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Abstract

In this paper we have demonstrated the ability of the new Bayesian
measure of evidence of Yin (2012, Computational Statistics, 27:
237-249) to solve both the Behrens-Fisher problem and Lindley’s
paradox. We have provided a general proof that for any prior which
yields a linear combination of two independent ¢ random variables as
posterior distribution of the difference of means, the new Bayesian
measure of evidence given that prior will solve Lindleys’ paradox
thereby serving as a general proof for the works of Yin and Li (2014,
Journal of Applied Mathematics, 2014(978691)) and Goltong
and Doguwa (2018, Open Journal of Statistics, 8: 902-914).
Using the Pareto prior as an example, we have shown by the use of
simulation results that the new Bayesian measure of evidence solves
Lindley’s paradox.
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1. Introduction

The Behrens-Fisher problem simply refers to a hypothesis testing
problem about the difference of two means based on two random sam-
ples that are assumed to be independent and normally distributed
without assuming that the two variances are equal.

[1] noted that conclusions from a hypothesis test based on a
Bayesian framework could contradict that from a frequentist frame-
work. He showed that as n — oo, while a frequentist will reject Hy, a
Bayesian using the posterior probability under Hy will fail to reject Hy.
Even though [2] argued that these two schools of statistical inference
need not agree since the two evaluate different objects using different
measures among other points, he also noted that it is not meaningful if
a procedure would always conclude by picking the null whatever be the
value of the test statistic. This points to the fact that even if one may
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not be interested in having the Bayesian and Frequentist approaches
reconciled, there is need to look out for test procedures that will not
always favour the null hypothesis. More discussions and arguments
concerning Lindley’s paradox, can be found in [3], [4] and [2]. [5] de-
veloped a Bayesian hypothesis testing framework that solves Lindley’s
paradox in a one sample case. Using Jeffreys’ independent prior, [6]
extended the methodology of [5] to solve the Behrens-Fisher Problem
so as to avoid Lindleys’ Paradox. Also, [7] made an attempt to solve
the Paradox in [1] by assigning Gamma priors to the precisions using
the methodology of [5]. It is noteworthy that the posterior distribu-
tion of the difference of means derived by [6] and that derived by [7]
are similar in the sense that both are a linear combination of two ¢
distributed random variables. Also these two posterior distributions
differ in the sense that, the coefficients of these linear combinations
are not the same and also, the distributions of the ¢ random variables
differ in their degrees of freedom. In this paper, we propose to give
a general result of the methodology of [5] in solving simultaneously,
the Behrens-Fisher problem and Lindley’s paradox when any given
prior is assigned to the unknown variances which yields a posterior
distribution that is a linear combination of two independent ¢ random
variables.

2. Literature Review

In an attempt to solve the Behrens-Fisher Problem, [8] derived general-
ized pivotal quantities and generalized p-values for hypothesis testing
in the presence of nuisance parameters. The generalized p-value is
given by

- 2 2\
p(x) = Pr | Fin, tn,—2 > (T1 — T2)*(n1 + 19 — 2) (Bl + 1 2B)
(1)

where Pr[.] means the probability of [.], s? is the variance of sample 4 of
size n;, 57 = (1—n; Y)s?,i = 1,2 and B ~ Beta((n1—1)/2, (n2—1)/2).
[9] derived a general recipe for constructing generalized pivotal quan-
tities and generalized confidence intervals using a systematic approach
which was not provided by [8]. [10] used a generalized p-value approach
to derive tests and confidence intervals for the common mean based on
several well known estimates of the common mean. [11] used Stein’s
two-stage sampling scheme to solve the Behrens-Fisher problem so as
to control the Type-II error and the length of the confidence interval
given a specified Type-I error. [12] conducted a comparative study of
the different methods of solving the Behrens-Fisher problem.

