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Abstract 
In this article, we focus on the semi-parametric error-in-variables model with 
missing responses: ( )i i i iy g tξ β= + +  , i i ix ξ µ= + , where iy  are the re-

sponse variables missing at random, ( ),i itξ  are design points, iξ  are the 
potential variables observed with measurement errors iµ , the unknown 
slope parameter β  and nonparametric component ( )g ⋅  need to be esti-

mated. Here we choose two different approaches to estimate β  and ( )g ⋅ . 
Under appropriate conditions, we study the strong consistency for the pro-
posed estimators. 
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1. Introduction 

Consider the following semi-parametric error-in-variables (EV) model 

( ) ,
,

i i i i

i i i

y g t
x

ξ β
ξ µ

 = + +


= +



                   
 (1.1) 

where iy  are the response variables, ( ),i itξ  are design points, iξ  are the po-
tential variables observed with measurement errors iµ , 0iEµ = , i  are ran-
dom errors with 0iE = . β ∈  is an unknown parameter that needs to be 
estimated. ( )g ⋅  is a unknown function defined on close interval [ ]0,1 , ( )h ⋅  
is a known function defined on [ ]0,1  satisfying 

( ) ,i i ih t vξ = +                        (1.2) 

where iv  are also design points. 
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Model (1.1) and its special forms have gained much attention in recent years. 
When 0iµ ≡ , iξ  are observed exactly, the model (1.1) reduces to the general 
semi-parametric model, which was first introduced by Engle et al. [1]. However, 
in many applications, there are often covariates measurement errors. So the EV 
models are somewhat more practical than the ordinary regression model. In ad-
dition, when iy  are complete observed and ( ) 0g ⋅ ≡ , the model (1.1) reduces 
to the usual linear EV model, which has been studied by Liu and Chen [2], Miao 
et al. [3], Miao and Liu [4], Fan et al. [5] and so on. For complete data, the mod-
el (1) itself has also been studied by many authors: See Cui and Li [6], Liang et al. 
[7], Zhou et al. [8] and so on. In recent years, the semi-parametric EV models 
have been widely concerned. 

On the other hand, we often encounter incomplete data in the practical appli-
cation of the models. In particular, some response variables may be missing, by 
design or by happenstance. For example, the responses iy  may be very expen-
sive to measure and only part of iy  are available. Actually, missing of responses 
is very common in opinion polls, social-economic investigations, market re-
search surveys and so on. Therefore, we focus our attention on the case that 
missing data occur only in the response variables. When iξ  can fully be ob-
served, the model (1.1) reduces to the usual semi-parametric model which has 
been studied by many scholars in the literature: See Wang et al. [9], Wang and 
Sun [10], Bianco et al. [11]. 

To deal with missing data, one method is to impute a plausible value for each 
missing datum and then analyze the results as if they are complete. In regression 
problems, common imputation approaches include linear regression imputation 
by Healy and Westmacott [12], nonparametric kernel regression imputation by 
Cheng [13], semi-parametric regression imputation by Wang et al. [9], Wang 
and Sun [10], among others. We here extend the methods to the estimation of 
β  and ( )g ⋅  under the semi-parametric EV model (1.1). We obtain two ap-
proaches to estimate β  and ( )g ⋅  with missing responses and study the strong 
consistency for the estimators. 

In this paper, suppose we obtain a random sample of incomplete data  
( ){ }, , ,i i i iy x tδ  from the model (1.1), where 0iδ =  if iy  is missing, otherwise 

1iδ = . Throughout this paper, we assume that iy  is missing at random. The 
assumption implies that iδ  and iy  are independent. That is,  
( ) ( )1| 1i i iP y Pδ δ= = = . This assumption is a common assumption for statis-

tical analysis with missing data and is reasonable in many practical situations. 
The paper is organized as follows. In Section 2, we list some assumptions. The 

main results are given in Section 3. Some preliminary lemmas are stated in Sec-
tion 4. Proofs of the main results are provided in Sections 5. 

2. Assumptions 

In this section, we list some assumptions which will be used in the main results. 
Here ( )n na O b=  means n na C b≤  for every 1n ≥ , ( )n na o b=  means 
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0n na b →  as n →∞ , while a.s. is stand for almost sure. 
(A0) Let { },1i i n≤ ≤ , { },1i i nµ ≤ ≤  and { },1i i nδ ≤ ≤  be sequences of in-

dependent random variables satisfying 
i) 0iE = , 0iEµ = , 2 1iE = , 2 2 0iE µµ = Ξ >  is known. 
ii) sup p

i iE < ∞ , sup p
i iE µ < ∞  for some 4p > . 

iii) { },1i i n≤ ≤ , { },1i i nµ ≤ ≤ , { },1i i nδ ≤ ≤  are independent of each oth-
er. 

