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Abstract

We formulate a matrix Riemann-Hilbert problem to the initial value problem
for the two-component system proposed by Matsuno. By solving the asso-
ciated Riemann-Hilbert problem, we can get the soliton solutions of the
two-component system. One and two soliton solutions are investigated in
detail.

Keywords

Riemann-Hilbert Problem, Two-Component Short Pulse Equation,
Soliton Solutions

1. Introduction

The SP (short pulse) equation
(1

where u=u(x,t) represents the magnitude of the electric field and subscripts
x and ¢ appended to u denote partial differentiation, has been proposed as a
model equation describing the propagation of ultrashort optical pulses in non-
linear media [1]. A numerical analysis shows that as the pulse length shortens,
the SP equation becomes a better approximation to the solution of the Maxwell
equation when compared with the prediction of the NLS equation [2]. Then
Matsuno proposed a novel multi-component generalization of the SP equa-
tion [3], which generalizes the SP equation describing the propagation of ul-
tra-short pulses in optical fibers. Here we consider the multi-component sys-
tem [3].
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1 n
u, , =u, +— uixZuf ,i=12,--.n (2)
> 2 5 = p i
with reduced two-component short pulse system if letting 2 = 2, which given by

u, :u+%[(u2 +v2)ux]

X

. 3)
N Y S
v, =Vv+ 2[(14 +v )vx]x
where u =u, and v=u,.Then we make the transformation
(u,v)—> (u erv , uz—vj and this system can be written as
i
1
u,=u+ E(uvux ).
(4)

v o),

vxt

We named Equation (4) as 2SPE (two-component system). Obviously if we
put u =v, then 2SPE reduces to the SP equation. The integrability, soliton solu-
tions, and other features of Equation (1) and Equation (4) common to the com-
pletely integrable PDEs (partial differential equations) have been studied from
various points of view [3] [4] [5] [6]. And the semi-discretization of a mul-
ti-component SP equation was studied in [7], super extensions in [8].

Here, in this paper, we consider the initial value problem for the 2SPE (4)
with the initial value data u(x,t =0)=u,(x)e S(R), v(x,t=0)=v,(x)eS(R)
and § (R) denotes the Schwartz space. The present paper is devoted to analyze
the IVP (initial value problem) for the Equation (4) by Riemann-Hilbert ap-
proach.

Organization of the paper: In Section 2, we formulate the associated Rie-
mann-Hilbert problem by performing the similar spectral analysis to the Equa-
tion (4) as [9]. In Section 3, to obtain the soliton solutions of the Equation (4),
we need analyze the residue conditions of the Riemann-Hilbert problem. Espe-

cially, the one and two soliton solutions are investigated in detail.

2. Riemann-Hilbert Problem for the Two-Component System

The 2SPE admits a WKI (Wadati-Konno-Ichikawa)-type Lax pair as follow:

. =X (xt,k)p
{ (x.2.k) -
o, =T(x,t,k)p
where
. . 0
X =ikX,, Tziuv)(l+L0'3—i ! o, (6)
2 4ik 210 v
with

Xl = » O3 = ,» O, = . . (7)
- 0 -1 i 0
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2.1. Spectral Analysis for k=0

Introducing

(ikx+4]a;
p(x,t,k)=p’ (x,0,k)et ** (8)
Then we can get the Lax pair of g’

H, —ik [0'3,y0] =V

9)
0 1 0,0 (
H, _EI:O-3’# :| Vz H
where
ik ik u
0 u EMV ?uvux —E
v =ik v = ) (10)
v. 0 ik v ik
—uw,_ +—  ——uy
2 2 2
We define two eigenfunctions of ,u‘? (x,t,k)
w (xtk) =1+ [ CR0 (y k)™ O 4l (.1, k) dy )
) (x,0,k) = .[ et "”VO (».t.k)e k(- y)‘“,u2 (v.t,k)dy
Proposition 1: The functions { ,u;)}lz are bounded and analytic as:
,ulo e(Dz,Dl),,ug e(Dl,Dz). (12)

where [,uf] €(D,,D,) means that the 1-th column [yf l and 2-th column

[ ,u? ]2 of ,u;.) are bounded and analyticin D, and D,, respectively,
={keC|lmk >0} and D, ={k eC[mk <0}.