The idea of using informative priors is advocated for by [13], who
disagrees that diffuseness of a prior reflects ignorance about the dis-
tribution of such a parameter. [14], [15], and [16] investigated the
reconcilability of the Bayesian and frequentist approaches to hypothe-
sis testing. [17] developed the posterior predictive p-value which takes
care of nuisance parameters in hypothesis testing, given as

ppp(r) =P {Fi 0y 4n,

(i‘l — 53‘2)2(7’“ + ng)
- [§% + (j:l - H)Q]Brzll,nz + [53 + (EQ - H)Q](l - Bnl,nz)_l(})
2
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where P{.} is the probability of {.}, s? is the variance of sample i of
size n;, 52 = (1 —n; )s?, i = 1,2 and By, », ~ Beta(n1/2,m2/2).

[5] developed a Bayesian testing procedure for testing a precise
null hypothesis in the one sample case that avoids the dichotomy of
the parameter space, thereby solving Lindley’s paradox. This new

Bayesian measure of evidence is given by
PP(z) = P(|0 — B(9]z)| > 60 — E(6]2)| |) 3)

where P(.) is the probability of (.), F(f|x) is the posterior expectation
of § under the prior 7(#), where a smaller value of PP (x) corresponds
to a bigger distance between 6, and the true 6 and therefore, sug-
gesting stronger evidence against the null hypothesis Hy. [18] showed
both analytically and by simulation results that the infimum of the
posterior probability of Hy, Pr(Hp|z) under the conjugate class of pri-
ors is strictly less than the the p-value and the Generalized p-value in
testing a normal mean and in testing two normal means respectively.

In order to solve the Behrens-Fisher problem, [6] extended the
methodology of [5] assigning Jeffreys’ objective prior to the unknown
variances given as

1

2 2
— 4
7T(IU/1’,U/270-1?0-2) X 0’%0‘% ( )

and obtained the posterior distribution of the difference of means, 0|z,

as
S51Tn,—1 S2Tn2—1> (5)
N VN2

thereby obtaining under Jeffreys independent prior, the Bayesian mea-
sure of evidence as
S1Tn, -1 S2Th,—1

Py (x):P( N N

where T),,_; is a ¢ random variable with n; — 1 degrees of freedom.
By the use of simulation results, this approach was shown to solve the
two problems and also, it was shown mathematically to yield credible
intervals that actually possess 1 — a coverage probability.

[7] also extended the methodology of [5] by assigning Gamma pri-
ors to the precisions and showed mathematically that the paradox
in [1] is avoided while solving the Behrens-Fisher problem. They al-
so showed that results obtained by assigning Gamma priors to the
precisions could coincide with results obtained by assigning Jeffrey’s
independent prior to the variances as is done in [6]. [19] proved that
Lindley’s Paradox could be reversed given that the probability density
is persistently unbounded or where sufficient regularity of likelihood
or prior is absent.

GINfl—f2—<

> T — 332|> (6)

3. Main Result

In this section, we propose a more general result about the ability
of the Bayesian measure of evidence of [5] to solve Lindley’s paradox
given any prior distribution. Before proceeding to this general result,
let us consider a definition that is crucial to its postulation.

Definition 1. A rational function, B, is said to be asymptotically
independent of n if B can be expressed in the following manner:
P
p- g (7)
Q(n)
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where P(n) and Q(n) are polynomials in n, and Q(n) is a polynomial of
degree at least equal to that of P(n), and B* is completely independent
of n.

Lemma 1. Let the posterior distribution of 8 given any prior distri-
bution, say w, be given by

0|:v ~ T — Ty — (AlTl — A2T2) (8)

where the coefficients Ay and As are functions of n1* and ny ¢ respec-
tively, such that these coefficients are of the form A; = Bini” and
Ay = Bany ! for any By either independent or asymptotically indepen-
dent of ny, any B either independent or asymptotically independent
of no and for any p,q > 0. Then, where Ty and Ty are independent
t random wvariables, if the degrees of freedom of Ty and Ty are linear
functions of n1 and no respectively, the Bayesian measure of evidence
based on (8) solves Lindley’s paradoz, that is

PBE(z) 50 as (ni,na) — (00,00)
Proof. Recall that the methodology of [5] yields the Bayesian measure
of evidence as

PP(x) = P(|0 = E(0]2)| > |60 — E(0]2)||2) 9)

Since the degrees of freedom of the two random variables are linear
forms of the corresponding sample sizes, let k1n; + ¢; be the degrees
of freedom of T}, where k; is any constant and c¢; is independent of
ni. Also, let kano 4 co be the degrees of freedom of T3, where ko is
any constant and ¢y is independent of ns.

