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Abstract

The main aim of this paper is to define and study of a new Horn’s matrix function, say, the p and g-Horn’s
matrix function of two complex variables. The radius of regularity on this function is given when the positive

integers p and q are greater than one, an integral representation of P{3(AA,B,B’;C;zw) is obtained, recur-

rence relations are established. Finally, we obtain a higher order partial differential equation satisfied by the

p and g-Horn’s matrix function.
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1. Introduction

Many special functions encountered in mathematical
physics, theoretical physics, engineering and probability
theory are special cases of hypergeometric functions [1].
Hypergeometric series in one and more variables occur
naturally in a wide variety of problems in applied mathe-
matics, statistics [2-4], and operations research and so on
[5]. In [6,7], the hypergeometric matrix function has
been introduced as a matrix power series and an integral
representation. Moreover, Jodar and Cortés introduced,
studied the hypergeometric matrix function F(A,B;C;z),
the hypergeometric matrix differential equation in [8]
and the explicit closed form general solution of it has
been given in [9]. Upadhyaya and Dhami have earlier
studied the generalized Horn’s functions of matrix argu-
ments with real positive definite matrices as arguments
[10] and this function H, also [11], while the author
has earlier studied the Horn’s matrix function H, of two
complex variables under differential operators [7]. In [12,
13], extension to the matrix function framework of the
classical families of p-Kummer’s matrix functions and p
and g-Appell matrix functions have been proposed.

Our purpose here is to introduce and study an exten-
sion of the matrix functions of two variables. This paper
is organized as follows: Section 2 contains the definition
of the p and g-Horn’s matrix function of two variables,
its radius of regularity and integral relation of the p and
g-Horn’s matrix function is given. Some matrix recu-
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rrence relations are established in Section 3. Finally, the
effect of differential operator on this function is investi-
gated and p and g-Horn’s matrix partial differential equ-
ation are obtained in Section 4.

Throughout this paper D, will denote the complex
plane cut along the negative real axis. The spectrum of a
matrix A in C" denoted by o(A) is the set of its
eigenvalues of A.If A isa matrix in C"V" | its two-
norm denoted by ||A|| , Is defined by [14]

L
"A”z = leig’ ||x||2

where for a vector y in CV, ||y||2 = (yT y)% is the Eu-

clidean norm of'y.

If f(z) and g(z) are holomorphic functions of complex
variables z, defined in an open set Q of the complex
plane, and if A and B are a matrix in C"" with
o(A)cQ and o(B)cQ also and if AB=BA, then
from the properties of the matrix functional calculus [15],
it follows that

f(A)g(B)=g(B)f(A). (I.D

The reciprocal gamma function denoted by

| B . . .
()= T is an entire function of the complex vari-
z

ablez . Then for any matrix A in CMV the image of
I''(z) acting on A denoted by T''(A) is a welldefined
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matrix. Furthermore, if

A+nl is invertible for every

(1.2)

non negative integer n

where | is the identity matrix in C"™ | then T'(A) is
invertible, its inverse coincides with T''(A) and one
gets [8]

A, = A(A+1)---(A+(n=DI)

1 (1.3)
=T(A+nDI ' (A;n>1;(A), = 1.
Jodar and Cortés have proved in [16], that
T(A) = lim(n—-D![(A),]"'n*. (1.4)

Let P and Q be two positive stable matrices in C"*N .
The gamma matrix function I'(P) and the beta matrix
function B(P,Q) have been defined in [16], as follows

L(P)=[ e't™dt™! =e® P (1.5)
and

B(P.Q) = [ t""(1-1)°"dt. (1.6)

Let P and Q be commuting matrices in C"*™ such
that the matrices P+nl, Q+nl and P+Q-+nl are

invertible for every integer n > 0. Then according to [8],

2. Definition of p and g-Horn’s Matrix
Function

Suppose that p and g are positive integers. The p and g-
Horn’s matrix function "F{3(A,A’,B,B";C;z,w) of two
complex variables is written in the form

"H3(A A',B,B’;C;z,w)

5 Ana(A)y (B (B[O o D
(pm)!(gn)!

where U (z,w)=V, ,z2"W" and

U (M), (B),(BYIC), ]
(pm) (e’

For simplicity, we can write the P HZ(A,A',B,B';C;Z,W)
in the form pHg , pHg(A+ I,A',B,B’;C;z,w) in the

form "HiA$),-, "HiAA,B,B;C+Il;z,w)in the

form PHC 1).

We begin the study of this function by calculating its
radius of regularity R of such function for this purpose
we recall relation (1.3.10) of [17,18] and keeping in

m+n

we have mind that 1<o,, <2 2 . We define the radius of re-
B(P,Q)=F(P)F(Q)[F(P+Q)T. (1.7) gularity of the function " (A, A',B,B’;C;z,w) as
— =limsup "an Jm“‘
(AN (A (B),(BY,[C), T )
= limsup
m+n—>o0 (pm)!(an)!o, ,
o M- A CoamtA), n°(B), e n"®(B),
_lﬁslp( (m-n-1)! (m=n-bim-=n) m—1)! (m-Dim™ (n 1)'( hin (n-1)! Ty Y
nB'M(m_l)!ch m+n (—Jmm
(m—1)! (pm)!i(an)!oy, ,
limsup [NC)F (AT (A (B (B)J (m-n-D!(n-Di(n- me*“
minseo || (M—n)"m*~Cn®® (pm)!(am!oy, ,
(m+njr2n(m+n]2 .
,m,n=0;
where o, = m n
1, m,n=0.

