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Abstract 
A new mathematical model for elucidating neutrino mass from beta decay is 
proposed. It is based upon the solutions of transformed Fredholm and Abel 
integral equations. In principle, theoretical beta-particle spectra can consist of 
several neutrino-mass eigenstates. Integration of the beta spectrum with a 
normalized instrumental response function results in the Fredholm integral 
equation of the first kind. This equation is then transformed to yield a solu-
tion in a form of superposition of Heaviside step-functions, one for each neu-
trino mass eigenstate. A series expansion leading to matrix linear equations is 
then derived to solve the transformed Fredholm equation. Another approach 
is derived when the theoretical beta spectrum is obtained by a separate de-
convolution of the observed spectrum. It is then proven that the transformed 
Fredholm equation reduces to the Abel integral equation. The Abel equation 
has a general integral solution, which is proven in this work by using a spe-
cific equation for the beta spectrum. Several examples of numerical solutions 
of the Abel equation are provided, which show a fractional sensitivity of 
about 10−3 for subtle neutrino eigenstate searches and can distinguish from 
the beta-spectrum discrepancies, such as minute shape and energy nonlinear-
ities. 
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1. Introduction 

We start by summarizing the physics of neutrino-mass searches. Since the neu-
trino was conceptually proposed by Pauli in 1930 and given its name by Fermi, 
followed by his development of the beta decay theory in 1933-1934 [1] [2] [3] 
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studies on this elusive neutral particle have never ceased. Whether or not neu-
trino bears a rest mass involves the extension of the Standard Model, the com-
position of Dark Matter in the Universe, and the asymmetry between matter and 
antimatter. According to the theory of neutrinos, mass eigenstates mix to result 
in the flavor eigenstates, the latter bear masses close to zero [4] [5]. In addition, a 
massive sterile neutrino has been sought [5] [6]. In this work, we will abbreviate 
neutrino “eigenstate” any measurable neutrino, which can have zero or positive 
mass, without referring to a specific generation mechanism. 

One of the approaches to the neutrino mass searches has been studying an 
endpoint region of a beta-particle spectrum [7]. The Mainz and Troitsk experi-
ments for 3H beta decay yielded the upper limits of electron antineutrino mass at 
2.3 eV [8] and 2.05 eV [9], respectively, while the KATRIN experiment is ex-
pected to have a sensitivity down to 0.2 eV [10] [11]. 

In beta ( β − ) decay, β-particle (electron) and electron antineutrino, eν  (he-
reinafter referred to as neutrino) are emitted in the weak-interaction process of 
neutron decay inside the nucleus en p β ν+ −→ + + . The emitted β-particle ki-
netic-energy spectrum is a continuous function, owing to the energy sharing 
between the beta particle and the neutrino. Possible neutrino mass M in the beta 
spectrum is included in the factor ( )2 2Q T M− − , where Q is the nuclear-recoil 
corrected Q-value of beta decay and T is the emitted electron kinetic energy. The 
maximum beta energy (called the endpoint energy) is equal to Q or Q M− , 
when the neutrino mass is zero or positive, respectively. In principle, there can 
be several mixed neutrino eigenstates. The details of the theoretical beta spectra 
are described in Section 2. 

The emitted beta spectrum is convoluted with the instrumental response to 
yield the observed beta spectrum. The existing methods of identification of the 
neutrino mass in beta decay, whether close to or away from the endpoint energy, 
employ two approaches: 1) convolution of the theoretical beta spectrum with the 
normalized instrumental response function and comparison of the convolution 
with the observed spectrum, and 2) deconvolution of the observed spectrum and 
comparison with the theoretical spectrum [6]-[11]. Statistical measures, such as 

2χ  minimization or Bayesian likelihood, are used for the above-mentioned 
comparisons. Statistical measures can be non-specific i.e., there may be several 
factors other than neutrino mass, which affect them. 