Then where B; and Bsy are completely independent of n; and no
respectively, we have that

Var(0|z)

. Bif (k1n1 + c1) i% (kana + c2)

S (kiny+ e —2)  n29 (keng +co —2)

_ B2n29(kiny + ¢1)(kana + ¢5) + BEn3P (kiny + 1) (kang + ¢2)

n?pngq(klnl + ¢;)(kana + ¢3)

(10)
where ¢f = ¢; —2 and ¢ = co — 2. Note that (9) can be expressed as
PRy =2 [l P (3 < 23)] (1)

and we also have that

[0 — E(0]2)]°

72 =
0 Var(0|z)

(12)

Now, let a = [0y — E(0|m)]2, independent of n; and ng, then we have
that

an?pngq(klnl + c})(kang + c3)

Zi =
B%ngq(klnl —+ Cl)(anQ + C;) -+ B%n?p(klnl + CT)(I{?QTLQ + CQ)
(13)
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lim 72
nip—oo

2p 2 * *
lim ani?n3?(kiny + ¢§)(kana + ¢3)

angq (kl + ;—11) (kona + ¢3)
= lim

n1—>00 { B%ngq(klnl + Cl)(kgng + C;) + Bgn%p(k’lnl + CT)(anQ + 02)

}

n1—00 B%?’L;Qpngq (]{31 + %11) (k2n2 + C;) + B% (kl —+ %) (kgng + CQ)

angq(kgnz +ch)
B% (kg’nz + CQ)

(14)
Then we have that

cmgq (kg + %)
lim [ lim Zg] = lm |[—r—L| = o (15)
ng—00 | N1 —00 ng —>00 B% (k2+ %)

Similarly, we have that

2p *

) ani’(king + c})

1 22 _ 1 1
nzlinoo 0 B%(kﬂ’n + 01)

Then we have that

an?p (k1 + 2—11)
lim [lim Zg} = lm |[——| = o (17)
ni—oo [ng—oo mn1—00 B% (kl + 'rchl)

Since we have from (15) and (17) that

lim { lim Zg] = lim { lim Zg] =00 (18)
N2 —>00 | N1 —>00 n1—o0 | Ny—>00
It implies that
lim 73 =00, = lim PBF(z)=0  (19)
(n1,n2)—(c0,00) (n1,n2)—(c0,00)

To show that this result still holds where By and By are only asymp-
totically independent of n; and ns respectively, it suffices to show
that under mild assumptions, By and By can safely be assumed to be
completely independent of n; and ns respectively. This result will be
shown in two steps. First, let us consider the case where @Q(n) and
P(n) are polynomials of equal degree and recall that

B; il ORI
" Q(ny)
Pogta (20)
= By s TITL2

where P*(n;) is that part of the polynomial P(n;) consisting of terms
that contain n; only excluding the constant term, Q*(n;) is that part of
the polynomial Q(n;) consisting of terms that contain n; only exclud-
ing the constant term, while o and S are the corresponding constant
terms.

DOLI: 10.4236/0js.2019.91001

5 Open Journal of Statistics


https://doi.org/10.4236/ojs.2019.91001

N. E. Goltong, S. I. Doguwa

Without any loss of generality, assume each of the coefficients in
P*(n;) and Q*(n;) to be equal to 1, and a = 8 = 0. Then it is
obvious that P*(n;) and Q*(n;) are equal and hence

B, = B, Vi=1,2 (21)

Thus, By and By are completely independent of n, and no respectively.

On a general note, relaxing the assumptions on P(n;) and Q(n;)
except the assumption that they are polynomials of the same degree,
then it is easily seen that

P .
im B, = B lim L)
N —00 N —00 Q(nl)

= Bilii, VZZl,Q.

Vi=1,2.
(22)

where k; is a constant independent of m;. Thus in general, where
B; is only asymptotically independent of n;, and Q(n) and P(n) are
polynomials of the same degree, then B; can safely be assumed to be
independent of n;.