(A1) Let { },1v i n≤ ≤  in (2) be a sequence satisfying 

i) ( )1 2 1 2
0 1 0 11 1lim , lim  a.s. 0 ,n n

n i n i ii in v n vδ− −
→∞ →∞= =

= Σ = Σ < Σ Σ < ∞∑ ∑ . 

ii) ( ) 1

1 1lim sup log max
i

m
n n m n jin n v

−

→∞ ≤ ≤ =
⋅ < ∞∑ , where { }1 2, , , nj j j�  is a 

permutation of ( )1,2, ,n� . 

iii) ( )1max 1i n iv O≤ ≤ = . 
(A2) ( )g ⋅  and ( )h ⋅  are continuous functions satisfying the first-order Lip-

schitz condition on the close interval [ ]0,1 . 
(A3) Let ( )( )1 ,c

nj iW t i j n≤ ≤  be weight functions defined on [0, 1] and satis-
fy 

i) ( ) ( )1 1max 1n c
j n j nj ii W t Oδ≤ ≤ =

=∑  a.s. 
ii) ( ) ( ) ( )1 4 1 4

1 1max n c
i n j nj i i jj W t I t t a n o nδ − −

≤ ≤ =
− > ⋅ =∑  a.s. for any 0a > . 

iii) ( ) ( )1 2 1
1 ,max logc

i j n nj iW t o n n− −
≤ ≤ =  a.s. 

(A4) The probability weight functions ( )( )1 ,nj iW t i j n≤ ≤  are defined on 
[ ]0,1  and satisfy 

i) ( ) ( )1 1max 1n
j n nj ii W t O≤ ≤ =

=∑ . 
ii) ( ) ( ) ( )1 4 1 4

1 1max n
i n nj i i jj W t I t t a n o n− −

≤ ≤ =
− > ⋅ =∑ , for any 0a > . 

iii) ( ) ( )1 2 1
1 ,max logi j n nj iW t o n n− −
≤ ≤ = . 

Remark 2.1. Conditions (A0)-(A4) are standard regularity conditions and 
used commonly in the literature, see Härdle et al. [14], Gao et al. [15] and Chen 
[16]. 

3. Main Results 

For model (1.1), we want to seek the estimators of β  and ( )g ⋅ . The most nat-
ural idea is to delete all the missing data. Therefore, one can get model  

( )i i i i i i i iy g tδ δ ξ β δ δ= + +  . If iξ  can be observed, we can apply the least 
squares estimation method to estimate the parameter β . If the parameter β  is 
known, using the complete data ( ){ }, , ,1i i i i i iy x t i nδ δ δ ≤ ≤ , we can define the 
estimator of ( )g ⋅  to be 

( ) ( )( )*

1
, ,

n
c

n nj j j j j
j

g t W t y xβ δ δ β
=

= −∑  

where ( )c
njW t  are weight functions satisfying (A3). On the other hand, under 

the condition of the semi-parametric EV model, Liang et al. [7] improved the 
least squares estimator (LSE) on the basis of the usual partially linear model, and 
employ the estimator of parameter β  to minimize the following formula: 
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( ) ( ){ }2* 2 2

1
, min!

n

i i i n i
i

SS y x g t µβ δ β β β
=

 = − − −Ξ = ∑  

Therefore, we can achieve the modified LSE of β  as follow: 

( )
1

2 2

1 1

ˆ ,
n n

c c c
c i i i i i i

i i
x x yµβ δ δ δ

−

= =

 = − Ξ  
∑ ∑� � �                 (3.1) 

where ( )1
nc c

i i j nj i jjx x W t xδ
=

= −∑� , ( )1
nc c

i i j nj i jjy y W t yδ
=

= −∑� . We substitute 

(3.1) into ( )* ,ng t β , then 

( ) ( )( )
1

ˆˆ .
n

c c
n j nj j j c

j
g t W t y xδ β

=

= −∑
               

 (3.2) 

Apparently, the estimators ˆ
cβ  and ( )ˆ c

ng t  are formed without taking all 
sample information into consideration. Hence, in order to make up for the 
missing data, we imply an imputation method from Wang and Sun [10], and let 

[ ] ( ) ( )ˆ ˆ1 .I c
i i i i i c n iU y x g tδ δ β = + − +                 (3.3) 

