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Abstract 
The discovery of iron pnictides in 2006 added on the number of materials 
that have the potential to transmit electricity with close zero d.c resistance. 
High-temperature iron-based superconductors have been obtained through 
modification, mostly by doping, of the initially low-temperature iron-based 
superconductors. Unlike in LTSC, the energy gap in HTSC requires a theory, 
beyond spin fluctuations, to explain its anisotropy. This study seeks to estab-
lish a common ground between iron pnictides and cuprates towards explain-
ing high temperature superconductivity. There is a general consensus on the 
existence of Cooper pairs in these systems. In addition to this, experimental 
results have revealed the existence of electron-boson coupling in iron pnic-
tides. These results make it viable to study the interaction between an electron 
and a Cooper pair in iron based superconductors (IBSC). In this study, Bogo-
liubov-Valatini transformation has been used in determining the electronic 
specific heat based on the interaction between an electron and a Cooper pair 
in high-temperature IBSC, namely, Ca0.33Na0.6Fe2As2 and SmFeAsO0.8F0.2. We 
record the theoretical electronic specific heat of CeFeAsO0.84F0.16 and 
SmFeAsO0.8F0.2 as 164.3 mJ mol−1 K−2 and 101.6 mJ mol−1 K−2 respectively. 
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1. Introduction 

The discovery of superconductivity by Onnes (1911) raised many questions 
about the properties of superconducting materials. It was not until 1933, that the 
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interaction between superconductors and magnetic fields was brought to lime-
light [1]. The magnetic field around a superconductor is related to the current 
flowing (that results to electric field) through a superconductor by the London 
equations [2]. The penetration depth into a superconductor and the magnetic 
fields around the superconductor are related by the Ginzburg-Landau equations 
[3]. Later on, it was established that superconductivity is hinged on the pairing 
of electrons at the Fermi surface that lead to the formation of Cooper pairs [4]. 
The microscopic theory of superconductivity, based on s-wave pairing, laid the 
general foundation not only for conventional superconductivity, but also for 
unconventional superconductivity. However, in conventional superconductivity, 
the Cooper pair is not considered in isolation as is the case with conventional 
superconductivity [5] [6]. Furthermore, the challenge in high temperature su-
perconductivity (HTS) is that the manner in which the electron-boson interac-
tion occurs is still unknown [6]. Thus, the pairing mechanism in high tempera-
ture superconductors below the critical temperature remains unclear. 

Secondly, the size of the energy gap is an important factor that contributes 
towards the superconductivity of a material. In general, the critical temperature 
of a material increases with the energy gap of the material. In HTSC, many 
theoretical formulations linking the energy gap to the critical temperature of a 
HTSC material have been developed, but they do not replicate [7]. The energy 
gap in HTS is anisotropic along the Fermi surface, unlike that in low tempera-
ture superconductors (LTSC) [8]. 

HTSC was born with the discovery of a Lanthanum-based cuprate [9]. A yt-
trium-based cuprate was discovered a year later when lanthanum was replaced 
with yttrium LBCuO4 [10]. The highest critical temperature so far reached at 
ambient pressure 138 K in mercury based cuprate and 203 K in Sulphur hydride, 
under extremely high pressure of about 200 GPa [11] [12]. Cuprates have been 
the only known group of high temperature until 2006 when properties of super-
conductivity were observed in a lanthanum based iron pnictide [13]. Following 
this discovery, other iron-based superconductors have since been discovered. 
Iron-based conductors are generally classified as 11 (e.g. FeSe), 111 (e.g. LiFeAs), 
122 (e.g. LaFe2As1−xPx), and 1111 (e.g. BaFeAsO1−xFx) [14]. Figure 1 below shows 
the structure of 1111-type (a), 122-type (b), 1111 (c) and 11-type (d). 

Though FeAs appears in the 111-, 122- and 1111-type, the layers that separate 
FeAs vary from one type to another. However, Fe is blocked immediately from both 
sides in all the four categories. Of interest among the four families is the 1111-type, 
because the high critical temperatures for these materials have been recorded. 