Secondly, where Q(n;) is a polynomial in n; of degree 1 and P(n;)
of degree ry, and we have that vy —ro = r > 0, then we have that

S L P(ng) i =
B, = B oy i1
= *PE i) Vi=1,2.
" Q) =
B,

where B; = B ZE"; Then it is easily seen that P(n;) and Q(n;) are

polynomials of the same degree in n;. To make sense of the proof,
recall that

B;
where p; = p and p; = q and since B = nr , we have that
1 B B
A= ———" =2 (25)
7 n]im nzr n§)1+r

Now since Bz is a rational function of n; where the numerator and the
denominator are polynomials of the same degree, it implies that B;
can safely be assumed to be independent of n;. And this completes
the proof. O

Corollary 1. Let the posterior distribution of 6 given any prior dis-
tribution be a linear combination of two t distributed random variables
such that the coefficients, say, A1 and As are functions of ni* and
ny 1 respectively, and for any p,q > 0. Then, if the degrees of free-
dom of the variables are polynomials in ni1 and no respectively, not
necessarily of the same degree, the corresponding Bayesian measure of

evidence solves Lindley’s paradozx.

Proof. Recall that Ay = Bin;? and Ay = Ban, ?. For the purpose of
this proof, it will surfice to use any polynomial function as an example.
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Because the proof of the Lemma deals with polynomials of the same
degree, we shall use polynomials of different degrees in this case. Also,
it will surfice to assume that By and Bs are independent of ny and no
respectively.

Let the two t random variables be denoted by 77 and 75, with
kln% 4+ c1n1 + 71 and kang + 2 degrees of freedom respectively. Then
we have that

B (k1n3 + cing + 1) B3 (kana +72)
n(kin? +cing + 9 —2)  n3(kana + 72 — 2)

_ B3 (kind + ciny + 1) (kana +93) (26)
nin3? (kin? + ciny +77) (kana +73)
%n%p(klnl +ciny + 3 )(k‘gng + ’72)
(

Var(0|z) =

n%pngq(klnl + ciny + 5) (kang +73)

Now recall that Z& = [00—E(Ol2)]" Then, letting A = [0y — E(0]x)]?,

Var(0|z)
o = kong + y2, and o = kang + 5, we have that
A
Zi=—v
Var(8|z)

An%pngq(kln% +cing + 7)ot
%ngq(klnl +ciny +v1)a* + B%nfp(kjln% +cing + 7)o
B An3? (k1 +enyt 4 ying?ar
B PRtk + eing g Y)at + B (ks + eng 4+ ying Y)a

(27)
An?4(k 5
lim 22 —An (hana +35) (28)
n1—00 B3 (kana + 72)
And so we have that
| i 2] = )

Similarly, it can easily be shown that lim { lim Zo} = 00. And the
ny—o0 | Ne—>00
rest of the arguments are same as those found in the proof of Lemma

1. O

It follows from the Corollary that when the posterior distribution
of the difference in means is a linear combination of two ¢ random
variables, it is not necessary for the degrees of freedoms to be linear
functions of the corresponding sample sizes, but that Lindley’s para-
dox will be solved even when the degrees of freedoms are polynomial
functions of different degrees in the corresponding sample sizes.

It can easily be seen that the posterior distributions of the differ-
ence of means derived by [6] and [7] under the different circumstances
satisfy the conditions for Lemma 1 to hold. As such, Lemma 1 then
proves mathematically that using either the Bayesian measure of ev-
idence under Jeffreys’ independent prior as obtained by [6] or under
the Gamma prior as obtained by [7], both of which are extensions of
the methodology of [5], will solve Lindley’s paradox. Note that [6] did
not provide a mathematical proof of the ability of the new Bayesian
measure of evidence of [5] to solve both the Behrens-Fisher problem
and Lindley’s paradox under Jeffreys’ independent prior.
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The Pareto Prior

As an example to demonstrate the implication of Lemma 1, we shall
assign Pareto priors to the precisions. Consider samples of sizes n; and
ng from X7 ~ N(u1,0%) and Xo ~ N(uz,03) respectively. Under the
assumption of independence, and letting x = (x1,x2), the likelihood
function is given by

f(ﬂ/haﬂ%ff%vag)(x 0'1_

where

Si(mi) = D (wi; — )’ (31)
j=1
Let 7; ~ Pareto(ay, k;), i = 1,2 then we have that

m(rs) = aikir, D o ) gy =1 g, (32)

