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Abstract: The purpose of this paper is to provide the software engineer with tools from the field of manu-
facturing as an aid to improving software process and product quality. Process involves classical manufactur-
ing methods, such as statistical quality control applied to product testing, which is designed to monitor and 
correct the process when the process yields product quality that fails to meet specifications. Product quality is 
measured by metrics, such as failure count occurring on software during testing. When the process and prod-
uct quality are out of control, we show what remedial action to take to bring both the process and product 
under control. NASA Space Shuttle failure data are used to illustrate the process methods. 
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1. Introduction 
Based on “old” ideas from the field of manufacturing, we 
propose “new” ideas for software practitioners to con-
sider for controlling the quality of software. Although 
there are obviously significant difference between hard-
ware and software, there are design quality control proc-
esses that can be adapted from hardware and applied 
advantageously to software. Among these are the Ta-
guchi manufacturing methods, statistical quality control 
charts (statistical quality control is the use of statistical 
methods to control quality [1]), and design of experi-
ments. These methods assess whether a product manu-
facturing process is within statistical control. Statistical 
control means that product attributes like software failure 
occurrence is within specified control limits. 

Every process has inherent variation that hampers ac-
curate process prediction. In addition, interactions of 
people, machines, environment, and methods introduce 
noise into the system. You can control the inherent varia-
tion by identifying and controlling its cause, thereby 
bringing the process under statistical control [2]. While 
this is important, we should not get carried away by fo-
cusing exclusively on process. Most customers do not 
care about process. They are interested in product quality! 
Thus, when evaluating process improvement, it is crucial 
to measure it in terms of the product quality that is 
achieved. Thus, we explore methods, like Taguchi meth-
ods, that tie process to product. We apply these methods 
to NASA Space Shuttle software using actual failure data. 

The use of the Shuttle as an example is appropriate be-
cause this is a CMMI Level 5 process that uses product 
quality measurements to improve the software develop-
ment process [3]. It is a characteristic of processes at this 
level that the focus is on continually improving process 
performance through both incremental and innovative 
technological changes and improvements. At maturity 
level 5, processes are concerned with addressing statisti-
cal common causes of process variation and changing the 
process (for example, shifting the mean of the process 
performance) to improve process performance. This 
would be done at the same time as maintaining the like-
lihood of achieving the established quantitative process- 
improvement objectives. While some software engineers 
argue that a CMMI Level 5 process is not applicable to 
their software, we suggest that it is applicable to any 
software as an objective, with the benefit of evolving to a 
higher CMMI level. 

Typical metrics that software engineers use for assess-
ing software quality are defect, fault, and failure counts, 
complexity measures that measure the intricacies of the 
program code, and software reliability prediction models. 
The data to drive these methods are collected from defect 
reports, code inspections, and failure reports. The data 
are collected either by software engineers or automati-
cally by using a variety of software measurement tools. 
These data are used in design and code inspections to 
remove defects and in testing to correct faults. 

Since software engineers are typically not schooled in 
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manufacturing systems, they are unaware of how manu-
facturing methods can be applied to improving the qual-
ity of software. Our objective is to show software re-
searchers and practitioners how manufacturing methods 
can be applied to improving the quality of software. 

2. Relationship of Manufacturing to    
Software Development 

There is a greater intersection between manufacturing 
methods and software development than software practi-
tioners realize. For example, software researchers and 
industry visionaries have long dreamed about a Leg0 
block style of software development: building systems 
by assembling prefabricated, ready-to-use parts. Over the 
last several decades, we have seen the focus of software 
development shift from the generation of individual pro-
grams to the assembly of large number of components 
into systems or families of systems. The two central 
themes that emerged from this shift are components, the 
basic system building blocks, and architectures, the de-
scriptions of how components are assembled into sys-
tems. Interest in components and architectures has gone 
beyond the research community in recent years. Their 
importance has increasingly been recognized in industry. 
Today, a business system can be so complex that major 
components must be developed separately. Nevertheless, 
these individually developed components must work 
together when the system is integrated. The need for a 
component-based strategy also arises from the increased 
flexibility that businesses demand of themselves and, by 
extension, of their software systems. To address the 
business needs, the software industry has been moving 
very rapidly in defining architecture standards and de-
veloping component technologies. An emerging trend in 
this movement has been the use of middleware, a layer of 
software that insulates application software from system 
software and other technical or proprietary aspects of 
underlying run-time environments. [4] Component-based 
software construction enhances quality by confining 
faults and failures to specific components so that the 
cause of the problem can be isolated and the faults re-
moved. 