In order to advance beyond the difficulties and uncertainties associated with 
the statistical measures used for neutrino mass detection in beta decay of the ex-
isting methods, we aimed in this work at developing a novel mathematical 
theory based on transformational properties, rather than statistical measures. In 
Section 3, we derive a transformed Fredholm equation of the first kind, which 
includes both theoretical beta spectrum and instrumental response function, and 
show that the solution to it is a superposition of Heaviside step-functions with 
an abscissa of ( )2Q T− , one for each possible neutrino mass eigenstate. The 
neutrino mass can then be identified by the abscissa value at the raise of the step 
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function, whereas its eigenstate contribution is shown to be proportional to the 
ordinate increment past the step. In Section 4, we outline a possible solution to 
the transformed Fredholm equation using series expansion and linear algebra. 

If method 2) of deconvoluting the beta spectrum first is employed, before 
comparison with the theory, then the transformed Fredholm equation from Sec-
tion 3 is shown to reduce to the Abel integral equation in Section 5, also known 
as the Abel transformation. The Abel integral equation, which is a special case of 
the Volterra integral equation of the first kind, has a known integral solution. 
We prove as a Lemma in Section 5 that, if the function undergoing Abel trans-
formation has a form proportional to the beta spectrum, then the solution to the 
Abel equation is a Heaviside step-function. In Section 6, we provide numerical 
examples of solutions of the Abel equation, when the beta spectrum contains 
several neutrino-mass eigenstates. We also describe how the Abel solution be-
haves in the presence of small experimental discrepancies, which can influence 
neutrino mass detection, such as beta shape correction or small nonlinearities in 
the measured beta-energy scale. We summarize the advantages and limitations 
of the proposed new mathematical method of elucidating neutrino mass in beta 
decay in Section 7, as well as propose future directions of this work. 

2. Beta-Decay Theory 

There exist established formalisms for calculating allowed and superallowed beta 
spectra, which differ in some approaches [7] [12] [13]. For the purpose of this 
work, we define the beta-energy spectrum as follows: 

( ) ( )( ) ( )2 2 ,N T AD T Q T Q T M= − − −�               (1) 

where ( ) d dN T N T=�  represents a distribution of beta particles with energies 
between and T and dT T+ , factor A contains the quantum-transition matrix 
element and an overall normalization, whereas Q, T and M have been defined in 
Section 1. 

Factor ( )D T  in Equation (1) is defined as follows: 

( ) ,n r rD T pEF F C S=                       (2) 

where p is relativistic momentum, E is total (relativistic) energy, nF  is a 
non-relativistic Fermi function, rF  is a relativistic correction to the Fermi 
function [14] and rC  is a radiative correction [12]. S  is a shape correction 
[12], which corrects for small smooth discrepancies between the theoretical and 
observed spectra at low energies, and is assumed to be a parabola with an argu-
ment Q T− . Also, a screening correction [15] [16] is applied to ( )D T . Addi-
tional term involving the progeny’s final excitation states in low beta-energy 
emitters [7] as well as a possible Lorentz-invariance violation correction [17] 
have not been included. 

The examples of beta spectra from 3H decay ( )18590.29 eVQ = , calculated 
according to Equations ((1), (2)) are plotted in Figure 1. The physical constants 
and nuclear parameters for the calculations were taken from [18]. It is seen that  
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Figure 1. Beta particle spectra from 3H decay. Black spectrum: zero neutrino mass; red 
spectrum: equal superposition of two neutrino eigenstates with the masses of 3000 and 
5000 eV. 

 
if neutrino mass is non-zero, the endpoint beta energy lies below Q, while 
another neutrino mass eigenstate is evidenced by the non-differentiable point in 
the spectrum. If neutrino mass is close to zero and any other eigenstate has a 
very small contribution, these effects are difficult to discern from the beta spec-
trum. 

3. Transformed Fredholm Integral Equation 

The observed beta spectrum usually differs from the emitted (theoretical) beta 
spectrum, given by Equations ((1), (2)), owing to an instrumental response. Let 
T represent the emitted kinetic energy, while T ′  the observed kinetic energy. 
The emitted and observed beta spectra are then ( )N T�  and ( )N T ′� , respec-
tively. They are coupled with each other by the response function ( ),R T T′  
through the integral: 

( ) ( ) ( )
0

, d .
Q M

N T R T T N T T
−

′ ′= ∫� �                   (3) 

