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Abstract 
Ground Penetration Radar is a controlled source geophysical method which 
uses high frequency electromagnetic waves to study shallow layers. Resolu-
tion of this method depends on difference of electrical properties between 
target and surrounding electrical medium, target geometry and used band-
width. The wavelet transform is used extensively in signal analysis and noise 
attenuation. In addition, wavelet domain allows local precise descriptions of 
signal behavior. The Fourier coefficient represents a component for all time 
and therefore local events must be described by the phase characteristic which 
can be abolished or strengthened over a large period of time. Finally basis of 
Auto Regression (AR) is the fitting of an appropriate model on data, which in 
practice results in more information from data process. Estimation of the pa-
rameters of the regression model (AR) is very important. In order to obtain a 
higher-resolution spectral estimation than other models, recursive operator is 
a suitable tool. Generally, it is much easier to work with an Auto Regression 
model. Results shows that the TQWT in soft thresholding mode can attenuate 
random noise far better than TQWT in hard thresholding mode and Autore-
gressive-FX method. 
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1. Introduction 

Ground Penetration Radar is a controlled source geophysical method which uses 
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high frequency electromagnetic waves to study shallow layers. The use of this 
method began in 1956 and has been developed since the 1970s. GPR system has 
been commercially available since the 1980s, and has been widely used since the 
mid-decade. In the GPR method, high frequency electromagnetic waves (from 
12.5 to 2300 MHz) transmit to the earth and these waves are reflected by objects 
or clear boundaries between the underground layers. Electromagnetic reflections 
are created by the difference in electrical conductivity (dielectric constant) be-
tween materials that pass electromagnetic waves. GPR electromagnetic waves 
pass through materials that are electrically conductive, but they are heavily ab-
sorbed when passing through high-conductivity materials such as clays, organic 
acid soils and saturated saline water [1]. 

Resolution of GPR varies from depth of centimeters to a several meters with 
maximum depth of about 100 meters. Resolution of this method depends on 
difference of electrical properties between target and surrounding electrical me-
dium, target geometry and used bandwidth. Resolution of this method can be 
high which can recognized fine layers in near surface structures and objects in 
the ground can be well [2]. 

The wavelet transform is used extensively in signal analysis and noise attenua-
tion. In addition, wavelet domain allows local precise descriptions of signal be-
havior. The Fourier coefficient represents a component for all time and therefore 
local events must be described by the phase characteristic which can be ab-
olished or strengthened over a large period of time. Wavelet expansion coeffi-
cients represents a component which is local itself and convenient for interpre-
tation. The wavelet Transform may allow separation of signal components which 
overlaps in time and frequency. Wavelets can be designed to fit the unique ap-
plications because they are also customizable and tunable and there is not just 
one wavelet. They are ideal for adaptive devices that adjust themselves to the 
signal. Finally, production of wavelets and the calculation of discrete wavelet 
transforms (DWT) are well suited to digital computing [3].  

Finally basis of Auto Regression (AR) is the fitting of an appropriate model on 
data, which in practice results in more information from data process. Estima-
tion of the parameters of the regression model (AR) is very important. Also use 
of a suitable model is very important in approximation of random signals spec-
trum, especially in parametric methods. Parametric methods of power spectrum 
estimation are based on selecting the appropriate model for the data [4].  

In order to obtain a higher-resolution spectral estimation than other models, 
recursive operator is a suitable tool. Generally, it is much easier to work with an 
Auto Regression model. For this reason, suitable techniques are presented for 
estimating of model parameters [5]. 

2. Problem Definition and Research Method 

GPR signal in receiver X(t) can be formulated as equation (usually infected with 
noises):  
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( ) ( ) ( ) ( )X t S t y n tω= ∗ +                    (1) 

In Equation (1), the earth reflection series s(t) is matched in the wavelet due to 
the spring w(t) and the noise n(t) is added to the data, which must be corrected. 
Since it is impossible to eliminate all of the noise, then the denoising is done 
with the aim of obtaining X(t) is as close as possible to s(t) [6]. 

In this research, noise attenuation method of auto regressive on wavelet and 
f-x domains was used to reduce the noise of the GPR signal. First AR operator 
and definition of f-x domain will illustrate and explained using some examples. 
Ultimately, all methods will be applied to real and synthetic data of the GPR 
signal and their results will be compared together. 

