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Abstract 

Temporally fine-grained and objective measures of mental states or their 
surrogate states are desperately needed in clinical psychiatry. Stress, both 
acute and especially chronic stress, is an important mental and physiological 
state observed in many mental disorders. It is a potential precipitant of acute 
psychiatric decompensations, be they anxious, affective, psychotic, or beha-
vioural. Thus, being able to objectively follow stress or its surrogate parame-
ters over time in a clinician-friendly way would help predict and prevent de-
compensations and monitor subsequent treatment success. Thus, we intro-
duce the Compound Spectral Stress Indices (CSSI) that are derived from 
sensing data of various physiological and physiological and behavioural pa-
rameters we use as surrogate stress measures. To obtain the CSSI we use a 
hierarchical approach provided by adaptability, congruency and derived 
stress coefficient matrices. Adaptability is defined as a macroscopic characte-
risation of physiological and physiological and behavioural performance con-
structed as a product of the total variation of time-segmented complexity in-
dices multiplied by the frequency of the time-varying distribution of com-
plexity indices of the measured physiological or physiological and beha-
vioural parameters, where complexity is expressed in terms of the Hurst ex-
ponent. Congruency is expressed by a constant characterising a demand-re- 
source balance and it is then expressed in the form of a stress coefficient ma-
trix. The CSSI is given by the spectral distance of the stress coefficient ma-
trices from the ideal demand-resource matrix. 
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1. Introduction 

Real, symbolic, or imagined stimuli perceived as threatening by a person repre- 
sent a stress that elicits a system response. The system response is physiological 
and physiological and behavioural in nature and aims at discarding the threat. 
When a threat occurs, an alarm sets off an adaptive response or adaptation that 
leads to resolution and returns to the initial equilibrium if the stressor subsides 
or is discarded or to a state of chronic distress if the stressor persists. The initial 
physiological and behavioural response is governed by the orthosympathetic 
nervous system resulting in multiple neurotransmitter, immunological and brain 
changes [1], and a physiological and behavioural response resulting in fight, 
flight or freezing. After the adaptive response the physiological and behavioural 
features return to the previous homeostasis, or a new and possibly pathological 
equilibrium if the stressor persists for longer periods of time resulting in chronic 
stress.  

We view human stress as a state when demands due to stressors-momentarily, 
in a form of positive or negative acute stress, or permanently, in a form of 
chronic stress-challenge and sometimes exceed, in the case of either over-
whelming acute or chronic stress, the brain’s capabilities to cope with the de-
mands. 

The physiological and behavioural response to stress and its return to normal 
homeostasis or a new possibly pathological equilibrium can be objectively meas-
ured. Some of these measures require invasive techniques determining, e.g., 
neurotransmitter, endocrine, or brain perfusion changes, while others are non- 
invasive including measures of heart rate, respiratory rate, skin conductance, or 
movement among others [2] [3]. Invasive techniques allow only for measures 
that are temporarily coarse-grained. The non-invasive techniques allow for con-
tinuous observations. Stress and stress responses leading or not to new equilibria 
are temporal phenomena. None of the available measures are, however, syn-
onymous with the stress response itself as they measure specific aspects related 
to stress situations and reactions. Hence, continuous observational techniques 
are of paramount importance to measure stress. Thus, measuring several of these 
parameters over time appears as a reasonable approximate measure of the more 
complex overall phenomenon of stress. Thus, we rely on physiological and phy-
siological and behavioural measures as surrogate data for stress or, in other 
words, its bodily expression. These surrogate data can be recorded using body- 
attached sensors [4] [5] [6] [7]. 

The purpose of this paper is to translate the assessment of stress using surro-
gate data into a mathematical model that can ultimately be used in clinical set-
tings to objectively quantify the stress a human subject experiences. In other 
words, we strive to introduce an objective measure of stress and its severity using 
a combination of sensing and recording of complex time-series of physiological 
and behavioural measures and their posterior mathematical complexity analysis 
to arrive at the Compound Spectral Stress Index. 
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The mathematical part of the paper starts with the introduction of Adaptabil-
ity in the subsection with the corresponding title. Then, the notion of the Stress 
Coefficient Matrix (SCM) is introduced in the subsection Stress Coefficient Ma-
trix. SCM relates two affine-images of time-discrete surrogate data that are 
self-similar normally distributed stochastic processes. The stress coefficients as-
sembled in SCM yields congruency, c.f., subsection Congruency. The notion of 
congruency is constructed to reflect the external demands/regulatory capacities 
of the human nervous system. The notion of physiological and behavioural con-
gruency allows defining an ideal demands/response SCM. Defining an ideal 
SCM leads immediately to the definition of the Compound Spectral Stress Index 
(CSSI) that is represented by the spectral distance of the actual complexity-based 
SCM from the ideal system response, c.f., subsection Compound Spectral Stress 
Index. CSSI is represented by a single positive real number. We propose that this 
index would play a similar role for stress as temperature body measurements in 
general medicine, but taking instead the results of the physiological and beha-
vioural complexity analysis instead of just one or more averaged physiological 
and behavioural readings [8]. 