Equation (3) is a Fredholm integral equation of the first kind [19], where 
( ),R T T′  is a kernel. The variable T ′  can extend past Q M−  due to the ab-

ovementioned instrumental response. The response function is measured sepa-
rately. Since the emission and detection of beta particles are stochastic processes, 
the normalized ( ),R T T′  and ( )N T�  can be considered statistical probability 
density functions (pdf). The integral in Equation (3) is then a mixture of distri-
butions [20]. If, additionally, ( ),R T T′  is a function of T T′ −  e.g., a Gaussian, 
then Equation (3) is a mathematical convolution [21]. The process of solving 
Equation (3) for ( )N T�  is referred to as deconvolution and is discussed in Sec-
tion 4. The terms: convolution and deconvolution will be used here even if Equ-
ation (3) is not a strictly mathematical convolution. 
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If there existed k neutrino-mass eigenstates with the masses kM  and norma-
lization factors kA , then combining Equations ((1), (3)) and summing over the 
eigenstates would result in the observed spectrum: 

( ) ( ) ( )( ) ( ) 2
0

2, d .kQ M
k k

k
N T A R T T D T Q T Q T M T

−
′ ′= − − −∫∑�       (4) 

Subsequently, we introduce a mass variable m and utilize the Dirac δ-function 
[22]. Then Equation (4) transforms to: 

( ) ( ) ( ) ( )( ) ( )
0 0

2 2d d , .
Q Q m

k k
k

N T A m m M T R T T D T Q T Q T mδ
−

′ ′= − − − −∫ ∫∑�  (5) 

New variables are defined: ( )2x Q T ′= −  and ( )2z Q T= − . By substitution, 
Equation (5) results in 

( ) ( ) ( ) ( )
2

2
2

0
1 2 d d , .

Q Q
k k m

k
N x A m m M zR x z D z z mδ= − −∫ ∫∑�       (6) 

By using a property of the δ-function [22], 

( ) ( )2 22 ,k km M m m Mδ δ− = −                    (7) 

and substituting of the variables, 2y m= , 2a Q= , and 2
k ka M= , one obtains 

from Equation (6): 

( ) ( ) ( ) ( )
0

1 2 d d , .
a

k k
a

k
y

N x A y y a zR x z D z z yδ= − −∫ ∫∑�         (8) 

Changing the order of integration in Equation (8), yields 

( ) ( ) ( ) ( )
0 0

1 2 d , d .
a z

k k
k

N x A zR x z D z y y a z yδ= − −∫ ∫∑�         (9) 

The inner integral in Equation (9) can be integrated by parts. We also use the 
fact that the integral of the δ-function on positive argument is the Heaviside step 
function: 

( ) ( )
0,

d
1,k

k
k a

k

y a
y a y H y

y a
δ

≤
− = =  >

∫               (10) 

The result is given below: 

( ) ( ) ( ) ( )
0 0

1 d ,4 d .
k

a
k a

z

k
N x A zR x z D z yH y z y= −∑ ∫ ∫�         (11) 

The solution to Equation (11) is the function 

( ) ( ),
kk a

k
f y A H y= ∑

                    
 (12) 

which is a superposition of the step functions for all possible neutrino mass ei-
genstates, scaled by their appropriate contributions. By inserting Equation (12) 
into Equation (11) one obtains 

( ) ( ) ( ) ( )
0 0

1 4 d , d .
a z

N x zR x z D z y f y z y= −∫ ∫�
          

 (13) 

By reversing the order of integration in Equation (13) back to that of Equation 
(8) and by dividing both sides by ( )D x  i.e., the theoretical factor D given by 
Eq. (2) evaluated at the observed energy T ′ , one obtains 
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( )
( ) ( ) ( )

0
, d , with

aN x
K x y f y y

D x
= ∫

�

               
 (14a) 

( ) ( ) ( )
( )

,
1, d4 .

a

y

R x z D z
K x y z

D xz y
=

−∫                 (14b) 

Equation (14a) is the transformed Fredholm equation. The kernel is given by 
Equation (14b). It links the observed beta spectrum with the emitted (theoretical) 
spectrum and with the instrumental response. In the solution function given by 
Equation (12), one does not need to assume the presence of neutrino mass or its 
eigenstates. They may be revealed by the abscissa and ordinate of any step func-
tions present in the solution, to within the accuracy of the solution, which is de-
pendent on the detailed shape of the observed spectrum. Therefore, the pro-
posed approach interrogates the shape of the observed spectrum using the 
transformation derived, in contrast to the methods based on statistical measures. 