Let 7P%u1, p2,0?,03]x) denote the Posterior distribution of
(p1, p2,0%,03) under the Pareto prior, then we have that

ﬂpa(,uh”%a%aaax) S8 f(x‘,uh//,2,0'%,0'5).71'(#1,#2,0'3,0'5)

O(f(x‘ul’u2’o—%7o-§) (N17N2|0%70§) (Tl> (7—2)
152 Silwy)
ng 2 2ui=1 (,2 7(o¢1+1) 7(a2+1)

(33)

—n1

ox oy oy

Then the corresponding Posterior distribution of (u1, u2) is obtained
by integrating (33) with respect to 0% and o3 to obtain

2 7(711720(174)/2
— —(n2—2a2 —4)/2 (34)
1+ 712(552 - M2)
(n2 —1)S3

Let

i(ni — 204 —5) (T — ps) .
g = Vi =200 Z5)@ =) g (35)

\/ (nl — I)SZ

then we have that

t% —(n1—201—4)/2
’/TPEL(/“LDNQM') ES |:1 + (nl —2a; — 5):|
t% 7(1’7,27201274)/2 (36)
1 - @& @
|: + (712 —20[2 - 5):|

where (36) is the kernel of the joint distribution of two independent t
random variables with n; —2a; —5 and no — 2ais — 5 degrees of freedom
respectively and we have the posterior distribution of the difference of
means as

S -1 S -1
0|I ~ J_Jl — J'_JQ — ! (nl ) Tl — 2 (n2 ) T2
\/nl(nl —2@1 —5) \/TLQ(’I’LQ —20&2 —5)
(37)
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where T; is a random variable that follows t distribution with n; —
2a; — b degrees of freedom. The Bayesian measure of evidence under
the Pareto prior is then given by

> |z — $2|>

(38)

Ppy (x)
_p (

Note that for the new Bayesian measure of evidence under the Pareto
prior to be valid, sample sizes have to be at least 6 each since there are
no negative degrees of freedom. In fact, even when sample sizes are as
small as six, the choice of a; has to ensure that n; — 2a; — 5 results to
a positive number. It can easily be seen that the Bayesian measure of
evidence of [5] solves the paradox in [1] when a Pareto prior is assigned
to the nuisance parameters by noting that equation (37) fulfils all the
conditions for Lemma 1 to hold.

Sl (77,1 - 1) _ SQ (ng - 1)
\/nl(n1—2a1—5) ' \/ng(n2—2a2—5)

15

Also, since it can be easily seen from (37) that the posterior distri-
bution of # is symmetric about its expected value, E(f|x) = 1 — To,
then Theorem 2 of [6] applies here which implies that under the Pareto
Prior, the Bayesian measure of evidence of [5] yields the 1 — « credible
intervals for 8 = u; — uo centered at T — Zo.

4. Simulation Results and Discussion

For the simulation exercise, we used the Metropolis-Hastings algorith-
m with a thinning step of 12, while specifying the Normal distribution
as the proposal distribution. The values in Table 1 were obtained
by fixing the following values: s? = 15, and s3 = 12. These values
are chosen to demonstrate the case of moderate to large variances. It
can be seen from the results here that the new Bayesian measure of
evidence under the Pareto prior gives consistently, the highest prob-
ability value which corresponds to the weakest evidence against the
null hypothesis. In fact, for small sample sizes, conclusion based on
the new Bayesian measure of evidence under the Pareto prior has the
tendency of failing to reject the null hypothesis while the other three
measures of evidence can lead to the rejection of the null hypothesis.
However, as the sample sizes increase, the conclusions from the four
measures of evidence tend to move towards the same direction.