Proposition 2: The functions y;) (x,t,k) have the expansions as:

0 iu
ﬂ.?(x’f:k)zﬂ(iv Ojk+0(k2), ke — 0. (13)

2.2. Spectral Analysis for k = o

Define
. m-1
m+1 v
t T (14)
M N N
u

x

(xtk)=x—[" (1/ )dx'—#, (15)

where m=1+uv,.

Introduce the following transformation:
p(x,t,k)=G(x,1)e" " u(x,t,k)e " e gle(xak)es (16)

where
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ho= [ e e (0 a7

= afm (Jm +1)

h :ij(x’,t)dx', (18)

R 4\%(\%“)

o UV, — ULV

h=h +h = o () dx. 19
. T J._w4\/z(\/a+1)(x t) (19)

We find the Lax pair equation of ,u(x,t,k)

— ik LU=V
e ikp. [0, 4] =Viu (20)
H, —ikp, [0y, 1] =V
where
0 _(\/E-'—l)mx + uXvXX
4my, 2
V=~ v, 21)
(\/; + l)mx v, 0
4mu, Zﬂux
IR 0 S P B O B
> 4ik\Im >4k Jm\v, 0
(\/E—l)uxv+(\/z+l)uvx
0 _
L - (22)
+
4m (\/Z + l)uxv + (\/; —1)uvx
0
uX
O _(‘\/E-’-l)mx + uxvxx
4my, 2\/va
(‘\/Z + 1) mx uXxVX 0
4mu, 2\/Zux
Then, define two eigenfunctions of H; (x,t,k):
= I +J‘_Xw eik[p(x,t,k)—p(y,t,k)]a’_;I/l (y’ ZL’k)eik[p(x,t,k)—p(y,t,k)]cr; 1 (y’ t,k)dy
400 i (23)
1y = I_J‘X ezk[p(x,t,k)—p(y,t,k)}a}I/l (y,t’k)ezk[p(x,t,k)—p(y,t,k)]0'3 14y (y,t,k)dy
Proposition 3: The functions { U, }12 are bounded and analytic as:
,ule(Dz,Dl), #ze(D1sD2)~ (24)
Proposition 4: The functions 4, (x,t,k) also satisfies
H, (x,t,k)z[+0(%], k — 0. (25)

Proposition 5: (Symmetry property) In this paper, we consider the function
u (x, t) and v(x,t) are real-value functions. Then, the eigenfunctions H; (x, t, k)
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satisfy the following symmetry property:

H; (_k) =1, (k) (26)

2.3. Spectral Function s(k)
The eigenfunctions (x,t,k) and L, (x,t,k) are related

w (x,,k) = g, (x,0,k) elelxaklos o (k) e rlrtk)es (27)

where the matrix s(k) is independent of (x,t) and has the form

o(6) o0
©-l o) -

The function a(k) and d(k) canbe computed by

{a(k) =det([u], [r],)

d(k) = det([luZ ]1 [/ul ]2)

where det(X) means the determinate of matrix X.

(29)

Hence, form the analytic properties of the functions x;, we know that d (k)

and a(k) areanalyticin D, and D,, respectively.
2.4. The Relation between ; (x,t,k) and u)(x,t,k)

Proposition 6: The functions U; (x,t,k) and ,u? (x,t,k) are related

{/’ll (X, t,k) e oG] (x,t)ylo (x, t’k)e—ikd,q ’

. (30)
w (x,t,k) =G (x,t) g (x, 8,k ) "7 e,
where d_ :.[;( m(x',t) —l)dx’ and d, :j:w( m(x',t)—l)dx'.