Therefore, Using complete data [ ]( ){ }, , ,1I
i i iU x t i n≤ ≤ , similar to (3.1)-(3.2), 

one can get another estimators for β  and ( )g ⋅ , that is 

( ) [ ]
1

2 2

1 1

ˆ ,
n n

I
I i i i i

i i
x x Uµβ δ

−

= =

 = − Ξ  
∑ ∑ �� �

               
 (3.4) 

[ ] ( ) ( ) [ ]( )
1

ˆˆ .
n

I I
n nj j j I

j
g t W t U x β

=

= −∑                 (3.5) 

where [ ] [ ] ( ) [ ]
1

nI I I
i i nj i jjU U W t U

=
= −∑� , ( )1

n
i i nj i jjx x W t x

=
= −∑� , ( )njW t  are 

weight functions satisfying (A4). 
Based on the estimators for β  and ( )g ⋅ , we have the following results. 
Theorem 3.1 Suppose that (A0)-(A3) are satisfied. For every [ ]0,1t∈ , we 

have 
a) ˆ a.s.cβ β→  
b) ( ) ( )ˆ a.s.c

ng t g t→  
Theorem 3.2 Suppose that (A0)-(A4) are satisfied. For every [ ]0,1t∈ , we 

have 
a) ˆ a.s.Iβ β→  
b) [ ] ( ) ( )ˆ a.s.I

ng t g t→  

4. Preliminary Lemmas 

In the sequel, let 1, ,C C �  be some finite positive constants, whose values are 
unimportant and may change. Now, we introduce several lemmas, which will be 
used in the proof of the main results. 

Lemma 4.1 (Baek ang Liang [17], Lemma 3.1) Let 2α > , 1, , ne e�  be in-
dependent random variables with 0iEe = . Assume that { },1nia i n≤ ≤  is a tri-
angular array of numbers with ( )1 2

1max i n nia O n−
≤ ≤ =  and  

( )2 2 1
1 logn

nii a o n nα− −
=

=∑ . If sup p
i iE e < ∞  for some ( )2 1p α α> − . Then 
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( )1

1
a.s.

n

ni i
i

a e o n α−

=

=∑  
Lemma 4.2 (Hardle et al. [14], Lemma A.3) Let 1, , nV V�  be independent 

random variables with 0iEV = , finite variances and  
( )1sup  2

r
j n jE V C r≤ ≤ ≤ < ∞ > . Assume that { }, , 1, ,kia k i n= �  is a sequence of 

numbers such that ( )1
1 ,sup p

i k n kia O n−
≤ ≤ =  for some 10 1p< <  and  

( )2
1

n p
jij a O n

=
=∑  for ( )2 1max 0,2p r p≥ − . Then 

( )
1 =1
max log a.s.

n
s

ki ki n k
a V O n n−

≤ ≤
=∑  for ( )1 2 2s p p= − . 

Lemma 4.3 
a) Let ( ) ( ) ( )1

n
i i nj i jjA A t W t A t

=
= −∑� , where ( ) ( )A g⋅ = ⋅  or ( )h ⋅ . Let  

( ) ( ) ( )1
nc c

i i j nj i jjA A t W t A tδ
=

= −∑� , where ( ) ( )A g⋅ = ⋅  or ( )h ⋅ . Then, (A0)-(A4) 

imply that ( )1 4
1max i n iA o n−
≤ ≤ =�  and ( )1 4

1max a.s.c
i n iA o n−

≤ ≤ =�  

b) (A0)-(A4) imply that 1 2
01

n
iin ξ−

=
→ Σ∑ � , 11

n
ii C nξ

=
≤∑ � ,  

( )21
11 a.s.n c

i iin δ ξ−
=

→ Σ∑ �  and 21 a.s.n c
i ii C nδ ξ

=
≤∑ �  

c) (A0)-(A4) imply that ( )1max 1i n i Oξ≤ ≤ =�  and ( )1max 1 a.s.c
i n i Oξ≤ ≤ =�  

Lemma 4.4 Suppose that (A0)-(A4) are satisfied. Then one can deduce that 

( ) ( )
1
4

1
ˆmax a.s.c

n i ii n
g t g t o n

−

≤ ≤

 
− =   

 
 

One can easily get Lemma 4.3 by (A0)-(A4). The proof Lemma 4.4 is analog-
ous to the proof of Theorem 3.1(b). 

5. Proof of Main Results 

Firstly, we introduce some notations, which will be used in the proofs below. 