Multiple physiological and behavioural parameters change over time driven 
by stress and stress-related responses. Consequently, these parameters can be 
combined in various ways yielding different CSS Indices addressing different 
structures of observable stress pronunciations [9]. 

For the illustrative purpose of this paper, we use physiological (heart rate, 
blood oxygenation) and motor (steps frequency) features as physiological and 
behavioural surrogate markers of stress, of which we know that they have by far 
the largest variance among all the sensory readings we have investigated pre-
viously [10] [11]. Specifically, the recordings and analyses of eight healthy indi-
viduals during normal working days, sleep and exercise are shown for illustrative 
purposes only. 

2. Quantitative Methods 
2.1. Measuring Surrogate Data of Stress 

Indications of stress can be measured using self-rated questionnaires, tempora-
rily coarse-grained invasive physiological means, such as blood-sampled bio-
markers, or temporarily fine-grained or continuous physiological or physiologi-
cal and behavioural means [12]. These approaches are not mutually exclusive 
and reveal that stress is a multidimensional construct. We focus on continuous 
physiological and behavioural measures as they are both objective compared to 
the questionnaire approach, that is subjective, and capture the short-term tem-
poral dynamics of the stress response as opposed to coarse-grained measures 
such as blood sampling. Another direct advantage is that the presented approach 
is not invasive. 

However, there are at least two fundamental problems with measuring stress. 
First, stress is not measurable in the sense of physics as it has no physical units. 
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Second, indirect stress indicators such as self-reporting, bodily fluid analyses 
[13], or multi-dimensional complexity analysis [10], require micro-to-macroscopic 
translations that are not a priori invertible. We use the notion of invertibility to 
indicate, for example, that even if we could easily detect microscopic structures 
by the presence of certain molecules, a process linked to macroscopic observable 
stress states might not induce such states under certain circumstances. 

Let us consider an example. The corticotropic stress response is one of the 
pronunciations of stress, among many others [1], and part of the regulatory sys-
tem response. Nevertheless, it is neither the stress itself nor does it have the same 
unit. This holds true for any of the measurables that we therefore call surrogate 
data. Furthermore, the attempt to quantify stress faces the difficulty that the 
various surrogate data are situated at vastly different scales: from microscopic 
chemical reactions all the way up to physiological changes such as heart rate or 
skin conductance and further to macsroscopic topological measurements such as 
torso motions or positional changes measurable when the stress response im-
plies flight-or-fight, let alone the subjective psychological phenomena that ac-
company stress. 

We accept that it is not necessary to express stress in physical units for its 
pronunciations can be measured by its effects on physiology and behaviour. 
These effects expressed via surrogate data are measurable physical quantities. 

The neurochemical stress-related changes are not directly amenable to conti-
nuous and non-invasive measuring. Thus, we would rather focus on macroscop-
ic stress equivalents, i.e., physiological and behavioural measures, that can be 
measured non-invasively over time. We have provided evidence that some sur-
rogate physiological and behavioural data, including heart rate, skin blood per-
fusion, blood oxygenation, skin temperature, movement and steps frequency 
obtained using body-attached sensors exhibit approximately normally distri-
buted and self-similar time series [10]. This allows for complexity analysis of 
such data and for simultaneous multimodal projections in place of observational 
statistics. We introduce an application of spectral theory to implement a com-
pound analysis of multiple macroscopic characterisations of physiological and 
behavioural surrogate data. 

2.2. Spectral Characterisation of Stress 

The presented concepts of the stress coefficients and the compound stress indic-
es are as follows. We introduce adaptability, c.f., subsection Adaptability, that is 
a product of complexity total variation and frequency reflecting both the qualita-
tive and quantitative changes of the time-dependent acquired data. 