The values in Table 2 were obtained by fixing the following values:
s? =2, and s3 = 3. Here on the other hand, the values chosen reflect
the case of small variances. In a similar manner, the results in this
table show clearly that the new Bayesian measure of evidence under
the Pareto prior gives a consistently weak evidence against the null
hypothesis compared to the other three measures of evidence. While
for small sample sizes, conclusion based on the new Bayesian measure
of evidence under the Pareto prior has the tendency of failing to reject
the null hypothesis in contrast to the other three, as the sample sizes
increase, the conclusions from the four measures of evidence tend to
move towards the same direction.

It is then clear from the results presented in both Table 1 and Table 2
that the new Bayesian measure of evidence under the Pareto prior
solves Lindley’s paradox even though the evidence against the null
provided under the Pareto prior is not as strong as that provided by
the other three measures of evidence no matter the circumstances.
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Table 1. The four different probability values for different values of a1, a2, 81 and 2.

n1 =ng = 6,a; = 0.05, a5 = 0.02,57 = 15,53 = 12

(Z1 — Z2) 2.500 2.200 1.900 1.600 1.300 1.000 0.700 0.400 0.100
p(x) 0.2659 0.3241 0.3915 0.4681 0.5537 0.6475 0.7482 0.8542 0.9633
ppp(z) 0.2500 0.3019 0.3640 0.4374 0.5224 0.6188 0.7255 0.8401 0.9597
PBE () 0.3148 0.3726 0.4384 0.5116 0.5921 0.6790 0.7710 0.8676 0.9668
PEF () 0.7878 0.8116 0.8363 0.8612 0.8865 0.9122 0.9382 0.9645 0.9912
n1 =ng = 20,01 = 0.05, a3 = 0.02, 57 = 15,83 = 12
(Z1 — Za) 2.500 2.200 1.900 1.600 1.300 1.000 0.700 0.400 0.100
p(x) 0.0378 0.0659 0.1103 0.1766 0.2702 0.3948 0.5504 0.7325 0.9319
ppp(x) 0.0437 0.0708 0.1129 0.1757 0.2655 0.3871 0.5419 0.7262 0.9301
PBE () 0.0433 0.0732 0.1197 0.1880 0.2825 0.4069 0.5603 0.7391 0.9338
ng(x) 0.0759 0.1159 0.1722 0.2480 0.3456 0.4663 0.6084 0.7695 0.9415
ny =ng = 50,1 = 0.05, a0 = 0.02,8% = 15,3% =12
(Z1 — Z2) 2.500 2.200 1.900 1.600 1.300 1.000 0.700 0.400 0.100
p(x) 0.0010 0.0035 0.0112 0.0319 0.0800 0.1767 0.3431 0.5875 0.8920
ppp(z) 0.0016 0.0047 0.0131 0.0342 0.0817 0.1764 0.3405 0.5842 0.8910
PJBF(x) 0.0011 0.0038 0.0122 0.0338 0.0830 0.1805 0.3482 0.5906 0.8929
PEF () 0.0017 0.0056 0.0164 0.0422 0.0969 0.2002 0.3686 0.6073 0.8975
ny =7,ms = 10, a1 = 0.003, as = 0.005s2 = 15, s2 = 12
(Z1 — Z2) 2.500 2.200 1.900 1.600 1.300 1.000 0.700 0.400 0.100
p(x) 0.1917 0.2475 0.3152 0.3953 0.4880 0.5925 0.7072 0.8298 0.9571
ppp(x) 0.1907 0.2399 0.3012 0.3762 0.4659 0.5705 0.6888 0.8180 0.9540
PBE () 0.2258 0.2829 0.3505 0.4288 0.5187 0.6180 0.7265 0.8416 0.9602
ng(x) 0.5057 0.5545 0.6064 0.6624 0.7208 0.7820 0.8463 0.9117 0.9779
ny = 25, = 20, a1 = 0.003, o = 0.005, 52 = 15, 53 = 12
(Z1 — Z2) 2.500 2.200 1.900 1.600 1.300 1.000 0.700 0.400 0.100
p(x) 0.0275 0.0509 0.0900 0.1514 0.2418 0.3664 0.5262 0.7168 0.9277
ppp(x) 0.0327 0.0557 0.0932 0.1517 0.2385 0.3599 0.5185 0.7109 0.9260
PJBF(x) 0.0317 0.0568 0.0980 0.1613 0.2529 0.3776 0.5362 0.7232 0.9294
PEF(z) 0.0548 0.0888 0.1392 0.2100 0.3068 0.4298 0.5792 0.7509 0.9368
ny = 55,712 = 60, a1 = 0.003,042 = 0005, 8% = 15, S% =12
(Z1 — Z2) 2.500 2.200 1.900 1.600 1.300 1.000 0.700 0.400 0.100
p(x) 0.0004 0.0018 0.0067 0.0217 0.0612 0.1486 0.3108 0.5619 0.8846
ppp(z) 0.0007 0.0025 0.0081 0.0238 0.0631 0.1489 0.3088 0.5590 0.8836
PBE () 0.0004 0.0020 0.0073 0.0231 0.0637 0.1522 0.3151 0.5650 0.8853
PEF () 0.0008 0.0029 0.0096 0.0284 0.0736 0.1673 0.3326 0.5791 0.8897
ny = 55,m9 = 60,07 = 5.3, a5 = 3.9,5? = 15,52 = 12
(Z1 — Za) 2.500 2.200 1.900 1.600 1.300 1.000 0.700 0.400 0.100
p(z) 0.0004 0.0018 0.0067 0.0217 0.0612 0.1486 0.3108 0.5619 0.8846
ppp(x) 0.0007 0.0025 0.0081 0.0238 0.0631 0.1489 0.3088 0.5590 0.8836
PBE () 0.0004 0.0020 0.0073 0.0231 0.0637 0.1522 0.3151 0.5650 0.8853
PPBf(x) 0.0008 0.0029 0.0096 0.0284 0.0736 0.1673 0.3326 0.5791 0.8897
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Table 2. The four different probability values for different values of a1, e, 51 and S2.