( ) ( )
1 1

,  ,
n n

c c c c
i i j nj i j i i j nj i j

j j
W t W tξ ξ δ ξ µ µ δ µ

= =

= − = −∑ ∑� �
 

( ) ( ) ( ) ( )
1 1

, ,
n n

c c c c
i i j nj i j i i j nj i j

j j
g g t W t g t W tδ δ

= =

= − = −∑ ∑� �  
 

( ) ( )
1 1

,  ,
n n

i i nj i j i i nj i j
j j

W t W tξ ξ ξ µ µ µ
= =

= − = −∑ ∑� �
 

( ) ( ) ( ) ( )
1 1

,  ,  ,
n n

i i nj i j i i nj i j i i i
j j

g g t W t g t W t η µ β
= =

= − = − = −∑ ∑� �   
 

( ) ( )2 2 2 2 2 2 2 2 2 2
1 1 2

1 1 1 1
,   ,   ,  .

n n n n

n i i n i n i i i n i
i i i i

B S S x S xµ µδ ξ ξ δ δ
= = = =

= = = − Ξ = −Ξ∑ ∑ ∑ ∑� � � �
 

Proof of Theorem 3.1(a). From (3.1), one can write that 

( )( )

( )( )

2 2
1

1 1

2 2
1

1 1 1

ˆ
n n

c c c c c
c n i i i i i i i

i i

n n n
c c c c c c c c

n i i i i i i i i i i i i
i i i

S y

S g g

µ

µ

β β δ ξ µ ξ β µ β δ β

δ ξ µ µ β δ β δ ξ δ µ

−

= =

−

= = =

 − = + − − + Ξ  
  = + − + Ξ + +   

∑ ∑

∑ ∑ ∑

� �� � �

� �� � � � ��
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( ) ( )

( ) ( )

2 2 2
1

1 1 1 1

1 1 1 1 1

n n n n
c c c

n i i i i i i i i i i i
i i i i

n n n n n
c c c c c

i i i i j nj i i j i j nj i i j
i i j i j

S g

g W t W t

µδ ξ µ β δ µ δ µ β δ ξ

δ µ δ δ ξ δ δ µ

−

= = = =

= = = = =

= − + − −Ξ +


+ − −

∑ ∑ ∑ ∑

∑ ∑∑ ∑∑

� � �

�� �

 

 
 

( ) ( )

( ) ( ) ( )

( ) ( )

1 1 1 1

1 1 1 1 1

1 1 1

12
2

1
1

2

: .

n n n n
c c c

i j nj i i j i j nj i i j
i j i j

n n n n n
c c c

i j nj i i j i j k nj i nk i j k
i j i j k

n n n
c c

i j k nj i nk i j k
i j k

n kn
k

W t W t

W t W t W t

W t W t

S A

δ δ µ δ δ ξ µ β

δ δ µ µ β δ δ δ µ

δ δ δ µ µ β

= = = =

= = = = =

= = =

−

=

− +

+ +


− 



=

∑∑ ∑∑

∑∑ ∑∑∑

∑∑∑

∑

�



    (5.1) 

Thus, to prove ˆ
cβ β→  a.s., we only need to verify that 2 1

1 a.s.nS Cn− −≤  and 
( )1 1 a.s.knn A o− =  for 1,2, ,12k = � . 

Step 1. We prove 2 1
1 a.s.nS Cn− −≤  Note that 

( )

( ) ( ) ( )

( ) ( )

22 2
1

1
2

2 2 2

1 1 1 1

1 1 1 1 1

1 2 3 4 5 6

2 2 2

: .

n
c c

n i i i i
i

n n n n
c c

i i i i i j nj i j
i i i j

n n n n n
c c c c

i i i i i j nj i j i i j nj i j
i i j i j

n n n n n n

S

W t

W t W t

B B B B B B

µ

µ

δ ξ µ δ

δ ξ δ µ δ δ µ

δ ξ µ δ ξ δ µ δ µ δ µ

=

= = = =

= = = = =

 = + − Ξ  

 
= + −Ξ +  

 

+ − −

= + + + + +

∑

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑ ∑

� �

�

� �

 

By Lemma 4.3(a), we have 1
1 1nn B− → Σ  a.s. Hence, it suffices to verify that 

( ) ( )1kn nB o B o n= =  a.s. for 2,3, ,6k = � . Applying (A0), taking 2 2r p= > , 

1 1 2p = , 2 1 2p =  in Lemma 4.2, we can verity that 

( ) ( )
1 1 1
2 2 2

1 1
log a.s.

n n

i i i i
i i

E n n E O n nζ ζ ζ ζ
−

= =

 
− = ⋅ − =   

 
∑ ∑

      
 (5.2) 

where { }iζ  is a sequence of independent random variables satisfying 0iEζ =  
and 2

1sup p
i n iE ζ≤ ≤ < ∞ . Therefore, we obtain ( ) ( )1 2

2 log a.s.nB O n n o n= =  
from (A0) and (5.2). On the other hand, taking 4, 4pα = >  in Lemma 4.1, we 
have 