Electron-phonon interactions and spin fluctuations are central to the me-
chanism of HTS [15]. It has been widely agreed upon that superconductivity in 
cuprates results from electron-phonon interactions that form Cooper pairs. On 
the other hand, superconductivity in IBSC has been attributed to spin fluctua-
tions. Spin fluctuations have sufficient strength to mediate the pairing interac-
tions in high-temperature superconductivity except that the estimates of the  
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Figure 1. Four families of iron-based superconductors, (a) 1111, (b) 122, (c) 111, (d) 11 
type. Adapted from Hyungju et al., 2011. 

 
strengths of this interaction differ widely [16]. HTS requires a theory, beyond 
spin fluctuations, to explain the anisotropic nature of its energy gap [17]. Spin 
fluctuations is a convenient way to describe multiple Coulomb interactions be-
tween fermions [18]. IBSCs can be treated as moderately interacting itinerant 
fermionic systems with multiple FS sheets and effective four-fermion intra-band 
and inter-band interactions in the band basis [18]. There is general consensus on 
the unconventional nature of the Cooper pairing state of IBSC in multiple ener-
gy gaps and Fermi surfaces [19]. Based on this understanding, the origin of 
Cooper pairing in IBSC (Ba1−xKxFe2As2) has been studied using Raman spec-
troscopy to probe the structure of the pairing interaction at play in the super-
conductor [20]. The spectra collected in the B1g symmetry channel reveal the ex-
istence of two collective modes which are indicative of the presence of two com-
peting pairing tendencies of 2 2x y

d
−

 symmetry type. Bohm et al. (2018) has con-
sidered this pairing as the basis of the formation of Cooper pairs in the IBSC. 
The d-wave gap in IBSCs has dependence on the electron Fermi surfaces and 
may be nodeless in some cases [21]. Other than electrons pairing, interactions 
between electrons and bosons have also been observed in IBSC. 

Experimental results based on time-resolved spectroscopy have also shown 
that there exists electron-boson coupling in IBSC [22] [23]. While cuprates show a 
single energy gap with one Fermi surface (FS), a point-contact Andreev-reflection 
study of Ba(Fe1−xCox)2As2 single crystals has revealed that there exists a multigap 
band and multiple Fermi surfaces with a four-fermion intraband and interband 
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interactions in the band basis [23]. Because the Fermi level of each parent com-
pound is primarily governed by the five 3d orbitals of iron ion, iron plays a pri-
mary role in the superconductivity [21]. In most cases, removing the magnetism 
is an experimental step needed for the emergence of superconductivity. For the 
1111 system, Tc appears when the antiferromagnetism (AFM) disappears but the 
AFM and superconductivity coexist in the 122 system [21]. The energy gaps in 
HTS are largely anisotropic. It has been argued that the electron correlation ef-
fect should be considered to explain the anisotropic transport properties of the 
general d/f valence electron system [17] [24]. Based on these findings, I argue 
that interaction between electrons and Cooper pairs may as well be used to study 
the thermodynamic properties of IBSC just as it has been the case for cuprates. 
The Cooper pair in this interaction plays the part of a boson [25]. The IBSC ma-
terials to be considered under this study are CeFeAsO0.84F0.16 with a Tc of 34 K 
while SmFeAsO0.8F0.2 with Tc = 54 K. 

High temperature superconductors have a vast applications some of which in-
clude maglev trains, Superconducting Quantum Interface Devices (SQUIDs) and 
Magnetic Resonance Imaging (MRI). Understanding the pairing mechanism in 
HTSC superconductors will enhance theoretical predictions, with precision, of the 
TC’s as well as other thermodynamic properties of high temperature superconduc-
tors [26]. This will open avenues to discoveries towards room-temperature super-
conductivity (RTS). Though the number of High temperature iron-based high 
temperature superconductors is on increase, theoretical as well as experimental 
studies are still conflicting with the observed properties [7] [27] [28]. 