Proposition 7: The spectral functions a(k) and d(k) have the following

asymptotic behaviors as k — 0:

2
a(k)=e™" (1 ~ikd —%k2 +0(K° )J

P (31)
d(k)=¢" (Hikd—?kz +0(k° ))
where d=d_+d, .
2.5. The Riemann-Hilbert Problem
Let us define
], Lk iep
lLlZ 1 d(k) b 1
M (x,t,k)= ] (32)
/ul 1
, keD
(a(k) [:uz ]zJ 2
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Making coordinate transformation
y(x,z‘):x—Jjw(,lm(x',t)—l)dx':x—d+ (x,t) (33)

and defining
M(y,t,k):M(x(y,t),t,k) (34)

Then, M ( y,t,k) satisfies the Riemann-Hilbert problem as follows:

M, (y.t.k)=M_(y,t,k)J (y.t.k), keR, (35)
M (y,t,k)=1, k> o, (36)
where
i L o3 ~il . o3
J(y,t,k)zek[ky ) Ty (K)e o (37)

To obtain the solution u(x,t) and v(x,t) of the Equation (4), we need the
asymptotic behavior of M (x,t,k) as k —0,

M (x.t,k)=e "G (x,t,k){uk[fl* ’Z j+0(k2)}eh"3 (38)

v -

Hence, we can get the solution of Equation (4)
u(x,t) =u(y(x,t),t)
v(x,t) = v(y(x,t),t)

(39)

where
M (2,6,0)" 8 (yit )| —1
ik
M (y,t,0 M vtk
e”-u(y,t):lim[ ( ) . ( )}
k—0 lk

|41 (3,0,0)" 1 (yut.ke) |

ik

x(y,t)=y+}(iir(}

12 (40)

2h T
e v(n.t) —}(13(1)

3. Solitons

In order to get the soliton solutions of 2SPE, we assume that d (k) has N sim-

~ N
ple zero points {kj}lfjl e D, and a(k) has N simple zero points {kj} € D,.
J= ~ J=
Then, there exist some constant C y and C ; such that,

t
2

wf]
Res, . [M]z(y,t,k):Cje / [Ml(y’t’kf)

(41)
5 5 72ilgj[y74k7] B -
Res, [M]1 (r.t.k)=Ce i [M]Z(y,t,kj)
Thus, according to the above formula we have
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3.1. One Soliton Solution

/ (42)

Take N =1 into Equation (42), evaluating at k =4k, and k=l€1 of the 1-th

and 2-th column of M ( y,t,k) , then solving the algebra system for
M, (y.t.k),M,, (y,t,lgl) and M, (y,t,k),M,, (y,t,/;l), we can get

By the symmetry condition, & =ib.
and C, =2ibe”™>", C, =2ibe™ "> ; b,

- 1
M, (y,t,k1)=
2i/q[y7—2] " 21k1[}7 2]
1- Ce U Ge !
]gl _kl k] _];1
. t
ol
1
. - k, —k,
Mlz(y?t?kl): . 11 l R .
2iky [yfm] _ —2ik [yfﬁj
- Ce " Ce !
k, —k, k —k
17 17N (43)
e t
ol
1
- k —k,
MZI(y’tﬂkl): tl : N
Zikl[yf—z] ~ 721'/{1{}'7 122]
- Ce o Ce i
];1 _kl k1 _]gl
- ~ 1
k) e
Ztkl[y——z] _ —21k1{y—ﬁ]
- Ce ! € !
121 _kl kl _];1

And for simplify choosing &, =—ib

cand y, are real constants; denoting

t
p=k|y——|=ip,,and ¢, =by+ ! , then we get one soliton solution
4k 4b
u(x,t)= u(y(x,t),t) = lez’”z}’ -
b cosh(2y, —2¢,)

v(x,t):v(y(x,t),t):%

672i572h 1 (44)
cosh(2y, —2¢,)

x= y+%[tanh(2y0 —2¢2)+1]
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3.2. Two-Soliton Solutions
Take N =2 into Equation (42), we can get
=) =i
s () = 25—, (k) + 25—
1

Zikl[y—Miz] 2iky [y—ﬁ}
Ce Y- C,e SRS
et S V4 e

(45)

1) k, =k,

Letting k, =a+bi, k,=—a+bi and choosing k =a-bi, k,=-a-bi

and denoting ¢, =a(y—-z) and @, =b(y+z), where z= , repeat-

t
4 (a2 +b, )
ing the process of one soliton solution, then we can get the two soliton solutions.