Manufacturing is an important part of any software 
development process. In the simplest case, a single 
source code file must be compiled and linked with sys-
tem libraries. More usually, a program will consist of 
multiple separately written components. A program of 
this kind can be manufactured by compiling each com-
ponent in turn and then linking the resulting object mod-
ules. Software generators introduce more complexity into 
the manufacturing process. When using a generator, the 
programmer specifies the desired effect of a component 
and the generator produces the component implementa-
tion. Generators enable effective reuse of high-level de-
signs and software architectures. They can embody state 

of-the-art implementation methods that can evolve with-
out affecting what the programmer has to write. While 
the programmer can manually invoke compilers and 
linkers, it is much more desirable to automate the soft-
ware manufacturing process. The main advantage of 
automation is that it ensures manufacturing steps are 
performed when required and that only necessary steps 
are performed. These benefits are particularly noticeable 
during maintenance of large programs, perhaps involving 
multiple developers. Automation also enables other par-
ties to manufacture the software without any detailed 
knowledge of the process. [5] Component reuse is a boon 
to software reliability because once a component is de-
bugged, it can be used repeatedly with assurance that it is 
reliable. 

Another tool borrowed from manufacturing is con-
figuration control [6]. At first blush, one may wonder 
how configuration control fits with software develop-
ment. Actually, it is extremely important because soft-
ware is subject to change throughout the life cycle in 
requirements, design, coding, testing, operation and 
maintenance. A dramatic illustration of the validity of 
this assertion is the software maintenance function. For 
example, no sooner is the software delivered to the cus-
tomer than requests for changes are received by the de-
veloper. This is in addition to the changes caused by bug 
fixes after delivery. If configuration management is not 
employed, the process will become chaotic with neither 
customer nor developer knowing the state of the software 
and the status of the process. 

3. Arguments against Applying       
Manufacturing Methods to Software 

We note that not all software engineers subscribe to the 
idea that manufacturing methods can be applied to soft-
ware. They claim that it is infeasible to measure software 
because unlike high volume manufacturing of hardware, 
with close tolerances, many software projects are low 
volume produced with a fuzzy process, where product 
tolerance has no meaning. [7] Actually, none of this is 
true. While component-based software development is 
not a high volume process, it produces products for use 
in a large number of applications (e.g., edit module in a 
word processor). As for process, we have cited the 
CMMI Level 5 process that can control the variation in 
product quality by feeding back deviations in product 
quality to the development process for the purpose of 
correction the process that led to undesired variance in 
product quality. While it is true that software cannot be 
manufactured to the precision of software, statistical 
quality control of defect count, confidence intervals of 
reliability predictions, numerical reliability specifications, 
and quality prediction accuracy measurement, are just a 
few of the quantitative measurements from the physical 
world that have been applied to software, for example, in 



N. SCHNEIDEWIND 

Copyright © 2009 SciRes                                                                                  IIM 

100 

the Space Shuttle [3]. Thus, we are convinced that it is 
appropriate to apply manufacturing methods to software 
development in the sections to follow. 

4. Taguchi Methods 
Taguchi [1] revolutionized the manufacturing process in 
Japan through cost savings, for example, at Toyota. He 
understood that all manufacturing processes are affected 
by outside influences, like noise. Taguchi developed 
methods of identifying those noise sources that have the 
greatest effects on product variability. His ideas have 
been adopted by successful manufacturers around the 
globe because they created superior production processes 
at much lower costs. 

Taguchi speeded up product and process design by 
separating controllable from uncontrollable variables. By 
concentrating on the controllable variables, fewer ex-
periments are needed to arrive at the best product design. 
For example, in software, one of the key variables that is 
controllable is quality. On the other hand, user expecta-
tions are largely uncontrollable from the developer’s 
perspective. However, controlling quality to achieve 
positive results, would contribute to meeting users’ ex-
pectations. 