4. Solution of the Fredholm Integral Equation 

There exist established algorithms for solving Fredholm equations given by Eq-
uations (3) and (14a) [23] [24]. If Equation (3) was a mathematical convolution, 
then it could also be solved by the Laplace transform method, taking the advan-
tage of the theorem that the Laplace transform of the convolution is a product of 
Laplace transforms of the convoluted functions [25]. 

However, Equation (14a) is not a convolution and we derive below a matrix 
method to solve it. We take into consideration the fact that the observed T ′  va-
riable is discrete and incremented at equally spaced intervals (channels) owing to 
the instrumental digitizing of the spectrum (modern instrumentation can have 

152n =  or more channels). Consequently, variable x is also digitized. Consider a 
general integral equation of the first kind, of which Equations ((3), (14a)) are the 
examples: 

( ) ( ) ( )  , d .x K x y y yφ ψ= ∫                   
 (15) 

If x is discrete, one has: 

( ) ( ) ( ), d , 1, , .i ix K x y y y i nφ ψ= =∫ �               (16) 

Let us assume a trial solution in a form of a series: 

( ) ( )1 , .n
j jjy K x y cψ

=
= ∑                    

 (17) 

By inserting the trial solution into Equation (16), one obtains a set of linear 
equations: 

( ) 1 , 1, , ,n
i ij jjx K c i nφ

=
= =∑ �                 (18a) 

with 

( ) ( ), , d .ij i jK K x y K x y y= ∫                   (18b) 

In matrix notation, Equation (18a) reads: 
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,= KCΦ                           (19) 

where Φ  and C  are vectors and K  is a symmetric square matrix. By solving 
the linear equations for C , the solution (17), continuous in y variable (i.e., in 
( )2Q T− ) can, in principle, be obtained. 

5. Abel Integral Equation and Its Solution 

In Section 3, the general treatment for elucidating of neutrino mass in beta decay 
was presented, leading to the transformed Fredholm Equation (14a). This equa-
tion can be considerably simplified if the observed beta spectrum was first de-
convoluted using Equation (3). The limit to the transformed Fredholm Equation 
(14a) can then be obtained by using the fact that, if the spectrum was deconvo-
luted, then for the purpose of Equation (14a), 

( ) ( ) ( ) ( ) ( ) ( ), 2 ,R T T T T Q T Q T z x z z xδ δ δ δ′ ′ ′= − = − − − = − = −    (20) 

where we used a version of Equation (7). Then, starting from Equation (13), 

( ) ( ) ( ) ( )

( ) ( )
0 0

0

d 2 d

d .

1 4

1 2

a z

x

N x z z x zD z y f y z y

D x x f y x y y

δ= − −

= −

∫ ∫

∫

�

       

 (21) 

By defining a new function: 

( ) ( )
( )

,
N x

g x
D x x

=
�

                       (22) 

we obtain from Equation (21) 

( ) ( )
0

1 d .
2

x f y
g x y

x y
=

−∫                      (23) 

Equation (23) is a special case of the Abel transformation, also called the Abel 
integral equation [19] [26], which is a special case of the Volterra integral equa-
tion of the first kind. The general form of the Abel equation is 

( ) ( ) ( )
0

 d , 0 1,
x

g x x y f y yα α−= − < <∫               (24) 

with a solution of 

( ) ( ) ( )1

0

sin π d d .
π d

x

f x x y g y y
x

αα −= −∫                (25) 

Therefore, the solution of Equation (23) for 1 2α =  is 

( ) ( )
0

2 d d .
π d

x g y
f x y

x x y
=

−∫                     (26) 

By using Equation (1) for a single neutrino-mass eigenstate M, and setting 
( )2y Q T= −  as well as 2b M= , we obtain from Equation (22) 

( ) .g y A y b= −                        (27) 

Lemma. If ( )g y  is given by Equation (27), then ( ) ( )bf x AH x= , where H 
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is the Heaviside step function given by Equation (10). 
Proof. By inserting Equation (27) to Equation (26), we obtain 