3. Wavelet Transform with Tunable Quality Factor (TQWT) 

In this section, a wavelet transform method is described where it easily uses the 
Q factor and wavelet transform process can be controlled using the periodic na-
ture of the signal. The function of scale has real values. The Q factor is a ratio of 
the frequency center to signal bandwidth. Most wavelet transform methods have 
a poor ability to control behavior of signal frequencies. The TQWT method is 
completely discrete, it has a complete signal reconstruction ability and mean re-
dundancy. 

3.1. Low Pass Scale 

The low-frequency region of the signal is analyzed using the low-pass function. 
If the scale parameter α  is chosen for the low-pass scale function part, the 
sampling changes to sfα , where sf  is sampling frequency of the input signal. 
If 0 1α< ≤ , then the function of the low-pass signal changes: 

( ) ( ) , πY Xω αω ω= ≤                      (2) 

And if, low pass function changes a signal like: 

( )
( ) , π

0, π π

X
Y

αω ω α
ω

α ω

 ≤= 
< <

                (3) 

Note that low-pass function keeps signal behavior around a zero frequency 
according to Figure 1. 

3.2. High Pass Scale 

The high-frequency signal region is analyzed by high-frequency scale function. If 
the scale parameter β  is selected for the high-pass section function, the sam-
pling is changed to sfβ , which sf  is sampling frequency of input signal. If 
0 1β< ≤ , the of the high-pass scale function will change such a signal: 

( )
( )( )
( )( )
1 π , 0 π

1 π , π π

X
Y

X

βω β ω
ω

βω β ω

 + − < <= 
− − − < <

           (4) 

And if 1 β≤ , high pass scale function changes like: 
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Figure 1. Low-pass function keeps signal behavior around the 
zero frequency [7]. (a) Low-pass scaling block diagram; (b) 
low-pass scaling with α < 1; (c) low-pass scaling with α > 1. 

 

( )
( )

( )( ) ( )
( )( ) ( )
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1 π , π 1 1 π

Y X

X

ω β
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βω β ω β

 < −
= + − − < <


− − − < < −

           (5) 

The high-pass scale function keeps signal around the Nyquist frequency ac-
cording to Figure 2. 

Using a frequent dual channel filter, the TQWT method is applied. This 
transform is represented by three steps in Figure 3. 
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Using a frequent dual channel filter, the TQWT method is applied. This 
transform is represented by three steps in Figure 3 [7]. 

( ) ( )j nω  denotes the subband in jth step and it’s generated for j = 1 high-pass 
subband in the first stage. The subband bandwidth of the jth frequency is 

1 .j
sfα −  Also sf  is a sampling frequency of input data. 

Figure 4 shows frequency response ( )1
jH ω  for 1 j J≤ ≤  for 4 values of 

( ),β α . By changing these variables, spectral frequency decomposition can be 
controlled.  
 

 
Figure 2. The high-pass scale function keeps signal around the 
nyquist frequency [7]. (a) High-pass scaling block diagram; (b) 
High-pass scaling with β < 1; (c) High-pass scaling with β > 1. 
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Figure 3. Using a frequent dual channel filter, the TQWT method is ap-
plied. This transform is represented by three steps in figure [7]. 

 

 
Figure 4. Frequency response H_1^j (ω) for 1 ≤ j ≤ J for 4 values of (β, α) [7]. 

3.3. Redundancy 

The dual-channel filter in Figure 3 with the factor α β+  is redundant. If this 
filter is repeated in the low-pass, the Redundancy factor is: 

1
r β

α
=

−
                             (6) 

This relation is deduced from the fact that a sampling frequency under the jth 
subband for 1j ≥  is determined by 1j

sfβα − , So sampling frequency is equiva-
lent to (6). 

3.4. Central Frequency 

The frequency response in the jth step ( )1
jH ω  is nonzero at the distance 

( )1 2,ω ω . 
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( ) 1 1
1 21 π, π,j jω β α ω α− −= − =                  (7) 

The central frequency of the jth stage is approximately average ( )1 2,ω ω . 