Superconductivity majorly results from the formation of Cooper pairs, at the 
Fermi surface, at the critical temperature. However, not all electrons at the Fermi 
surface take part in the formation of Cooper pairs, giving rise to a phenomenon 
in which Cooper pairs interact with the free electrons. This model has been used 
to study cuprates and the resulting entropy and specific heat showed close 
proximity to the results from previously done experimental and theoretical work 
[7] [26]. However, the energy due to electron interaction is found to be much 
less than the measured energy gap in cuprates. The difference arises from the 
fact that the measured energy gap represents the energy due to both elec-
tron-electron interaction and electron-phonon interactions [7]. The BVT has 
previously yielded results that are in agreement with other methods such as 
second quantization [26]. In this approach, a Hamiltonian of interaction be-
tween the electron and the Cooper pair is first developed using the kinetic ener-
gies of both the electron and the Cooper pair, the positive interaction potential 
and the negative interaction potential. Row reducing the Hamiltonian leads to 
energy of the system at condensate state. The specific heat of the system has been 
deduced from the expression of the system’s energy. 

2. Theoretical Framework 

To start with, the Cooper pair and the electron are considered to occupy differ-
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ent states. The total Hamiltonian, for the interaction is given by 

0 PH H H= +                          (1) 

where, 0H  is the Hamiltonian of interaction between a Cooper pair in state k 
and electron in state q for unperturbed system and is given by 

† †
0  q q q k k kq kH a a b b= +∑ ∑ 

                  
 (2) 

PH  is the Hamiltonian for the perturbed system and is given by 

( )† † † †
,, ,   P k q q q k k k q q k kk q q kH V a a b b U a a b b= − −∑ ∑            (3) 

From Equations (2) and (3), †
qa ( qa ) is the creation (annihilation) operator 

for an electron in state q, † † †
k k kb a a−=  ( k k kb a a−= ) is the creation (annihilation) 

operator for the Cooper pair in state k; †
q qa a  and †

k kb b  are the number opera-
tors for an electron and a Cooper pair respectively, 2 2q e ek m=   is the kinetic 
energy for electron and 2 2k c ck m=   is the kinetic energy for the Cooper pair. 

Equations (2) and (3), when combined, give the Hamiltonian for a perturbed 
system as 

( )† † † † † †
,, , q q q k k k k q q q k k k q q k kq k k q k qH a a b b V a a b b U a a b b= + + − −∑ ∑ ∑ ∑ 

 
 (4) 

Equation (3) is then written in terms of Bogoliubov-Valatini operators, γ , 
using the relations k q q q qa u vγ γ +

−= + , k k k k ka u vγ γ +
− − −= , †

k q q q qa u vγ γ+
−+=  

and †
k k k k ka u vγ γ+

− − −= . Where, 2
ku  is the probability that the pair state {k,–k} 

within a certain interval around the Fermi level is unoccupied and 2
kv  is the 

probability that the pair state {k,–k} within a certain interval around the Fermi 
level is occupied (k is a wave vector). Thus, 
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where 4OT are the fourth order terms. 
1) Energy of the System 
The diagonal part of the effective Hamiltonian represents the energy of the 

system when it is in equilibrium. Therefore, at equilibrium the energy of the 
system is then given by 
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At equilibrium, the quasi-particles represented by the operators γ’s are very 
few or do not exist and therefore, 0k km m−= =  and 0q qm m−= = . Thus, Equ-
ation (6) becomes 

2 4 4 2
,k q q k k k k q qq qE v v v U v= + −∑ ∑                   (7) 

For the electron to interact with the Cooper pair, they must be in the same 
state i.e. at the time of interaction we only consider the state k of the electron 
and neglect all the other states in q and therefore Equation (6) becomes, 

2 4 4 2
,k q k k k k k k kE v v v U v= + −                      (8) 

For the three electron interaction to take place, the cooper pair and the elec-
tron involved in the interaction must be present. Thus, 1kv =  and 1ku = , 

,k q k k kE U= + −                         (9) 

To introduce temperature dependence, the energy Ek is multiplied by the 

thermal activation factor exp k

B

E
K T

 −
 
 

 where Ek is energy of the system and KB is 

the Boltzmann constant. This produces a temperature dependent energy ET giv-
en as 

e
k

B

E
K T

T kE E
 −
 
 =                         (10) 

2) Electronic Specific Heat Capacity 
In finding the electronic specific heat, we first use the specific heat capacity of 

the system. The specific heat is expressed, as a function of the total energy of the 
system, using the expression 

