quantitative calculation applying classic 
theories was not successful. 

The answers given in the present article are the following: 
1) The reason for positive thermopower of some metals comes from the 

temperature dependance of the band edge: If d d 0CE T >  and if this effect 
overcompensates for the influence of the scattering term in the thermopower 
formula, Equation (91), then the thermopower is positive. 

2) The reason for the phenomenon of the “Giant Hall effect” in metal- 
insulator composites is the exponential reduction of the electron density in the 
metallic phase due to electron transfer from the metallic phase in direction to the 
insulating phase, described by Equation (84). The transferred electrons are 
pinned at the phase boundaries between the phases.  

3) The reason for the fact that amorphous metals can exist is an electron 
transfer between the phases described by Equation (84). This electron transfer 
leads to a lowering of the total energy of the composite compared with a 
situation, where the phases exist alone. (Amorphous metals are generally com- 
posites.) 

4) Experimental and theoretical studies at amorphous transition-metal-metalloid 
alloys have shown that in these amorphous alloys there exists amorphous 
nano-scaled phase separation between two different amorphous phases, where 
each phase has its “own” short-range order (SRO) and each phase may be 
described by its “own” band structure. Within this framework the formulas for 
σ , κ , S, and R described in this paper can be applyed. 
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