Since a good manufacturing process will be faithful to 
a product design, robustness must be designed into a pro-  

duct before manufacturing begins. According to Taguchi, 
if a product is designed to avoid failure in the field, then 
factory defects will be simultaneously reduced. This is 
one aspect of Taguchi Methods that is often misunder-
stood. There is no attempt to reduce variation, which is 
assumed to be inevitable, but there is a definite focus on 
reducing the effect of variation. “Noise” in processes will 
exist, but the effect can be minimized by designing a 
strong “signal” into a product [8]. 

To relate software to Taguchi methods, we use the fol-
lowing definitions: 

4.1. Definitions 

Observation i: the recording of cumulative failures dur-
ing test or operational time t. 

Yi: value of observation i: ith value of actual or pre-
dicted cumulative software failures 

Ti: specified target value of cumulative software fail-
ures for observation i (i.e., desire Yi ≤ Ti) 

Values of Ti are listed in Table 1. In order to not bias 
the analysis, the individual failure counts di were as-
signed a uniformly distributed number between 0 and 4. 
Then these numbers were summed obtain the cumulative 
failure target values T. Software engineers could choose 
values appropriate for their software. 

 
Table 1. Shuttle OI3 Loss Functions and Signal to Noise Ratios 

Forecast ed Forecast ed
Actual Act ual Random Cum ulat ive Actual P redicted A ct ual P redicted

Failure Failure Cum ulat ive Failure Count Failure Loss L oss Lo ss L oss
T est  T im e Count Failures T arget  T arget  Fun ct ion Fun ct ion Funct io n Fun ct io n

I t di Y ia T i: T i L Fa LFp LFia L Fip
1 0.97 2 2 2 2 0 8 .5 5 3.5 4 -9 .7 5
2 1.20 0 2 0 2 0 4 .6 2 3.7 3 -8 .5 1
3 3.03 2 4 0 2 4 3 .6 2 5.1 8 1 .1 7
4 3.07 2 6 2 4 4 0 .0 0 5.2 1 1 .3 4
5 4.00 0 6 1 5 1 0 .0 1 5.9 5 6 .2 1
6 4.23 0 6 3 8 4 7 .3 1 6.1 4 7 .4 2
7 8.20 0 6 1 9 9 3 .8 6 9.2 9 27.6 9
8 9.63 1 7 0 9 4 3 .1 6 1 0.44 34.8 5
9 9.70 0 7 2 11 1 6 14.2 3 1 0.49 35.1 8

10 9.77 4 11 1 12 1 22.7 1 1 0.54 35.5 1
11 1 0.37 0 11 3 15 1 6 59.5 7 1 1.02 38.4 8
12 1 2.13 1 12 0 15 9 58.2 3 1 2.42 47.1 5
13 2 7.67 1 13 4 19 3 6 13 3.41 2 4.78 11 7.83
14 3 5.93 1 14 2 21 4 9 18 3.61 3 1.36 15 1.43
15 8 7.53 1 15 3 24 8 1 27 3.91 7 2.41 29 8.15
16 1 36 .5 3 1 16 2 26 1 00 34 4.11 111 .40 33 6.92

1 40 .0 0 114 .16 33 5.96
1 45 .0 0 118 .13 33 3.70
1 50 .0 0 122 .11 33 0.42
1 55 .0 0 126 .09 32 6.12
1 60 .0 0 130 .07 32 0.80

days SNT SNT SN T SNT

1 .5 77 3 1.9 060 1.85 95 2.15 14   
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LF: loss function (variability of difference between 

actual cumulative failures and target values during test-
ing and operation) 

SNT: signal to noise ratio (proportional to the mean of 
the loss function) 

n: number of observations (e.g., number of observa-
tions of Yi and Ti) 

Taguchi devised an equation -- called the loss function 
(LF) -- to quantify the decline of a customer's perceived 
value of a product as its quality declines [9,10] in Equa-
tion (1). This equation is a squared error function that is 
used in the analysis of errors resulting from deviations 
from desired quality. LF tells managers how much prod-
uct quality they are losing because of variability in their 
production process. He also computed his version of the 
signal to noise ratio that essentially produces the mean of 
the loss function [9,10] in Equation (2). Note that in most 
applications, a high signal to noise ratio is desirable. 
However, in the Taguchi method this is not the case be-
cause Equation (2) only measures signal, and no noise. 
Thus, since Equation (2) represents the mean value of the 
difference between observed and target values, a high 
value of SNT is undesirable. 