T
v
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∂                          

 (11) 

For the three-electron system, we substitute (11) into (10) so that, 
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The Sommerfeld’s coefficient is determined from the specific heat as 

vC
T

γ =                            (13) 

Substituting (12) into (13) 
22 2

3 3

4
e e
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B

E T
K T Tk B
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  
              (14) 

3. Results and Discussion 

The total energy of a system results from the interaction between the particles of 
the system. The energy due to interaction between these particles increases with 
the temperature of the system. At the temperature T = Tc, the material changes 
from a superconducting to a normal state. Figure 2 shows the total energy of 
electron-Cooper pair interaction in of Y123 as a function of temperature. 

This half-stretched sigmoid curve has been obtained previously by other re-
searchers when they were relating energy of the system to temperature [29]. 
From the graph, it is observed that the energy of the system increases with tem-
perature but not linearly. In determining the critical point on the curve, the line 

cx T=  has been used, that is, 34x =  for Ca0.32Na0.68Fe2As2 and 55x =  for 
SmFeAsO0.8F0.2. The energy of interaction between an electron and a Cooper pair 
at the critical temperature in SmFeAsO0.8F0.2 at is 1.26 meV, while that in 
Ca0.32Na0.68Fe2As2 is 0.6 meV. Comparatively, the energy of the three-electron 
model in thallium based cuprates, Tl2201, Tl2212 and Tl2223 were determined 
as 2.2 meV, 2.5 meV, and 2.9 meV while that of YBCO123 is found to be 2.2  

 

 
Figure 2. Energy of interaction between an electron and a Cooper pair in SmFeAsO0.8F0.2 and 
Ca0.32Na0.68Fe2As2 as a function of temperature. 
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meV [26] against the experimental 34 meV [5]. These energies are very low 
compared to the experimental energy values. 

Electronic Specific Heat Capacity (γ) 
Figure 3 represents graph of the electronic specific heat as a function of tem-

perature for the two IBSCs under study. 
Similar results were obtained by other researchers while comparing the varia-

tions in the electronic specific heat with temperature in cuprates [7] [26]. From 
Figure 3, the electronic specific heat for CeFeAsO0.84F0.16 and SmFeAsO0.8F0.2 are 
found to be 164.3 mJmol−1K−2 and 101.6 mJmol−1K−2 respectively. The electronic 
specific heat of CeFeAsO0.84F0.16 has been determined by measurement as 105 ± 5 
mJmol−1K−2 [30]. The theoretical value is of the same order as the experimental 
value. The method used in this work has been found to agree with the highest 
measured value for electronic specific heat of a Yttrium based cuprate, YBCO123 
with γ = 60 mJmol−1K−2 [26] [31]. 

The difference in the electronic specific heat between the theoretical value and 
the measured value may arise due to the quality of the sample used in the expe-
rimental approach [30]. For instance, working on the quality of Ca0.33Na0.67Fe2As2 
to Ca0.32Na0.68Fe2As2 improves its electronic specific heat from 39 mJmol−1K−2 to 
105 mJmol−1K−2. Therefore, working on the quality of the substance can improve 
the measured values significantly and is likely to agree with the theoretical values 
obtained using this approach. 

4. Conclusion 

For the first time, the specific heat of iron pnictides has been determined based 
on a theoretical approach. The interaction between an electron and a Cooper  

 

 
Figure 3. Graph of electronic of specific heat of Ca0.32Na0.68Fe2As2 and SmFeAsO0.8F0.2 as a function of 
temperature. 
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pair has successfully given values that are in close proximity to the measured 
values of the specific heat. Despite the differences in the origin of Cooper pair-
ing, the electronic specific heats in both high temperature IBSC and cuprates 
depend on the electron-Cooper pair interaction. However, the energy obtained 
using this approach varies significantly from the experimental results confirming 
that electron-Cooper pair interaction and even spin fluctuations are not suffi-
cient to explain HTSC. These findings reveal that the mechanism behind HTSC 
in both cuprates and IBSC is likely to be the same though the origin of pairing 
may vary. 
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