Using Stirling formula and take m = un is a positive integer, then
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A'-C B+B)

E<11msup“ [n(u—D]*(un)

n—oo

= limsup

nw)[(ﬂn n-1)!(n-1)!(n- 1)!Jn<y+n>
(pun)!(gn)!

1

o\l —1\2(=D \n(u+1)
2n(un—n—1) (”nnl) 2n(n- 1)(nlj
e €

(yn—n—l)!(n—l)!(n—l)!jnﬂjﬂ)

) hmsup( (pum)(gn)!

n—oo n—o

2

—Nn—1)u 1)u+
= limsup ( q+:# i (n pj;u =0.
+1

n “g#t (pa)ue

n—oo

Summarizing, the following result has been established.

As a conclusion, we get the following result.

Theorem 2.1. Let A, A', B, B’ and C be ma-
trices in C"™ such that C+ml are invertible for all
integer m>0. Then, the p and g-Horn’s matrix function
is an entire function in the case that, at least, one of the
integers p and q are greater than one.

If p=qg=1, then the function is convergence in
|Zj<r, [w|<s and (r+1)s=1 in[5,19].

Integral form of the p and g-Horn Matrix

Function

Suppose that A" and C are matrices in the space
C™™  of the square complex matrices, such that

AC=CA’, A’, Cand C-A’ are positive stable ma-
trices.
By (1.3), (1.4) and (1.7) one gets
(AL [©)n]”
=T (A'+ml)I(C)r' (A (C+ml) (22)

=T (A (C-A) r(c:)j A ()M gt
Substituting from (2.1) and (2.2), we see that
"H3(A.A',B,B';C;2,w)
& (Wya(B)(BY,

m,n=0 (pm)'(qn)'

T(AY'(C - AYI(C) j;t’*'*““*”' (1-1)A" dt
=I'"'(AY'(C-A)(C)

1 A AP ,

.jotA '(1_t)° el 3F8(A,B,B;-;zt,w) dt.
Therefore, the following result has been established.
Theorem 2.2. Let A, A", B, B’ and C be ma-

trices in C"*" . Then the p and g-Horn’s matrix function

of two complex variables satisfies the following integral
form
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pun qn
1/2np,un( pémj A/2mgn (qen)

"H3(A A',B,B’;C;z,w)
=T'(AY'(C-A"T(C) (2.3)
LA C-A-I P no.
.J‘OtA '(1_t) 3Fg(A,B,B ;- Zt,w) dt

where

, (A (B), (B
P4 A,B,B;-; t, m-n n
sFol 2w m;o (pm)!(gn)! oW

3. Matrix Recurrence Relations

Some recurrence relation are carried out on the p and
g-Horn’s matrix function. In this connection the following
contiguous functions relations follow, directly by increas-
ing or decreasing one in original relation

"Ha(AD)
- § A DA BLEUICT
(pm)!(gn)!
= 3 AN (A+m-n)l)
(AED (W, BLENICLT 5
(pm)!(gn)!
= Y A ARm-m,,, W)
and
= (A=), (A),(B),(B),[(C),]"
PITIA—) = m-n m n n m
H:o0=2, (pm)Lan)!
= 3 (A= DA+ M1 Uy )
(3.2)
Similarly
AM
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PHIA+H = i AT (A+mIU, (2,W),

m,n=0

©

"HIA =Y (A= 1)[(A+(m-1)1)] U, @zw),

m,n=0

"HiB+) = i B (B+nl)U,,,(z,w),

m,n=0

©

"HiE)= T (B-D[(B+(n-1)1)] Uy, 2w,

m,n=0

pH;(B’+) = i B (B'+nl)U,,,(z,w),

m,n=0

PHYB-) =Y (B'-1 (B +(n-1)1)] Uy, (2w,

m,n=0

PHYCH =3 C (C+mI)U,, ,(z.w),

m,n=0

©

"HIC) = Y (C-N)[(C+(m-1)1)] U, 2w

m,n=0

(3.3)

4. The p and g-Horn’s Matrix Function
under the Differential Operator

Consider the differential operator D on the p and g-Horn’s
matrix function of two complex variables, defined in [7,
17] as

{d1+d2, m,n>1

1, otherwise

where d, = Zi and d, = Wi. This operator has the
0z ow

property Dz"w" =(m+n)z"w".
For the p and ¢ -Horn’s matrix function the fol-
lowing relations hold

(DI +A) pHg

= i (A+(m+n)l)

m,n=0

(A (A)y (B), (BN, [(C) ] /"
(pm)!(gn)!