( )
0,

2 d d , .
π d

x

b

y b

f x y bA y x y b
x x y

≤


= − > > −
∫

             

 (28) 

( )
( )( )

( )by parts 1 d πd ,
2 2

x x

b b

y b yy x b x b
x y y b x y

−
→ − = −

− − −
∫ ∫       (29) 

since the last integral is equal to π [27]. Whence, 

( ) ( )

( )

0,
d ,
d

,b

x b
f x

A x b A x b
x

AH x

≤
= 

− = >
=

                (30) 

which proves the Lemma. 
If there are k neutrino mass eigenstates kM , 2

k ka M= , with relative contri-
butions kA , then the function g from Equation (27) can be written as: 

( ) ,k
k

kg y A y a= −∑                      (31) 

and, according to the Lemma, generalization of the solution to the Abel equation 
is given by Equation (12). 

6. Numerical Examples 

In this Section, several numerical calculations are provided for the solution to the 
Abel equation. In a possible application of this method to the observed spectrum, 
function g in Equation (22) is defined as the ratio of the deconvoluted beta-energy 
spectrum ( )N T� , obtained from Equation (3), to calculated ( )( )D T Q T−  us-
ing Equation (2). Since we do not know a priori how many neutrino eigenstates 
there are and what are their corresponding masses, one needs to perform a nu-
merical solution on function g using Equation (26). However, for the purpose of 
this calculation, we assumed one or more eigenstate components in a simulated 
spectrum ( )N T� , calculated according to Equation (1), without deconvolution. 
For numerical integration and differentiation of the test function using Equation 
(26), we applied the established high-performance algorithms [23] with an addi-
tional adaptive optimization of the differential step. 

In the first calculation, we demonstrate how the step-function solution f de-
pends on the bin size of abscissa x, for mass-less neutrino. Several numerical so-
lutions for zero neutrino-mass 3H decay are plotted in Figure 2 as functions of 
the ( )2x Q T= −  argument for different bin sizes. The leftmost points at 0x =  
could not be plotted on a logarithmic scale, so they were placed on the abscissa 
at the smallest bin studied, 0.01x =  eV2. Therefore, the raise of the step for a 
given bin size can be taken as an upper limit of the square of neutrino mass. 

In the second calculation, we selected beta decay of 35S (Q = 167.319 keV [18])  
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Figure 2. Numerical solutions of the Abel equation for zero neutrino mass 3H decay (ex-
cept curve (a)), plotted for various abscissa bin sizes in eV2 indicated in the legend. Ze-
ro-abscissa values are arbitrarily placed at 0.01 eV2. The relative contributions are scaled 
to 1.0, 0.9, 0.8, and 0.7 to enable better visualization. Curve (a) depicts the effect of energy 
nonlinearity for 0.01 eV2 bin. 

 
Table 1. Assumed and identified parameters for 3-neutrino mass eigenstate test of the 
numerical solution of the Abel equation for searching of neutrino mass in beta decay of 
35S. 

Parameter 
Eigenstate 

1 2 3 

Assumed neutrino mass (keV) 

Assumed contribution 

Identified contribution 

Relative uncertainty 

0 

1 

1.000E+00 

2.2E−11 

10 

0.001 

9.997E−04 

1.2E−02 

15 

0.001 

1.000E−03 

1.7E−02 

 
and assumed 3 neutrino eigenstates with the masses of 0, 10, and 15 keV as well 
as their contributions (normalization factors) of 1, 0.001, and 0.001, respectively, 
as given in Table 1. 

Function g was calculated using Equation (31), and subjected to the numerical 
solution using Equation (26). The solution f is plotted as a function of argument 
( )2Q T−  in Figure 3 (black curve), emphasizing the vicinity of 1 on the ordi-
nate axis. It is seen that the three step functions are easily identified. The raise of 
the step functions on the abscissa of the numerical solution correctly identify 
squares of the neutrino masses at 0, 100, and 225 keV, respectively. The identi-
fied contributions given in Table 1 agree with the assumed contributions. While 
the method is in principle non-statistical, the relative uncertainties of the identi-
fied contributions are caused by rounding errors in the numerical solution. The 
relative uncertainty is negligible for the principal eigenstate and between 1% - 
2% for the minor eigenstates. 
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When comparing experimental and theoretical beta spectra, small smooth 
discrepancies were observed, which increase with decreasing kinetic energy [12]. 
They can be corrected for with a shape-correction factor S, which is assumed to 
be a parabola with an argument Q T− . An example of such a shape correction 
function is given in Figure 4 (black curve) for 35S decay. This correction factor is 
equal to one at a maximum kinetic energy, and it is assumed 1.01 at zero energy. 
In the following, we analyzed the effect of this correction on the Abel solution. 
We assumed that ( )N T�  had a deviation from a theoretical shape according to 
the shape correction function in Figure 4, included in ( )D T  in Equation (2), 
and did not correct for it when dividing by ( )D T  in Equation (22). We also  