Further, we introduce a notion of stress coefficient based on adaptability in 
subsection Stress Coefficient. It is a constant of which we propose that it may re-
flect the relation between stressors and response based upon adaptability and the 
environmental demands [14]. 

Adaptability is measured through various stress coefficients that can be com-
pared and their congruency determined, c.f., subsection Congruency. Congru-
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ency is constructed to indicate that reactivity and demands, in other words 
adaptibility, are at equilibrium. An example of a stress coefficient can be pro-
duced by comparing adaptability of, e.g., heart rate with steps frequency. 

We present the structure of the theory at Figure 1.  
The fundamental principle we adopt is that stress, not directly measurable in 

the sense of physics, can be constitutively modelled by multidimensional Eucli-
dian spaces derived from complexity analysis and its consequent indexing of 
macroscopic surrogate data.  

There is a consequence of the outlined principle. We use physical quantities 
on an intermediate level formed by sensory data acquisitions. These time-series 
have associated SI units. Their projection on the complexity indices removes the 
units disparity.  

Our approach is designed to provide a deeper understanding of physiological 
and behavioural patterns, an understanding that cannot be obtained using stan-
dard observational statistics such as, e.g., mean, variance and correlation of the 
raw data. An illustration of the presented approach is shown at Figure 2.  

3. Quantitative Methods Theory 

We do not measure stress or demands at the data collection levels. We measure 
reactions of an organism of which we assume that they can provide a constitutive 
model of stress. The hierarchical constitutive mathematical model, described in 
subsections Adaptability, Stress Coefficient, Congruency, and Compound Spec- 
tral Stress Index, is as follows. 
 

 
Figure 1. The structure of the presented theory yields the spectral index. The arrows 
indicate an order in which these indices are built. 
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Figure 2. Heart rate data segmentation, c.f., [10]. The step function (blue piece-wise 
constant function) correlates only with the time axis. It represents values of the Hurst 
exponents computed from data points corresponding to about fifteen hours segmented to 
two hours time intervals. The time segmentation is given by the smallest amount of HR 
raw data enabling reliable estimates of the complexity index of each segment. The red 
dashed lines provide an example of how the total variation is computed measuring the 
“strengths of the complexity changes of the heart rate” [15]. In the case of the presented 
data, the total variation is equal to 1.37. Thus the adaptability is approximately equal to 
0.73. 
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3.1. Adaptability 

We define adaptability as the product of the total variation of uniform segments 
of complexity measures of self-similar normally distributed physiological and 
behavioural data multiplied by the frequency of this input. The frequency is 
given by the reciprocal of the count of uniform segments of time considered. 
The total variation, given in one dimension by arc-length, is denoted TV. The 
complexity measure is given by the Hurst index [16]. The total variation of the 
considered segmented physiological and behavioural data is given by  

( )( )
{ } [ ]

( )( )
1, , 0, 1

TV max
m

ii m T i
H H t

= ∈ =

= ∑
�

� �� �� �
                (1) 

In the above expression ( ){ }, 1, ,it i m= �  forms subsequent time parti- 
tioning of the surrogate data, assuming that ( ) ( )1

10
0, ,m

i ii
T t t−

+=
=∪ , 0 0t = ,  

mt T= , [ ]0,T  is the set of all possible such partitioning, and � �  denotes a 
jump of the enclosed quantity. ( )( )iH t  is the Hurst index of the sensory 
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surrogate data corresponding to the time interval ( )1,i it t + . 
Adaptability is defined by  

( )( ) ( )( ) ( )( )def TV f
T

v H H H=                  (2) 

where the frequency of the jumps in the complexity of the data, ( )( )f
T

H  , is 
defined by  

( )( ) ( )( ) ( ){ }def 1f card | 0,
T

H H t t T
T

= ∈� �� �� �             (3) 

The frequency is simply a number of data samples we consider over a certain 
period of time. We consider one sample encapsulating two hours of surrogate 
data acquisition in the presented results. The reason we consider larger time 
periods than an hour is that we need a sufficient amount of data to estimate the 
complexity indices. 

We use frequency considering that different processes have different time- 
scale characteristics. An example are heart rate and skin temperature time-series, 
the changes being much faster for heart rate compared to skin temperature. 