( )0 1 2
1 2 π
2 2

j βω ω ω α
α
−

= + =                   (8) 

This relationship is based on the sampling frequency: 

2
4

j
c sf fβα

α
−

=                         (9) 

The bandwidth of the frequency response under the jth subband is about a 
half of bandwidths of all frequencies that have a non-zero response.  

( ) 1
1 2

1 1 π
2 2

jBW ω ω βα −= − =                 (10) 

If the Q factor is expressed on the basis of ,α β  

2: cQ
BW
ω β

β
−

= =                        (11) 

Note that Q is not dependent on the stage. A Transform method is Q constant 
and depends only on filter bank parameters. To determine α and β, they are re-
written based on r and Q: 

2 , 1
1Q r

ββ α= = −
+

                       (12) 

A Q factor must be greater or equal to 1, and if Q is equal to 1, wavelet trans-
form builds a second derivative of a Gaussian function. If Q is greater than one 
that means signal has a higher periodic behavior and the Oversampling rate 
should be greater than one. If r is near 1, the transition region is very thin and 
the time response of the wavelet is not properly determined. If 1r ≈  makes a 
sinc wavelet, then it’s therefore optimal to 3r ≥ . 

When the signal is staircase oscillatory, a number of vanishing moments of 
the wavelet transform is considered. This is not the case when we talk about a 
periodic signal like a GPR signal. The number of steps for this type of wavelet 
transform is limited by the length of the signal. After a certain stage, the signal 
will be very short to become two samples. If countless steps are taken, conver-
sion of these steps is difficult to reconstruct. J must be determined so that the 
wavelet does not extend beyond the length of the category. 

max

log
8
1log

N

J

β

α

  
    =
  
    

                     (13) 

4. F-X Domain 

Generally, a signal in time domain is seen as a mixed signal in frequency domain. 
From frequency domain, information such as phase spectrum, the amplitude 
spectrum and energy spectrum can be obtained. The energy distribution is also 
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extracted in terms of frequency [8]. 

( ) 21 d
2π

E x f f
−∞

+∞
= ∫                       (14) 

Given that in time domain, input data or signal, for each frequency is shown 
as sinusoidal functions in the location, the separation of the signal from the 
noise is made easier. Therefore, we will investigate predictive filter in this do-
main. This method assumes that a class is composed of delayed impacts in ac-
cordance with Figure 5. 

The f-x prediction filter method is very useful method to attenuate random 
noise. 1. Selesnick, (I.W. Sparse signal representations using the tunable Q-factor 
wavelet transform. in Wavelets and Sparsity XIV. 2011. International Society for 
Optics and Photonics.) 

In this method, it is assumed that trends are linear. The seismic section can be 
divided into smaller windows in cases where trends are not linear, in order to sa-
tisfy the assumption given that trends in that window are linear. Assume that a 
seismic ( ),U x t  is a sequence of impacts with different domains defined as [9]: 

( ) ( )( )
1

,
N

j j
j

U x t A t g xδ
=

= −∑                   (15) 

where t is the time, x is the lateral position, iA  is the jth impact, and ( )jg x  is 
the delay function that represents the event’s form. Considering Fourier trans-
form of (15) we have: 

( ) ( )

1
, e j

N
i g x

j
j

U x A ωω −

=

= ∑                     (16) 

Since exponential functions can be written as a set of sinuses and cosines, in 
(16), the hypothesized seismic traces are converted into a set of sinuses and co-
sines as functions of ω and x. Since the f-x filter only predicts linear data, events 
should be linear to x. So the function ( )jg x  must be linear [9]. Given the li-
nearity of ( ) ( ),jg x U x ω⋅  in the frequency domain, (16) will be: 

( )
1

, e j
N

i b x
j

j
U x C ωω −

=

= ∑                     (17) 

 

 
Figure 5. A schematic diagram for delayed traces [9]. 

https://doi.org/10.4236/jsip.2019.101003


A. E. Bardar et al. 
 

 