ny=ng ="T,a =004 a0y =0.07,52 =2,52 =3

(Z1 — Z2) 2.500 2.200 1.900 1.600 1.300 1.000 0.700 0.400 0.100
p(x) 0.0120 0.0231 0.0441 0.0827 0.1499 0.2596 0.4237 0.6445 0.9078
ppp(z) 0.0303 0.0425 0.0624 0.0957 0.1524 0.2475 0.3994 0.6205 0.9002
PfF(x) 0.0226 0.0387 0.0660 0.1120 0.1869 0.3007 0.4620 0.6715 0.9149
ng(x) 0.2991 0.3470 0.4042 0.4714 0.5495 0.6388 0.7385 0.8472 0.9611
n1=ng =25 a1 = 0.04,a3 = 0.07,5? = 2,53 =3
(Z1 — Za) 2.500 2.200 1.900 1.600 1.300 1.000 0.700 0.400 0.100
p(x) 0.0000 0.0000 0.0001 0.0008 0.0055 0.0300 0.1241 0.3756 0.8240
ppp(x) 0.0001 0.0002 0.0006 0.0022 0.0088 0.0350 0.1258 0.3698 0.8205
PfF(x) 0.0000 0.0000 0.0001 0.0010 0.0067 0.0338 0.1320 0.3849 0.8276
ng(x) 0.0000 0.0001 0.0006 0.0030 0.0141 0.0548 0.1724 0.4309 0.8433
n1 = ng = 50,1 = 0.04, as = 0.07, s% =2, s% =3
(Z1 — Z2) 2.500 2.200 1.900 1.600 1.300 1.000 0.700 0.400 0.100
p(x) 0.0000 0.0000 0.0000 0.0000 0.0001 0.0021 0.0292 0.2089 0.7525
ppp(z) 0.0000 0.0000 0.0000 0.0000 0.0002 0.0030 0.0316 0.2081 0.7502
PJBF(w) 0.0000 0.0000 0.0000 0.0000 0.0001 0.0023 0.0312 0.2131 0.7545
ng(x) 0.0000 0.0000 0.0000 0.0000 0.0002 0.0036 0.0391 0.2328 0.7647
ny =10,m0 = 8, a; = 0.5, a0 = 0.7,57 = 2,53 =3
(Z1 — Z2) 2.500 2.200 1.900 1.600 1.300 1.000 0.700 0.400 0.100
p(x) 0.0045 0.0104 0.0234 0.0510 0.1058 0.2058 0.3697 0.6051 0.8967
ppp(x) 0.0176 0.0261 0.0409 0.0673 0.1156 0.2032 0.3535 0.5854 0.8901
PJBF(I) 0.0097 0.0187 0.0363 0.0695 0.1310 0.2364 0.3995 0.6267 0.9025
ng(x) 0.2595 0.3045 0.3597 0.4267 0.5072 0.6012 0.7093 0.8289 0.9567
n1 = 20,n9 = 25,1 = 0.5, = 0.7,58? = 2,53 = 3
(Z1 — Z2) 2.500 2.200 1.900 1.600 1.300 1.000 0.700 0.400 0.100
p(x) 0.0000 0.0000 0.0002 0.0014 0.0082 0.0388 0.1429 0.3985 0.8322
ppp(x) 0.0001 0.0003 0.0010 0.0034 0.0122 0.0438 0.1435 0.3915 0.8284
PfF(x) 0.0000 0.0000 0.0003 0.0019 0.0100 0.0436 0.1523 0.4088 0.8361
PEF(z) 0.0001 0.0005 0.0019 0.0074 0.0265 0.0820 0.2175 0.4762 0.8574
ny = 55,%2 = 60,@1 = 0.5,&2 = 07, S% = 2,8% =3
(Z1 — Z2) 2.500 2.200 1.900 1.600 1.300 1.000 0.700 0.400 0.100
p(x) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0009 0.0189 0.1762 0.7343
ppp(z) 0.0000 0.0000 0.0000 0.0000 0.0001 0.0014 0.0208 0.1759 0.7322
PfF(x) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0010 0.0201 0.1799 0.7358
ng(x) 0.0000 0.0000 0.0000 0.0000 0.0001 0.0017 0.0268 0.2010 0.7481
ny = 55,n9 = 60,01 = 2.5,a9 = 3.7,5? = 2,52 =3