LF = (Yi – Ti)2,                 (1) 

SNT = 

2

1
10

( )
10log ( )

n

i i
i

Y T

n
=

−∑
          (2) 

The development of the loss function and signal to 
noise ratio, using the Shuttle failure data, involves the 
following steps: 

1) First, we note that cumulative failure data are ap- 
propriate for comparing actual failure of a software re-
lease against the predicted values [11]. 

2) Thus, for release OI3 of the Shuttle flight software,  

we used actual cumulative failure data Yia to compute 
the actual loss function LFa in Equation (1). 

3) Then we used this loss function to compute the ac-
tual signal to noise ratio SNT in Equation (2). 

4) Then we used the predicted cumulative failure data 
Yip to obtain the predicted loss function LFp and used 
this loss function to compute the predicted signal to 
noise ratio. The predicted cumulative failure counts were 
obtained from another research project using the Schn- 
eidewind Software Reliability Model (SSRM) [12]. Note 
in Figure 1 that there is a good fit with the actual data 
with R2 = .9359. Also note that the failure times are long 
because the Shuttle flight software is subjected to con-
tinuous testing over many years of operation. 

5) Next, the actual failure data Yia were fitted, as a fu- 
nction of failure time t, with the regression Equation (3). 

6) Then predicted failure data Yip were fitted, as a 
function of failure time t, in the regression Equation (4), 
which also has a good fit to the data in Figure 1 with R2 
= .9701. 

7) Finally, signal to noise ratios were computed using 
Equation (2) for each of the four cases. 

LFia=0.7956t+2.7771             (3) 
LFip=-0.0204t2+5.3622t-14.912         (4) 

The four loss functions -- two actual and two predicted 
– are shown in Table 1 and Figure 1, along with the four 
corresponding signal to noise ratios. Figure 1 and Equa-
tions (3) and (4) can be used by a software engineer to 
forecast the loss function beyond the range of the actual 
and predicted loss functions. 

4.2. Results of Applying Taguchi Methods to 
Shuttle Software 

In Figure 1 and Table 1, we see that the loss functions

 

 
Figure 1. NASA space shuttle OI3: Loss function LF vs. failure time t 
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Figure 2. NASA shuttle OI3 cumulative failures Yi vs. failure time t 

 
show that there is excessive variation between the de-
sired and target values, based on both actual and pre-
dicted cumulative failures. Secondly, the mean variabili-
ties, or signal to noise ratios, are large. This result sug-
gests that the software production process requires tight-
ened quality control. 

Figure 1 and Table 1 reveal additional information 
about variability in loss functions, as given by the signal 
to noise ratio S/NT. We see that predicted values have 
greater variability than actual values and that forecasted 
values have the greatest variability of all LFs. The latter 
result is to be expected because forecasting into the un-
known future is fraught with uncertainty. If the loss func-
tion could be reduced by exerting greater control over the 
software development process, the signal to noise ratio 
would also be reduced. By greater control we mean, for 
example, strengthening software inspection procedures 
and subjecting the software to stress tests to uncover and 
remove defects earlier in the development process. 

Another perspective of applying Taguchi methods is 
shown in Figure 2, where we have plotted actual, pre-
dicted, and target cumulative failures against the time of 
failure for Shuttle release OI3. The message of this figure 
is that there is a large miss between the target values and 
the actual and predicted cumulative failures. Therefore, 
again, the remedy would be to strengthen the software 
development process by, for example, employing strin-
gent inspection procedures to reduce the incidence of 
failures. 

5. Statistical Quality Control 
Now we illustrate another common manufacturing proc-
ess control method that we show has applicability to 
software. Process control is based on two key assump-
tions, one of which is that random variability is basic to 
any production process. No matter how perfectly a proc-

ess is designed, there will be some random variability, 
also called common causes, in quality characteristics 
from one unit to the next [13]. For example, a software 
development process cannot achieve perfection in speci-
fying requirements, producing error-free code, inspecting 
and finding every defect, and finding and correcting 
every fault during testing. When undesirable variation in 
these activities becomes excessive, the process is out of 
control, and the search is on for assignable causes [13] 
For example, requirements analysts may be systemati-
cally misinterpreting customer requirements or software 
designers may make an incorrect mapping from require-
ments to code. In these situations, the process must be 
corrected. 

