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Abstract 
In this paper, we proposed a spectral gradient-Newton two phase method for 
constrained semismooth equations. In the first stage, we use the spectral pro-
jected gradient to obtain the global convergence of the algorithm, and then 
use the final point in the first stage as a new initial point to turn to a projected 
semismooth asymptotically newton method for fast convergence. 
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1. Introduction 

In this paper, we consider the constrained nonlinear semismooth equations 
problem: finding a vector x∗ ∈Ω  such that 

( )
{ }
0,

: ,n

H x

x x l x u

=

∈Ω = ∈ ≤ ≤�
                  

 
(1) 

where 

{ } { } { }: | ,  ,  ,  ,  1, ,n
i i i ix l x u l u l u i nΩ = ∈ ≤ ≤ ∈ −∞ ∈ −∞ < =� �∪ �∪ �

 
: n nH →� �  is a semismooth mapping. The notation of semismoothness was 

introduced for the functionals by Mifflin [1] and extended to vector functions by 
Qi and Sun [2]. 

Systems of constrained semismooth equations arise in various application, for 
instance complementarity problems, the box constrained variational inequality 
problems, the KKT system of variational inequlity problems and so on. The solu-
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tion of nonlinear equations can be transformed into solving the following con-
strained optimization problem: 

( ) ( ) 21min
2

s.t.   

f x H x

x

=

∈Ω                     

 (2) 

where : nf R R→  is continuously differentiable and its gradient denoted by 

( )f x∇ . Many researchers have studied constrained optimization problems such 
as (2) and given many effective algorithms. For example, a new class of adaptive 
non-monotone spectral gradient method is given in reference [3], an active set 
projected trust region algorithm in [4]. The methods of optimization problems 
involve the first-order methods and the second-order methods. Classical first- 
order algorithms include gradient method, sub-gradient method, conjugate gra-
dient method, etc. The main advantage of first-order method is its small storage, 
which is particularly suitable for large-scale problems. However, the disadvantage 
of first-order method is that its convergence speed is at most linear, and it can 
not meet the requirements of high precision. For the second-order method, it has 
the advantage of fast convergence speed. Under certain conditions, it can achieve 
superlinear convergence or even quadratic convergence. But its disadvantage is 
that it needs a good initial point, sometimes it even needs the initial point to ap-
proach the local optimal point. 

Motivated by this, in this paper, we combine the advantages of the first-order 
method with those of the second-order method. We will consider the two-stage 
combination algorithm to solve the optimization problem. First, we use the 
first-order method to obtain the global convergence of the algorithm, and then 
use the final point obtained by the first-order method as the new initial point to 
turn to the second-order method to obtain the fast convergence speed. At the 
same time, we use projection technology to solve the constrained conditions. 

2. Preliminaries 
In this section, we present some definitions and theorems that are useful to our 
main result. 

Suppose : n nH R R→  is a locally Lipschitzian function, according to Rade-
macher theorem, H is differentiable almost everywhere. Denote the set of points 
at which H is differentiable by HD . We write ( )kH x′  for the usual n m×  Ja-
cobian matrix of partial derivatives whenever x is a point at which the necessary 
partial derivatives exists. Let ( )H x∂  be the generalized Jacobian defined by 
Clarke in [5]. Then 

( ) ( )( )0 BH x C H x∂ = ∂ ,                     (3) 

where the 
0C  denotes the convex hull of a set, ( ) ( )lim

j
j H

B jx x
x D

H x H x
→
∈

 
 ′∂ =  
  

. 

Definition2.1 [2] Suppose : n nH R R→  is a locally Lipschitzian function, 
we say that H is semismooth at x if 
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( )
{ }

, 0

lim
V H x th

h h t

Vh
′∈∂ +

′→ ↓

′

                        

 (4) 

exists for any nh R∈ . 
Lemma 2.2 [2]: Suppose : n nH R R→  is a locally Lipschitzian function, the 

following statements are equivalent: 
1) H is semismooth at x; 
2) For any ( ) , 0V H x h h∈∂ + → , 

( ) ( );Vh H x h hο′− = ,                     (5) 

( ) ( ) ( )H x h H x Vh hο+ − − = .                 (6) 

Lemma 2.3 [2]: Suppose : n nH R R→  is a locally Lipschitzian function, H is 
semismooth at x if each component of H is semismooth at x. 