 

 
Figure 3. Numerical solution of the Abel equation for searching of neutrino mass in the 
beta decay of 35S. Black curve: three neutrino components with masses of 0, 10, and 15 
keV. Red curve: two neutrino components with masses 0 and 20 keV with a shape correc-
tion function. 

 

 
Figure 4. Shape correction and energy nonlinearity plotted as functions of energy for 35S 
decay. 
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assumed two neutrino mass eigenstates at 0 (contribution of 1) and 20 keV 
(contribution of 0.001). Subsequent application of the Abel solution resulted in a 
red curve in Figure 3. It is seen that not correcting for shape results in the flat 
portions of the step function sloping upward, however, both the neutrino masses 
and their contributions were unaffected. 

Besides the shape correction, which affects the intensity of the beta spectrum 
(in the ordinate direction), we study the effect of energy-scale nonlinearities (in 
the abscissa direction) on the Abel solution and neutrino-mass detection for 35S 
decay. Such minute nonlinearities may result from improper energy calibration 
or from nonlinear response of a digital signal processor. As a next example, we 
assumed the energy nonlinearity with a functional dependence as depicted in 
Figure 4 (red curve). We calculated ( )N T�  with the energy nonlinearities in-
cluded and did not correct for them in ( )D T  for Equation (21). We study the 
effects close to the maximum kinetic energy (endpoint energy, at zero neutrino 
mass) and at lower kinetic energies (for a possible presence of heavy neutrino) 
separately. 

For any nonlinearity that is positive at the end-point energy and is not cor-
rected for, the deconvoluted energy would exceed Q and thus would be identi-
fied as an experimental problem. Therefore, we assumed nonlinearity equal to 
−0.1 keV at the maximum kinetic energy (see Figure 4). Such nonlinearity 
would result in the observed energy being shifted down by 0.1 keV (~0.06%) be-
low Q. This might simulate the presence of neutrino mass. The Abel solution for 
this case is depicted in Figure 5. Without nonlinearities present (black curve), 
the upper limit on the square of neutrino mass would be placed at 0.001 keV2. 
The above-mentioned nonlinearity appear to simulate a square of the neutrino 
mass at 0.01 keV2 (red curve), however, it can be rejected because the step is not 
sharp but is a rather slowly raising function instead. 

 

 
Figure 5. Step function solutions for zero neutrino mass 35S decay, with (red curve) and 
without (black curve) energy nonlinearities. 
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Figure 6. Step function solutions for 35S decay consisting of two neutrino components 
having mases of 0 and 100 keV, with (red curve) and without (black curve) energy nonli-
nearities. 

 
The effect of the energy nonlinearity from Figure 4 on the wider range of the 

Abel solution is depicted in Figure 6 (red curve), where we have also added a 
100-keV neutrino component at 0.001 contribution. It is seen that the curve re-
sembles an exact step at 104 eV2, as it does in the case without nonlinearities de-
picted by the black curve. Therefore the heavy neutrino is identified at 100 keV 
and only its mass is shifted by the 0.1 keV nonlinearity (see Figure 4). 

We have also assessed the effect of energy nonlinearities on neutrino mass in 
3H decay. We assumed a functional nonlinearity similar to the one in Figure 4, 
except the energy shift at the endpoint was assumed to be –1 eV (~0.005%) be-
low Q. The Abel solution resulted in curve (a) in Figure 2. It appears to simulate 
a square of the neutrino mass at 1 eV2, however, it can be rejected following the 
arguments for 35S in Figure 5. 