Statistical quality control is based on the idea of 
monitoring quality and providing an alert when the 
process is out of control. Usually, variation is monitored 
and controlled by deviations from the mean, as computed 
by the standard deviation. Control is exercised by ac-
cepting the product if quality is within limits and rejected 
it, otherwise. For software, product metrics like the count 
of failures in excess of limits, as failures occur over a 
series of tests, can be used as a surrogate for identifying 
an out of control process. 

As pointed out by [14], in hardware manufacturing, 
the number of observed failures is close to the actual 
number of failures that occur over time. In software, this 
is not the case. For example, a tester may observe two 
failures on a particular test, but the actual number of 
failures that would have occurred with a better test is ten. 
Thus, if the control limit were five, the tester would re-
cord this software as being under control on the control 
chart. To mitigate against this possibility, you should 
observe the trend of failure count, with increasing testing, 
to see whether the trend is increasing. 

Statistical quality control for software uses the fol-
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lowing definitions and quality control relationships: 

5.1. Definitions 

n: Sample size 
di: failure count for test i 

id : Mean value of  di 
Sample i: ith observation of di during test i 
s: Sample standard deviation of di 
di (min): minimum value of di 
di: (max) maximum value of di 

5.2. Quality Control Relationships 

For the case where the standard deviation is used to 
compute limits, Equations (5) and (6) are used. 

Upper Control Limit (UCL): 
id  + Z s        (5) 

Lower Control Limit (LCL): 
id  - Z s        (6) 

where Z is the number of standard deviations from the 
mean, which can be 1, 2, or 3, depending on the degree 
of control exercised (Z = 1: tight control, Z =3: loose 
control). 

5.3. Results of Applying Statistical Quality Con-
trol Methods to Shuttle Software 

Since the Shuttle is a safety critical system, we chose Z = 
1 to provide tight control. Figure 3 reveals, as the Ta-
guchi methods did, that there is an out of control situa-
tion when failure count become excessive -- in this case 
at test # 10. In combining the results from Taguchi 
methods and statistical quality control, corrective action, 
like increased inspection, is necessary. 
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Figure 3. NASA space shuttle OI3: Failure count di vs. test i 

 

 
Figure 4. NASA space shuttle OI3: Probability of di failures P (di) on n tests vs. di 
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Figure 5. Test of poisson distribution of di number of failures during test i 

 
6. Statistical Process Control Using Failure 

Probability and Failure Counts [15] 

Next we show other methods of statistical process con-
trol that focuses on the probability of failures and num-
ber of failures occurring in a sample on a test. 

6.1. Probability of Failures during Tests 

We use probability of failure P (di) of di failures during n 
tests to control quality. This approach is based on the 
binomial distribution with probability pi of failures on 
test i [16]. In our example, using the Shuttle data, the 
probability of failures P (di) is computed from the failure 
counts di and pi in Equation (8). In order to compute P (di), 
we first compute probability pi in Equation (7). 

pi =  di / n                  (7) 

P (di) = n![ ][p [(1- p ) ]
d ! (n - d )!

d n-d]i ii ii i
   (8) 

Applying Equation (8) to Figure 4, we note that there 
would be considerable risk in deploying this software in 
view of the high probability of failure for 2, 3, and 4 
failures, given that 16 tests were used. An obvious rem-
edy for this problem would be to remove the faults caus-
ing the failures before the software is deployed. 

6.2. Poisson Control Charts 

The Poisson control chart is based on the assumption that 
failure counts are distributed during tests according to a 
Poisson distribution. As can be seen in Figure 5, the ob-
served failure counts di on the x axis are a good match 

with the expected counts for a Poisson distribution. 
Therefore, the Poisson distribution of failure counts, 
given in Equation (9), is used. There is sometimes a con-
cern that the Poison distribution requires the assumption 
of independence of failures. Actually, dependence is not 
a frequent occurrence. For example, Musa [17] found 
that in 15 projects there was little association among 
failures. 

pi = d e
d !

_d_ i - d

i
               (9) 

Next, having estimated pi in Equation (9), estimate the 
weighted mean number of failures across n samples, us-
ing Equation (10): 

P  = 
1

n

i i
i

d p
=

∑               (10) 

Since the standard deviation s of the Poisson distribu-
tion is equal to square root of the mean, we have: 

s = 
_

P                 (11) 
Now, compute the lower control limit for the number 

of failures using Equations (10) and (11) and producing 
Equation (12): 

LCL = P - 3 s             (12) 
It is necessary to compute the lower limit in order to 

identify quality that may be too high, resulting in waste 
of resources on software that does not require high qual-
ity. 