We measure the strength of jumps of the Hurst exponent computed from the 
segments of the acquired time-series using total variation. Such a measure has 
no units. Considering the strength of the jumps projected on one of the y-axes 
we consider the range of a given measure applied to a given time-series. We 
express the units of total variation of complexity measures, given by (1), in terms 
of the complexity measure range. 

The total variation disregards the sign of jumps. Nevertheless it does indicate 
the complexity travels on the y-axis. Figure 3 is for illustration purposes of 
congruency only. The simplified version encoded in (3.2) accounts for the 
strength of the jumps of the two different complexities that should be about the 
same if demand is met through the corresponding response. This is the meaning 
of the construct. This approach is weaker to that shown at Figure 3 where the 
signs of jumps are highlighted. 

Adaptability is designed to measure, using certain properties of surrogate 
time-series, the capabilities of a given system to adjust the complexity of their  
 

 
Figure 3. Heart rate and step frequency complexity indices congruency. Left: highly 
trained healthy subject exhibit congruent characteristics during a typical day. Right: 
healthy subject exhibits temporal lack of congruent complexity patterns at some time 
periods (circled). 
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physiological and behavioural patterns. We can always assume that the total 
acquisition time, T, is finite, and that the number of sampling equidistant 
subintervals is non-zero and would be bounded in real data collection. Con- 
sequently, it is the total variation that plays the fundamental role. 

Assume, given acquired one dimensional sensory data  ,  

( )( )TV 0H = , for all partitions given by [ ]0,T , 0T > .     (4) 

Given (4) holds, the complexity of the data has to be constant regardless of the 
number of samples we analyse, i.e., regardless of the time resolution we apply. 
This implies, almost surely, that ( )iH Z  is constant for any 1, ,i m= � . This 
would imply only two possibilities. Either the system producing   does not 
register any stressors because of the lack of them or it cannot react to demands, 
assuming the surrogate data chosen are adequate. The former circumstances are 
unlikely, the latter circumstance implies that the Hausdorff-Besicovitch dimen- 
sion of   is equal to one and that is incompatible with the existence of a living 
organism. 

Assume on the other hand that we increase the frequency but the adaptability 
stays bounded. That would imply that the total variation has to decrease 
proportionally to the frequency. Consequently, the variations in the complexity 
measure with respect to the increasingly higher resolution cannot change much. 
This is a pronunciation of self-similarity of the sensory data  . These 
considerations lead to the multiplicative structure of the adaptability definition 
(2). 

Summarising the two above arguments it seems plausible to assume that the 
higher the reactivity expressed by a higher adaptability index the higher the 
chances of a leaving organism to deal with demands and to provide the 
corresponding responses. 

3.2. Stress Coefficient 

A characterisation of demand/response requires at least two players as soon as 
the system has to respond to a variety of qualitatively different stressors. An 
example: a requirement of higher steps frequency must be accompanied by 
higher breathing rate as well as higher heart rate. The stress coefficient we 
introduce below is a dimensionless renormalisation constant relating adaptivity 
measures of two, possibly similar/correlated, surrogate variables. 

We choose to use all the available data regardless of their implicit charac- 
terisation. 

Consider two acquired approximately self-similar time-series,   and  . 
The stress coefficient, ( ),σ   , for the sensory data ,  , is given by, 

( )( ) ( ) ( )( )ˆ ,v H v Hσ=                      (5) 

where ( )( )v H ⋅  is given by (2) and H denotes the Hurst exponent. Notice that 
stress renormalization constant is not symmetric, i.e., ( ) ( )ˆ ˆ, ,σ σ≠    . 
Since 
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( ) ( ) 1ˆ ˆ, ,σ σ −=     

then, ( )ˆ , 0σ ⋅ ⋅ > ,  

( )( ) ( )( )ˆ ˆlog , log ,σ σ=    . 

Thus we implement  

( ) ( )( )def ˆ, log ,σ σ=                        (6) 

as the stress coefficient for the reason of symmetry. 
Two examples of various stress coefficients given by (5) are presented by 

Table A4 and Table A5 in Appendix. 

3.3. Congruency 

Suppose a stress coefficient σ  is equal to one. This can occur if and only if the 
underlying surrogate time-series   and   have the same distributions. The 
reason is that for the stress coefficient to be equal to one both sums of the jump 
magnitudes of the Hurst exponents must equate. Assume further that both 
processes have the same data acquisition frequency. These processes posses ideal 
congruency. Surely, congruency is unattainable by human physiological and 
behavioural patterns. However, we use this construct to obtain a fixed point 
against which we can measure stress corresponding to various physiological and 
behavioural patterns. 