DOI: 10.4236/jsip.2019.101003 27 Journal of Signal and Information Processing 
 

jC  is a conjugate constant, which depends on the source power and the ref-
lection coefficient, and jB  is the gradient of the linear event. (17) Shows that 
by linearization assuming, the function ( ),U x ω  is completely sinusoidally in x, 
which means that this function is predictable and predictable. Therefore, the 
signal is a complex exponential function in terms of x in the time-frequency 
domain and it will be predictable [10]. The Wiener filter is an optimal stable li-
near filter for noise-damaged images. The Wiener filter needs to assume that the 
signal and noise are secondarily stable. For this purpose, noises are considered 
frames with a mean zero. The procedure used in this method is to minimize the 
sum of squares of the difference between output signal and the actual output 
signal from the filter. The Wiener filter is incapable of reconstructing the fre-
quency components that are damaged by noise, and can only eliminate them. 
This filter is incapable of neutralizing the image of the image and has a low ve-
locity. To speed up this filter, we can use this filter to obtain a shock response, 
reversed the fast Fourier transform [11]. To speed up this filter, we can use in-
verse fast Fourier transform and obtain the impulse response. 

5. Autoregressive Vector 

Classical models of time series are divided into stationary and non-stationary 
sections. Autoregressive vector is part of classic static time series model that we 
will discuss in this article. One of the limitations of our models is that they im-
pose a one-way relationship whose predictor variables are influenced by pre-
dicted variables which this process must be reversed. However, in many cases, 
the reversal of this action must also be made where the variables affect each oth-
er. In this framework, all variables behave symmetrically [12]. In an Autoregres-
sive model, the variables are predicted using a linear combination of the pre-
vious values of the variables. The term Autoregressive represents a regression of 
the variable against itself [13]. The regression model is defined as follows: 

1 1t t p t p ty c a y a y ε− −= + + + +                 (18) 

where c is constant and tε  is a white noise with mean zero and the variables 
2
εσ  and ia  are the parameters of the model. In this case, ty  is called the p-th 

Autoregressive model with and is represented by AR (p). An Autoregressive 
structure is simple, useful, and easy to understand in a wide range of fields. The 
first-order Autoregressive is defined as follows [13]. 

1 1t t ty a y ε−= +                        (19) 

Assumptions: 
Firstly, the residue is expected to be zero  

, 0 with 1,2i tE iε  = =                     (20) 

And secondly, errors are not self-correlated.  

, , 0 withi t jE tτε ε τ  = ≠                   (21) 

Automatic regression models are considerably flexible in controlling a wide 
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range of different time series. Figure 6 shows main steps of Autoregressive vec-
tor.   

Autoregressive models do not allow us to explain on causal relationships. This 
is especially applies when Autoregressive models are merely generalized for the 
processing of unknown time series. While a causal interpretation requires a basic 
cost model. However Autoregression provides a proper interpretation of the va-
riables shown [5]. 

In order to increase the signal-to-noise ratio of a multi-point signal (S/N), 
firstly the Autoregression vector of the noisy data is estimated and shown as a 
ˆ

jA . Then, the forward estimated of denoised data is obtained by the following 
equation [14]. 

1

ˆˆ , 1, ,
M

f
k j k j

j
g A g k M N−

=

= = +∑                  (22) 

Similarly, the estimated inverse equation of de-noised data are obtained: 

*

1

ˆˆ , 1, ,
M

b
k j k j

j
g A g k M N M+

=

= = + −∑                (23) 

*ˆ
jA  represents the complex conjugate of Autoregressive vector operator. The 

final equation of the de-noised data are obtained by mean for forward and in-
verse estimates: 

ˆ ˆˆ
2

f b
t k k
k

g gg +
=                        (24) 

 

 
Figure 6. The AutoRegressive vector analysis algorithm [12]. 
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6. Applying Autoregressive Filter in f-x and Tunable Quality  
Wavelet Transform (TQWT) Domain on GPR Data 

Given that the purpose here is to reduce the random noise, in the first step a 
random noise should be added to the section which obtained from synthetic 
models. For synthetic data generation, the ground model is firstly considered 
with arbitrary coefficients. Given the similarity in wave propagation of electro-
magnetic waves and seismic waves, synthetic modeling of GPR and seismic data 
are analogous. Random noise is added to synthetic model and various de-noising 
methods which presented in this article apply to it. After denoising of synthetic 
model, real GPR data will be denoised. Here, by applying linear Autoregression 
modeling on wavelet and f-x domain, random noise in actual data will be wea-
kened. The procedure is applying these steps on real data in wavelet domain and 
then transforms the denoised data waveform from wavelet domain. After these 
steps and in next section, results will be compared and evaluated. 