Then, compute the upper control limit for the number 
of failures, again using Equations (10) and (11) and pro-



N. SCHNEIDEWIND 

Copyright © 2009 SciRes                                                                                  IIM 

105 

ducing Equation (13): 

UCL = P  + 3 s            (13) 

Figure 6 confirms the result obtained in Figure 3 in 
that there is loss of control at test # 10 where four fail-
ures occur. The faults causing these failures must be un-
covered and removed. 

7. Design of Experiments [18] 

The last method in manufacturing process control we 
consider is the design of experiments that employs a hy-
pothesis about the difference between desired (target) and 

actual values of a product attribute, such as cumulative 
failures, using software tests as the experiments. The idea 
is to use samples (software tests) and statistical tests to 
estimate whether there is a significant difference between 
desired and actual values of a product attribute. If the 
difference is significant, it may be attributed to process 
factors, such as deficient quality control. We apply this 
method to Shuttle software. 

First determine whether the data are approximately 
normally distributed as required for using the t test [16]. 
In Figure 7 it is shown that the cumulative failure data Yi 
are approximately normally distributed by virtue of the 
data (red) dots being close to the normal (blue) line. 

 

 
Figure 6. NASA space shuttle OI3; process control using poisson distribution: Number of failures di vs. test number i 

 

 
Figure 7. Normality test of cumulative number of failures yia 
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Table 2. Shuttle OI3 design of experiments 

Ti Yia   

2 2 s t 

2 4  1.7531 

4 6  t table 

5 6 α 0.05 

8 6 df 15 

9 6 No statistically 

9 7 Significant difference 

11 7   

12 11   

15 11   

19 13   

21 14   

24 15   

26 16   

11.5000 8.6250   

iT  iY    

7.8825 4.5295   

iTS  
iYS    

 
Second, state the null H0 and alternate H1 hypotheses: 
H0: there is no statistically significant difference be-

tween Ti and Yi 
H1: there is a statistically significant difference be-

tween Ti and Yi 
Third, compute the means of the cumulative failures 

and the target cumulative failures in Equations (14) and 
(15), respectively, and the standard deviation of the sum 
of the variance of Yi, sY

2, and variance of Ti, sT
2, in 

Equation (16) 

_
1

n

i
i

i

Y
Y

n
==
∑

                (14) 

_
1

n

i
i

i

T
T

n
==
∑

                (15) 

s = 2 2
i iY Ts s+               (16) 

Fourth, based on the outcome of these computations, 
the t statistic is computed in Equation (17). 

t = 
_ _

( )i iY T
s
−               (17) 

Fifth, a comparison is made between the value com-
puted from Equation (17) and the value obtained from 

the t statistic table. If (t < table value), accept H0 and 
conclude that the difference between the target and actual 
cumulative failures is not statistically significant; other-
wise, accept H1 and conclude there is a difference, and 
attempt to assign the cause and correct the problem (e.g., 
inadequate software testing). 

Based on Table 2, we accept H0 and conclude there is 
not a statistically significant difference between cumula-
tive failures and the target values, based on the computed 
t = 1.2650 < t table = 1.7531. Thus with an error of α 
= .05 of rejecting H0, when in fact it is true, we have 
confidence that quality based on cumulative failures 
meets its goal. 

8. Conclusions 

We have presented some process methods from the field 
of manufacturing with the objective that the methods will 
prove useful to software engineers. While software de-
velopment has some unique characteristics, we can learn 
from other disciplines, where the methods have been 
applied extensively on an international scale as part of a 
total quality management plan. Such a plan recognizes 
that process and product are intimately related and that 
the objective of software process improvement should be 
to improve software product quality. 

The loss function and signal to noise ratio inspired by 
Taguchi methods proved to be valuable techniques for 
identifying and reducing excessive variation in software 
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quality. In addition, statistical process control provided a 
method for identifying the test when the incidence of 
software failures was out of control. This allows the 
software engineer to estimate the number of tests to 
conduct in order to determine whether the software 
product is under control. Finally, design of experiments 
methodology allowed us to conduct hypothesis tests to 
estimate whether software product metrics were achiev-
ing their goals. 
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