=A"Hi(A+)+2d, "H,

4.1

Wn

and
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(d,1+A) "HS
U (A (A5 (B)y (BN [(C)n ] i
= A +ml
PG (pm)!(an)! o
=APHIA+).
(4.2)
By the same way, we have
(d,1+B)"Hi=B "H3(B+),
(d,1+B)’Hi=B""H,(B'+), (4.3)
(d1+C-1)"Hi=(C-1)"HXC~).
From (4.1), (4.2) and (4.3), we get
(A-A'-B)"Hi=A"H3(A+)+2d,"H]
-AHYA'+H)-BH;(B+),
(4.4)

(A-A'-B)"H;= A"H3(A+)+2d, "H;
-A"H;(A'+)-B'"H;(B"+).
From (4.1), (4.3) and (4.4), we have
(A-B-C)"Hi=A"Hi(A+)+2d,"H?
—~(C-1)’H3(C-H+"H;-B H,(B+),
(A-B'-C)"Hi=A"H,(A+)+2d, H;
~(C=1)"H3(C-)+"H; -8 H3(B").

4.5)
Also from (4.2), (4.3) and (4.4), we see that

(A'-C)'H;

=A"H3(A+)~(C-1)"H3(C-)-"H3,

(B-B')"H3=B"H3(B+)-B'"Hi(B"+),

(AN-C-B+B')'HS

=A"H(A+) =(C - 1) H3(C-)
_PHg— BpHg(B+) + B”’HZ(B'+).

(4.6)
Now, we append this section by introducing the dif-

ferential operator d, = zi and d, = Wi to the en-
oz ow

tire functions in successive manner as follows;
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ot 2 efo-2fo-2) o]

p
_ ¥ m( . l}(m_gjm(m_p—lj(wmn<A')m(B)n(B'>n[<C>m]* o

m=1,n=0 p p p (pm)!(gn)!
.S n(n_ 1 j(“‘ g]m(n_q—llwmn(A')m(B)n<B'>n[(C)m]“ S
m_o-1 q q q (pm)!(gn)!
Ly mp(pm IJ(pm 2} (pm—p+1j<A>m_n<A'>m<B>n<B'>n[<C>m]‘ S
P’ mimeo p p p (pm)!(gn)!
Loy nq[qn—lj{qn—zjm[qn—q+1j<A>mn<A'>m<B>n(B')n[<C)m]‘l -
q% o q q q (pm)!(gn)!
_ i (A)m_n(A’)m(B)n(B')n[(C)m]’l W i i (A (A (B), (B, [(C), ] 2"
PP mim=o (pm—p)!(gn)! q“ 0= (pm)!(gn—q)!
:L i (A)m—nﬂ(A')mﬂ(B)n(B,)n[(c)mﬂ]_] Zm+1Wn+ 1 Z (A)m n— I(A) (B)n+1(B )n+l[(c) ]_ m n+1
P” o (pm)!(gn)! Q% mamo (pm)!(gn)!
i -1 (A)m—n+1(A’)mﬂ(B)n(B')n[(c)mﬂ]_l ZmWn

— L N (At M=n+DIA +mD[(C+m
Z A+ m=n+ DO+ mD[(C-+mb)] (pm)1(gn)!

> [(A+(m=n-1)1)]" (B+nI)(B +nl)

q
q m,n=0

(A)m7n+1(A,)m(B)n“'l(B’)n*'] [(C)m ]71 7™W"
(pm)!(an)!

z i - ' ’ w - ' '
-] ""Hi(A+,A+,B,B ;C+;z,w)+q—q[(A—l)} 'BB/PH (A A", B+, B'+:C; 2, W)

(ot nfo-tfo-3h o]

z ' - ’ ’ w - ’ ’
-] ""HiA+,A+,B,B ;C+;z,w)+q—q[(A—l)] 'BB/PHY(A- A", B+,B'+:C; 2, W)

We can written the pHg(A, A',B,B’;C;z,w), then

(el oo comefo- oo oo

~ (CH+(M=1)1)(A)y o (A)(B), (B, [(C),, T o L i (n—1)(A)m_n(A')m(B)n(B')n[(C)m]"Z "
P® o (pm—p)!(am)! 9% miomnar (pm)!(an-q)!

2z w w
—d,(d,1 + A")+— (DI + A)d,| - —
(A1 A+ (D1 A o

(DI +A)(d,1 +A) -

; 2 (1 +A)d '} PH.

Il
1

Therefore, the following result has been established. in C™" . Then the °H;(A A,B,B’;C;z,w)is a solu-
Theorem 4.1. Let A, A", B, B’ and C be matrices tion for the following differential equation

Copyright © 2011 SciRes. AM
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{dl (dl —%j(d, —%)...[dl —pT_lJ(d,l +C—I)+d2[d2 —%)[dz —éj...(dQ —qT_lj(dzl 1)

—ﬁ(DI + A1+ A')+%d2(d1| + A‘)—qﬂq(ol + A, I +qﬂq(d1| + A)dzl} PH 4.7)

=0.
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