(Z1 — Za) 2.500 2.200 1.900 1.600 1.300 1.000 0.700 0.400 0.100
p(z) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0009 0.0189 0.1762 0.7343
ppp(x) 0.0000 0.0000 0.0000 0.0000 0.0001 0.0014 0.0208 0.1759 0.7322
PJBF(JU) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0010 0.0201 0.1799 0.7358
PPBf(x) 0.0000 0.0000 0.0000 0.0000 0.0001 0.0030 0.0360 0.2250 0.7608
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5. Conclusion

In this paper, we have been able to investigate the ability of the new
Bayesian measure of evidence of [5] to solve both the Behrens-Fisher
problem and Lindley’s paradox when a prior is assigned to the param-
eters which yields a posterior distribution that is a linear combination
of two independent ¢ random variables provided that the degrees of
freedom of these random variables are linear functions of the corre-
sponding sample sizes. Furthermore, we have shown that the ability
of the methodology of [5] to solve Lindley’s paradox is not restricted
to the case where the degrees of freedoms of the posterior distribution
are linear functions of the sample sizes but extend to the case where
the degrees of freedom are polynomial functions in the corresponding
sample sizes, not necessarily of the same degree. Lemma 1 provides a
mathematical proof that the new Bayesian measure of evidence under
Jeffreys’ independent prior solves Lindley’s paradox. More interest-
ingly, the results we have obtained shows that the methodology of [5]
does not only solve Lindley’s paradox for the purpose reconciling the t-
wo approaches (i.e. Bayesian and Frequentist), but that this Bayesian
procedure will not always favour the null hypothesis.

Using the Pareto prior as an example, we have demonstrated using
simulation results that the new Bayesian measure of evidence solves
Lindley’s paradox even though the new Bayesian measure of evidence
under the Pareto prior provides a consistently weak evidence against
the null hypothesis compared to either the Generalized p-value, the
Posterior Predictive p-value, or the new Bayesian measure of evidence
under Jeffreys’ independent prior. We were also able to proof that
under the Pareto prior, a 1 — « credible interval for the difference in
means centered around the posterior expectation could be constructed
by using the /2 and 1 — («/2) quantiles of the posterior distribution
of 6.
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