. . 2bi i
Parameter selection case one: Choosing C, = ﬂ~(a +bi)-e¥,
a

¢ =22 (ambiye, ¢, =2 (a—bi)-e¥, =22 (a+bi)-e*, where ¢
a a a

is an arbitrary constant, we have

() =y + ab ( bsin4gp, —asinh 4¢, ZJ

a* +b?

siesan  —2ab {a cosh 2¢, cos 2¢, +bsinh 2¢, sin 2¢, ] (46)

a’ cosh®2¢, +b*sin’ 2¢,  a

)=
u(y ) ¢ a2+b2

(2ic2n)  —2ab ( acosh2@, cos2¢, +bsinh 2¢, sin 2¢, )
2 2
a +b

a’ cosh® 2¢, +b”sin’ 2¢,

v(y,t)=e

a’ cosh® 2¢, +b” sin” 2¢,
Remark 8: The Result (46) is coincide with the breather-solution of SP equation as
[6], since the parameter chosen satisfies the symmetry condition of SP equation as [9].

. . 2b ;
Parameter selection case two: Choosing C, ==—-(a+bi)-¢**,
a

G :&-(a—bi)-e’m , C, =%-(a—bi)-e2"" , G, :%~(a+bi)~e’2” , then, we
a a a
can get
()= y— ab bsin4g, +asinh4p, 2
PO 20 s 2¢p, —b*sin’ 29, a
wsan  —2ab [ asinh 2@, cos2¢, +bcosh2¢, sin2
u(y,l‘)262 2 ] f’z. d 4 > 2(/’2 4 (47)
a +b a”sinh” 2¢, —b” sin” 2¢,
v( t) _ o (ies2) —2ab | asinh2¢, cos2¢@, +bcosh2¢, sin2¢,
. a’ +b a’ sinh® 2, — b’ sin’ 2¢
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2) Two pure image zeros
If choosing k, =ib,, k =—ib,, k, =ib,, k, =—ib,, where b >0, b, >0,

t ~ t
and denoting @, =by+—, @, =b,y+——, then letting the parameter be

4b, 4b,
Cl = 2ib1e2i° > C~11 = 2ibleizic > Cz = 2ib2€2it > C~Vz = Zibzefzic , we have

x(y.t)=y+(b +b, )4 2
ble

4

et _4bb, +e b, +ePp re T M

E 3

(b +b,) (b +b,)

2

.«a+gf—m—gfe“ﬂ@f+M+@f@*%+€%)

u(pr) = 40,)" 2

i 10, (48)
o 2020 EZI ) ZZ ;2 (e’z‘/’3 b, +e>%b, ) + (e’z‘%b2 +e’7p, )
l+ 2

(B +8,) =(B=b,) e )2 (b +b,) (€7 +e27)

2

—(2ic+ 2
v(r.t)=e" Zh)-(b1+b2)4ﬁ
—203-203 (bl _bz )2

(b +b2)2

((bl +b, )2 - (bl -b, )2 Ot )2 + (bl +b, )4 (eizw3 +e )2

e (e’z‘”b] +e’2‘7’3b2)+(e’2"’3b2 +e’2¢3b])

Remark 9: To our knowledge, the result (47) and result (48) are new.

4. Conclusion

In this article, we consider IVP for the 2SPE with initial value in Schwartz space.
We begin with the Lax pair of 2SPE and then we formulate a Riemann-Hilbert
problem in new coordinate (y; #), which implies that we can get the parametric
form of soliton solutions in terms of the solution of the associated Rie-
mann-Hilbert problem. After that, we can get the soliton solution by analyzing
the residue condition of the Riemann-Hilbert problem. Last we obtain the soli-
ton solutions, in particular the new breather-solution (47) and two soliton solu-

tion (48) were obtained.
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