7. Summary and Conclusions 

We have developed a math-theoretical model for searches of neutrino mass in 
beta-decay energy spectra. The transformed Fredholm equation was derived 
(Equation (14a) with the kernel given by Equation (14b)), linking the observed 
beta spectrum with the theoretical one as well as with the instrumental response. 
The solution to this equation is a superposition of the Heaviside step-functions 
representing the possible neutrino mass eigenstates, as well as their contribu-
tions (Equation (12)). In this way, the shape of beta spectrum is tested for non- 
differentiable points, which could be associated with the neutrino mass. The step 
function is a very characteristic signature of such non-differentiabilities. A poss-
ible solution to the Fredholm equation was derived based on a series expansion 
(Equation (17)) and solution of the matrix equation (Equation (19)), taking ad-
vantage of the fact that the observed spectrum is discrete. Numerical verification 
of the transformed Fredholm equation deserves further investigation. 
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A limiting version of the transformed Fredholm equation was also derived. It 
is based upon prior normal deconvolution of the observed spectrum from the 
instrumental response using Equation (3). The factors dependent on neutrino 
mass (Equation (31)) are then subjected to the Abel transformation (Abel 
integral equation, Equation (23)), the solution to which (Equation (26)) is prov-
en in the Lemma to be a superposition of the step functions. The Abel transfor-
mation was numerically tested on theoretically calculated beta spectra. It was 
shown that this method is sensitive down to a fractional contribution of about 
10−3 for heavy neutrinos and can set upper limits on the neutrino mass of 0.1 eV 
for 3H and 0.03 keV for 35S. 

We have also numerically tested two possible experimental deviations in beta 
spectra: shape correction and energy nonlinearities. It was shown that a smooth, 
moderate shape correction up to 1% at low energy changes the slope of the step 
function but does not affect the numerical recognition of either zero-mass or 
heavy neutrino. Likewise, heavy neutrino detection is not affected by energy 
nonlinearity. However, the energy nonlinearity can simulate an artificial neutri-
no mass close to the endpoint of beta spectrum. Nevertheless, if the Abel method 
is applied to such a case, the step function is not sharp and, therefore, the hypo-
thesis of neutrino mass can be rejected. If not neutrino mass, the proposed me-
thod can indicate some discrepancies between observed and calculated beta 
spectra. 

The novelty of the model presented in this work is that the solutions with the 
step functions are very sensitive and characteristic signatures of neutrino mass, 
and they can in many cases distinguish between experimental discrepancies and 
true neutrino-mass signatures. Therefore, this model may have some advantages 
over the statistical methods, which may be less specific and less sensitive for 
neutrino mass detection in beta decay. 

The math-theoretical methods derived here are inherently non-statistical, 
however they have possible limitations arising from numerical errors, theoretical 
considerations, and statistical fluctuations present in the observed spectra. They 
are discussed below in that order. 

It was shown that at the 10−3 level, the Abel-transformation method resulted 
in relative fluctuations below 2%, originating from rounding errors in the calcu-
lations. Such rounding errors could be possibly lowered, resulting in a higher 
sensitivity, if higher-precision arithmetic were used in the numerical calcula-
tions. 

The theory of beta decay with all possible corrections, from which theoretical 
beta spectra are derived, can be given only to a finite accuracy, which is a limit-
ing factor for neutrino mass searches in beta decay, regardless of the method 
used [12]. 

Finally, the statistical fluctuations in the observed beta spectra limit the sensi-
tivity of neutrino-mass searches in beta decay by any method, including this one. 
Owing to the fact that the observed spectrum is discrete, there are Poisson fluc-
tuations in each spectrum channel. The variation coefficient of the Poisson fluc-
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tuations is given by 1 N , where N is the number of observed counts in the 
channel [21]. As seen in Figure 1, the fluctuations are expected to be lower at 
the low beta energy region and higher close to the endpoint. The fluctuations 
present in the observed spectrum will translate into the fluctuations of any solu-
tion derived from the spectrum. It is, therefore, imperative to have the observed 
statistics in the data as high as possible. One way to alleviate problems with low 
statistics could be fitting of a polynomial to such data and applying integral equ-
ations to the polynomial fit instead of original data points. 
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