Definition 2.4 [2]: Suppose : n nH R R→  is a locally Lipschitzian function, 
If for any ( ) , 0V H x h h∈∂ + →  

( ) ( )1; pVh H x h h +′− = Ο ,                    (7) 

where 0 1p< ≤ , then we call H is p-order semismooth at x. 
Lemma 2.5 [2]: suppose : n nH R R→  is a locally Lipschitzian function, we 

say H is strongly BD-regular at x if all ( )BV H x∈∂  are nonsingular. 
Lemma 2.6 [6]: Suppose that : n nH →� �  is locally Lipschitz continuous 

and H is BD-regular at nx∈� . Then there exist a neighborhood ( )x� of x and 
a constant K such that for any ( )y x∈�  and ( )BV H y∈∂ , V is nonsingular 
and 1V K− ≤ . 

Lemma 2.7 [6]: Suppose that : n nH →� �  is locally Lipschitz continuous 
and H is BD-regular at a solution x∗  of ( ) 0H x = . If H is semismooth at x∗ , 
then there exist a neighborhood ( )x∗�  of x∗  and a constant 0k >  such that 
for any ( )x x∗∈�  

( )H x k x x∗≥ − .                       (8) 

Lemma 2.8 [7]: The projection operator ( )XΠ ⋅  satisfies. 

1) For any x X∈ , ( ) ( )T
0X Xz z z xΠ − Π − ≤        for all nz∈� . 

2) ( ) ( )X Xy z y zΠ −Π ≤ −  for all , ny z∈� . 

Lemma 2.9 [8]: Given nx∈�  and nd ∈� , the function ξ  defined by 

( ) ( ) , 0X x d xξ λ λ λ λ= ∏ + − ≥
                

 (9) 

is nonincreasing. 
Lemma 2.9 actually implies that if x X∈  is a stationary point of (2), then 

( ) [ ] 0,  0G X Gd x d xλ λ λ= Π + − = ∀ ≥               (10) 

3. Algorithm 

In order to obtain the global convergence of the algorithm, in the first stage, we 
adopt the non-monotone spectral projection gradient method of the first-order 
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method. The one-dimensional search procedure of Algorithm 3.1 will be called 
SPG1 from now on and Algorithm 3.2 will be called SPG2 in the rest of the pa-
per. 

Given nz∈� , we define ( )P z  as the orthogonal projection on Ω , denote 
( ) ( )g x f x= ∇ . 0x ∈Ω , integer 1M ≥ , a small parameter min 0α > , a large 

parameter max minα α> , sufficient decrease parameter ( )0,1γ ∈ , 1 20 1σ σ< < < , 
initially [ ]0 min max,α α α∈ , 0x ∈Ω . 

Algorithm 3.1 [9] (SPG1) 
Step 1. If ( ) ( ) 1k k kP x g x x ε− − < , stop, input kx . 
Step 2. (Backtracking) 
Step 2.1 Set kλ α= . 
Step 2.2 Set ( )( )k kx P x g xλ+ = − . 
Step 2.3 If 

( )
{ }

( ) ( )
0 min , 1

max , ,k j k kj k M
f x f x x x g xγ+ − +≤ ≤ −

≤ + −
         

 (11) 

Then define kλ λ= , 1kx x+ += , 1k k ks x x+= − , ( ) ( )1k k ky g x g x+= − , and go 
to step 3. 

If (11) does not hold, define [ ]1 2,newλ σ λ σ λ∈ . Set newλ λ= , and go to step 
2.2. 

Step 3. compute ,k k kb s y= , If 0kb ≤ , set 1 maxkα α+ = ; else compute  

,k k ks sα = , { }{ }1 max minmin ,max ,k k ka bα α α+ = , and go to step 1. 

Algorithm 3.2 [9] (SPG2) 
Step 2. (Backtracking) 
Step 2.1. Compute ( )( )k k k k kd P x g x xα= − − , Set 1λ = . 
Step 2.2. Set k kx x dλ+ = + . 
Step 2.3. If 

( )
{ }

( ) ( )
0 min , 1

max , ,k j k kj k M
f x f x d g xγλ+ −≤ ≤ −

≤ +
           

(12) 

Then define ( ) ( )1 1 1, , ,k k k k k k k kx x s x x y g x g xλ λ + + + += = = − = − , and go to 
step 3. 

If (12) does not hold, define [ ]1 2,newλ σ λ σ λ∈ . Set newλ λ= , and go to step 
2.2. 