( ) ( )
1 1
4 4

1 1=1 =1
max  a.s.,  max  a.s.

n n
c

j nj i j nj i ji n i nj j
W t o n W t o nδ ζ ζ

− −

≤ ≤ ≤ ≤

   
= =      

   
∑ ∑

 
 (5.3) 

where { }iζ  is a sequence of independent random variables satisfying 0iEζ =  

and 1sup p
i n iE ζ≤ ≤ < ∞ . By (A0) and Lemma 4.3, taking 4r = , 1 1 4p = ,  

2 3 4p =  in Lemma 4.2, one can also deduce that 

( )
1 1 1
4 4 2

4
1

2 log  a.s.
n

c
n i i i

i
B n n O n n o nδ ξ µ

−

=

 
= ⋅ = =  

 
∑ �

       
 (5.4) 

Note that, from Lemma 4.3(a), (5.2) and (5.3), we have 
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( )
2 1

2
3 11 1

max  a.s.
n n

c
n i j nj i ji ni j

B W t o nδ δ µ
≤ ≤= =

 
≤ ⋅ =   

 
∑ ∑

         
 (5.5) 

( )
3
4

5 11 1
2 max  a.s.

n n
c c

n i i j nj i ji ni j
B W t o nδ ξ δ µ

≤ ≤= =

 
≤ ⋅ =   

 
∑ ∑�          (5.6) 

( ) ( )
3
4

6 11 1 1
2 max  a.s.

n n n
c

n i i i i i i j nj i ji ni i j
B E E W t o nδ µ δ µ δ µ δ µ

≤ ≤= = =

  ≤ − + ⋅ =        
∑ ∑ ∑  (5.7) 

Therefore, for (5.2)-(5.7), one can deduce that  
( ) ( )2

1 1 1 1  a.s.n n n nS B o n B o B= + = + , which yields that 

( )
1 1
2

1 11

lim lim 1 a.s.n n

n n
n nn

B B
B o BS→∞ →∞

= =
+

 

Therefore, by the Lemma 4.3(b), we can get that 2 1
1  a.s.nS Cn− −≤  

Step 2. We verify that ( )1 1 4  a.s.knn A o n− −=  for 1,2, ,12k = � . From (A0), we 
find out { } ,1i i i i nη µ β= − ≤ ≤  is a sequences of independent random va-
riables with 0iEη = , sup sup supp p p

i i i i i iE C E e C Eη µ≤ + < ∞ , for some 
4p > . Similar to (4), we deduce that 
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Meanwhile, from (A0)-(A3), Lemma 4.3, (5.2) and (5.3), one can achieve that 
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The proof of ( )1 1  a.s.knn A o− =  for 6, ,12k = �  is analogous. Thus, the proof 
of Theorem 3.1(a) is completed.   

Proof of Theorem 3.1(b). From (3.2), for every [ ]0,1t∈ , one can write that 
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Therefore, we only need to prove that ( ) 0knF t →  a.s. for every [ ]0,1t∈  
and 1,2, ,5k = � . From (A0)-(A3), Theorem 3.1(a), Lemma 4.3, (2) and (3), for 
every [ ]0,1t∈  and any 0a > , one can get 
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Thus, the proof of Theorem 3.1(b) is completed.   
Proof of Theorem 3.2(a). From (3.3)-(3.4), write that 
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Using a similar approach as step 1 in the proof of Theorem 3.1(a), one can get 
2 1

2  a.s.nS Cn− −≤  
Therefore, we only need to verify that ( )1 1 a.s.knn D o− =  for 1,2, , 21k = � . 

From (A0)-(A4), Lemmas 4.2-4.4, Theorem 3.1(a), (5.2)-(5.4), we have 
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In the same way, from (A0)-(A4), Lemmas 4.2-4.4, (5.2) and (5.3), one can 
similarly deduce that ( )1 1 4  a.s.knn D o n− −=  for 5,6, , 21k = � . Thus, the proof 
of Theorem 3.2(a) is completed.   

Proof of Theorem 3.2(b). From (3.4), write that 
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Therefore, we only need to prove that ( ) 0knG t →  a.s. for every [ ]0,1t∈  
and 1,2, ,10k = � . From (A0)-(A4), Lemma 4.3-4.4, (5.2), (5.3), one can get 
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Meanwhile, the proof of ( ) 0 a.s.knG t →  for every [ ]0,1t∈  and  
3, ,10k = �  is analogous. Thus, the proof of Theorem 3.2(b) is completed.   
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