6.1. Wavelet Function of Synthetic Data Generator  

The wavelet used to generate this synthetic data is the Ricker Wavelet. This 
wavelet is formulated as [15]: 

( ) ( ) ( )2 2 2 2 2 21 π exp πt f t f tω = − −                  (25) 

( )tω  is Ricker wavelet, t is time and f is the central frequency. Ricker wavelet 
is symmetric in time domain and has zero mean ( ( )d 0r τ τ

+∞

−∞
=∫ ). 

The generated synthetic signal is formulated as: 

( ) ( ) ( ) ( )X t S t t n tω= ∗ +                     (26) 

In (26), ( )S t  is a received that is correlated with the Ricker wavelet (as a 
synthetic wavelet source). ( )n t  is a random noise that is added to the input 
signal. 

6.2. Synthetic Model Denoising  
6.2.1. TQWT Denoising in Soft and Hard Thresholding 
To evaluate efficiency of mentioned denoising methods, an artificial section 
considered which is consisting of five layers and three pipes according to Figure 
7. Based on that section, GPR data will be generated as Figure 8-1 and random 
noise will be added according to Figure 8-2. The sampling frequency is 40 ns 
and the noise is the 40 dB white Gaussian noise. As shown in Figure 8-2, the 
path of the layers are somewhat lost particularly thinner layers. Also, the promi-
nence and boundary of layers and pipes throughout the noisy cross-section have 
been damaged.  

Figure 8-1 shows the GPR cross section in the time domain and in Figure 8-2 
represents the noisy section which is noise totally dominated and covers the 
tremors. Figure 8-3 shows the application of the TQWT filter with a soft thre-
sholding method and Figure 8-4 after the hard thresholding. Figure 8-4 shows 
that this filter causes a slight softness to be signaled but has not been successful 
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in noise attenuation and that noises are still present. 
The only difference between noisy and the hard thresholding denoised signals 

are in a deformation of the noises. The noises are somewhat diminished, but it 
shows another form of noise as an elongation along the axis of time. The boun-
daries of layers and hyperbolas are still confusing and effect of noise is not dimi-
nished. Figure 8-3 shows application of the TQWT with a soft thresholding 
method. This method has been far more successful in noise attenuation. A sig-
nificant part of the noise has been attenuated, and boundaries of layers and 
hyperbolas are significantly clear. 
 

 
Figure 7. Synthetic model which consists of five layers and two shapes of a 
pipe and a duct. Their conductivity and dielectric constant are shown. 

 

 

 
Figure 8. 1—Synthetic data, 2—Synthetic data with white noise, 3—Denoised data by soft 
thresholding TQWT, 4—Denoised data by Hard Thresholding TQWT, 5—Denoised by 
Autoregressive-FX. 
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High-frequency noises have been far more attenuated, but the elongation por-
tion is also included in this filter. But this elongation is significantly less than the 
hard thresholding. Therefore, signal is significantly improved by soft threshold-
ing method compared to the hard thresholding. 

6.2.2. Investigation of TQWT Power Spectrum Results in Soft and Hard  
Thresholds  

Figure 9 shows the results of the power spectrum. Soft thresholding power 
spectrum results (blue) at low to moderate frequencies are the most reduced in 
comparison to the power spectrum of input data (red). Its reduction compared 
to the hard thresholding (black) is remarkable. The gradient of soft thresholding 
power spectrum is also confirmed with the power spectrum of signal which in-
dicates the sustaining of signal in this method. The highest level of noise attenu-
ation in soft thresholding was also achieved with random noise at high frequen-
cies. But the point is that after a certain frequency (2.10 MHz) and at high fre-
quencies, noise gain is quite clear in both the soft and hard thresholding. 

6.2.3. Autoregressive-FX Filter 
To denoising in this section, Autoregressive filtering is applied in time domain. 
Figure 8-5 shows data after denoising by Autoregressive model in the time do-
main. After applying the Autoregressive filter is time domain, it is observed that 
the noise has been attenuated and the boundaries of the layers are specified 
much well. In Figure 8-5 after applying the Autoregressive filter, layer bounda-
ries are well detectable, softened, and the noise is well reduced. The point is 
elongation in direction of axis of time is happening due to the application of the 
filter. But in general, it has successfully restored the boundary between layers 
and parabolas. 