The output point of the first stage is used as the initial point of the next stage. 
Algorithm 3.3 [10] (A Projected semismooth asymptotical newton me-

thod) 
Step 0. Choose constants ( ) 1 2, , 0,1 , 0, 2p pρ σ η ∈ > > , Let 0 Nx x= ∈Ω , 
: 0k = . 
Step 1. Choose ( )k B kV H x∈∂ , compute ( ) ( )T

k k kf x V H x∇ = . 
Step 2. If kx  is a stationary point, stop. Otherwise let 

( )k
G k kd f xγ= − ∇ ,                      (13) 

where 

( ) ( ){ }2
min 1,k k kf x f xγ η= ∇ ,                (14) 
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and go to step 3. 
Step 3. If the linear system 

( ) 0k kH x V d+ =                        (15) 

has a solution k
Nd , and 

( ) 2T
1

pk k
k N Nf x d p d−∇ ≥ ,                   (16) 

then use the direction k
Nd . Otherwise, set k k

N Gd d= . 
Step 4. Let km  be the smallest nonnegative integer m satisfying 

( )( ) ( ) ( ) ( )Tk m k m
k k k Gf x d f x f x dρ σ ρ+ ≤ + ∇ ,          (17) 

where for any [ ]0,1λ ∈ , 

( ) ( ) ( ) ( ) ( )1k k k
k G k Nd t d t dλ λ λ λ λ∗ ∗ = + −  ,            (18) 

( ) ( ),k k k k
G X G k N X N kd x d x d x d xλ λ λ λ   = ∏ + − = ∏ + −           (19) 

and ( )kt λ∗  is an optimal solution to 

[ ]
( ) ( ) ( ) ( )

2

0,1

1min 1
2

k k
k k G Nt

H x V td t dλ λ
∈

 + + −  ,           (20) 

the optimal solution is 

( ) ( ){ }{ }max 0, min 1,t tλ λ∗ = ,                 (21) 

let km
kλ ρ= , ( )1

k
k k kx x d λ+ = + . 

Step 5. Let : 1k k= + , and go to step 1. 

4. Convergence Analysis 

Theorem 4.1 [9]: Algorithm SPG1 is well defined, and any accumulation 
point of the sequence { }kx  that is generates is a constrained stationary point. 

Theorem 4.2 [9]: Algorithm SPG2 is well defined, and any accumulation 
point of, and any accumulation. 

Theorem 4.3 [10]: Let { }kx X⊂  be a sequence generated by Algorithm 3.3, 
then any accumulation point of { }kx  is a station point of (2). 

5. Application 

Many practical problems can be solved by transforming them into constrained 
semi-smooth equations. For example, mixed complement problem (MCP): 

: n nF R R→  is a continuous differentiable function, finding a vectors x X∈  
satisfies 

( ) ( )T 0,   F x y x y X− ≥ ∀ ∈ ,                  (22) 

The function 2:αψ →� �  with [ ]0,1α ∈  is defined by 

( ) ( )( ) [ ]( )2 2
, : ,a b a b aα αψ φ

+ +
 = + −  ,              (23) 

where [ ] { }: max 0,a a
+
=  for any a∈�  and 2:αφ →� �  is the penalized 
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Fischer-Burmeister function introduced by Chen et al. [11] and has the form: 

( ) ( ) ( ), : , 1FBa b a b a bαφ αφ α + += + − ,               (24) 

Here, 2:αφ →� �  is an NCP function, which is given by 

( ) ( ) 2 2, :FB a b a b a bφ = + − + ,                 (25) 

The mixed complement problem can be transformed into a semi-smooth sys-
tem of equations by the above functions. 

Let { }1, ,N n= �
 

{ } { }
{ } { }

: , , ,   : , , ,

: , , ,   : \
f i i l i i

u i i lu l u f

I i l u i N I i l u i N

I i l u i N I N I I I

= = −∞ = ∞ ∈ = > −∞ = ∞ ∈

= = −∞ < ∞ ∈ = ∪ ∪      (26) 

MCP can be reformulated as ( ) 0H x =  with 

( )

( )
( )( )
( )( )

                                                                if

,                                                if
:

,                                            if

i f

i i i l

i
i i i

F x i I

x l F x i I
H x

u x F x i

α

α

φ

φ

∈

− ∈
=

− −

( )( ) ( )( )

, 1, ,  

, ,               if

u

i i i i i i lu

i n
I

x l F x x l F x i Iα αψ ψ




 =

∈


− + − ∈

�

 

(27) 

Then we can use the two phase method to solve this problem. 

6. Conclusion 

In this paper, we proposed a two-phase method for the constrained equations. 
We can also combine other first-order and second-order methods. In this paper, 
the iteration complexity analysis of the first-order method is a meaningful work, 
and we will do further research. 
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