7. Real Data Denoising 

In this section the filtering on real data will be discussed. Firstly the Autoregres-
sive-FX filter and after that the TQWT in soft and hard thresholding ways. 

7.1. Autoregressive-FX Filter 

With respect to Figure 10, it can be concluded that the AR filter has been rela-
tively successful in noise attenuation. Layer and hyperbolic boundaries have 
been improved and some of the high-frequency noise has been eliminated. It can 
be said that the signal is denoised, but some of the high-frequency noise is still 
dominant. As we said before, our noise is random does not have a definite origin. 
In Figure 10, we see that the right side contains a lot of noise, especially at high 
arrivals and in most parts of the data it is completely polluted by noise which 
that part of the traces are covered. 

7.2. Real Data Noise Attenuation Using TQWT 

Figure 11-1 shows the main signal and the Figure 11-2 and Figure 11-3 shows 
TQWT filters applied to signal by soft and hard thresholding. In Figure 11-2 
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and Figure 11-3, it is observed that in hard thresholding method, significant 
amounts of high-frequency noise are observed. Also, the high-gain times are to-
tally infected with high-frequency noise and no noise reduction has been made. 
Also high arrivals in traces are completely infected with high-frequency noise 
and noise attenuation is not successful. But the soft thresholding completely at-
tenuated the noise and like raw synthetic data, the Background is completely out 
of high-frequency noise. Of course, part of the elongations marks still shows up, 
but the boundary of the deep layers is well recovered. Reflection of the hyperbo-
las and their interference points are clear and none of them have been removed. 
So that it can be said that the noise in this section of the signal is completely 
eliminated and the noise attenuation is very well done. This results are con-
firmed by power spectrum of real data by TQWT hard and soft thresholding in 
Figure 12. 
 

 
Figure 9. Power spectrum in terms of synthetic data frequency. 1—Red: raw input signal. 
2—Black: Input noisy data. 3—Blue: Denoised output data using soft thresholding TQWT. 
4—Green: Output data denoised by TQWT Hard Thresholding. 5—Dashed Brown: Denoised 
synthetic data using Autoregressive-FX filter. 

 

 
Figure 10. Real data noise attenuation using Autoregressive-FX. 
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Figure 11. 1—Real data, 2—Denoised by soft thresholding TQWT, 3—Denoised by Hard thre-
sholding TQWT. 

 

 
Figure 12. Power spectrum of real data. 1—Red: Raw signal, 2—Black: Denoised by soft thre-
sholding TQWT, 3—Denoised by Hard thresholding TQWT. 

8. Conclusions 

As stated several factors make the GPR data noisy such as mobile networks, 
power stations, etc. Considering that the increase of signal-to-noise ratio is the 
main objective of this research a method was chosen that to attenuating the 
noise and minimizes the damage to the signal. In this paper synthetic and real 
GPR data was denoised with the TQWT in two soft and hard thresholding and 
the Autoregressive-FX filter. According to the results, it can be concluded that 
the hard thresholding method is not suitable. Results do not show a good im-
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provement, especially at low frequencies, most of the noise remains, and the 
elongations which caused by hard threshold has also been added to these noises. 

However, in the soft thresholding problem of elongation noise is observed. 
But a significant part of the noise is attenuated and high-frequency noise has 
been eliminated. After the deactivation, the spikes from the real signal are well 
observed. Also boundaries of layers and hyperbolas are also returned. The Au-
toregressive-FX method has succeeded to denoising of high-frequency noise. 
The layer boundaries are also clear, but less denoising has been achieved com-
pared to the soft thresholding TQWT. Also layer boundaries are less detected 
and part of high-frequency noise is still seen.  

As a result, the wavelet domain provides a suitable frequency resolution for 
noise attenuation. But the type of filter applied to the wavelet transform also af-
fects denoising. The TQWT method has a good frequency resolution because it 
operates in the wavelet domain, but the results of hard thresholding indicate that 
the selection of the appropriate filter for de-noising substantially changes results. 
Finally, by comparing all of results, it can be said that the TQWT soft thre-
sholding method has been much more successful compared to the hard thre-
sholding and Autoregressive-FX in denoising and converting the actual signal. 
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