It follows from (5) that ( ), 1σ >   if the adaptability of the process   is 
higher than that of   and smaller than one in the opposite case.  

Context of Congruency 
What precedes deserves some further comments and interpretation. We men- 
tioned that the lack of temporal congruency may indicate that the adaptability of 
the controlling response may be inadequate given the imposed demands. 
However, this may not be entirely true. Let us consider some more extreme 
acute stress reactions, i.e., fight-or-flight scenario, to be adequate reactions. In 
these stress situations, the individual is likely to show congruency of complexity 
patterns. However, this is true only as long as we consider the adequate 
parameters, meaning orthosympathetic arousal and high physiological and 
behavioural patterns. This is different in another classical stress situation phy- 
siological and behaviourally characterized by freezing with nearly no macros- 
copic behaviour at all, but with most likely very high orthosympathetic arousal. 
In an observational sequence containing a freezing episode, this would appear as 
a major incongruence between complexity of some physiological parameters 
such as, e.g., heart rate and that of physiological and behavioural parameters 
such as step frequency. Overall, we may argue that high congruency over time 
between different physiological and behavioural parameters is a feature of 
harmony and low physical and psychological stress levels. As a corollary, lower 
levels of congruency over time or major congruency leaps may be indicative of 
low harmony or disorder such as chronic stress. 
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The congruency concept is illustrated by Figure 3. The left plot indicates 
congruent structure while the other one does not. Congruency indicates that 
when complexity of a demand increases the complexity of some related 
responses should increase as well. Time-local lack of congruency indicates 
complexity of the controlling response is inadequate relative to the imposed 
demands. This is shown at the left graph. The graph shown on the right indicates 
temporal dis-congruencies. At around the fifth hour of the sensory data 
acquisition the complexity of steps frequency is very low while the complexity of 
the heart rate is very high. Five hours later the relation of the complexities is 
reversed. In other words, the congruency accounts for the fact that a positive 
jump in the complexity of demand is or is not accompanied by the positive jump 
in the complexity of the corresponding response and vice versa. The circled 
complexity characteristics exhibit just the opposite. Considering just heart 
rate/steps frequency is likely an oversimplification, though. An individual 
actively escaping a danger could increase both heart rate and steps frequency 
simultaneously in a congruent manner. It is plausible to assume that over a 
longer period of time such a singular event can be filtered out to obtain a more 
stable longitudinal congruency image that might be characteristic for a given 
individual. 

3.4. Compound Spectral Stress Index 

The Compound Spectral Stress Index (CSSI) is constructed to achieve two 
objectives: 1) to compress stress coefficients tables information, e.g., Table A4 
and Table A5, into a single number, and 2) to provide a non-biased demand- 
response distance from the ideal congruency. These objectives are addressed 
using the spectral norm of the covariance matrix difference between ideal 
congruency and a given stress coefficient matrix. 

The ideal congruency matrix,  , is given by { }, , 1

m
i j i j

b
=

= , for some m∈ , 
where   is the identity matrix corresponding to assumed absence of stress. 
The real stress coefficients matrices,  , are constructed to be the upper 
triangular matrix images of tables such as those shown at Table A4 and Table 
A5. 

We define the Compound Spectral Stress Index, ( ),τ   , by 

( ) ( ) ( )( ){ }def T, maxτ ρ= − −                     (7) 

where ρ  denotes the spectrum of the enclosed matrix. This means that CSSI is 
given by the spectral distance of   from the reference congruency given by the 
matrix  . The spectral distance, or equivalently the spectral norm, is a reliable 
metric yielding a distance measure given by the largest singular value of the 
matrix −  , i.e., by the largest eigenvalue of its covariance form used in (7). 

It is important to keep the ordering of the sensory sequencing constant to 
obtain consistent CSSIs. 

An example of CSSIs pertaining to eight healthy subjects is given by Figure 4.  
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Figure 4. Combined plot of the spectral stress indices of the data based on eight subjects. 
The plot show different spectral stress indices of eight individuals during exercise, sleep 
and routine work related to daily activities. The subjects range from highly trained 
individuals to healthy subjects. The data ware obtained using an arm attached sensor 
collection data for fifteen hours every thirty seconds. An example of different information 
we gather from this plot is follows. Subject #5 experiences a higher stress during extended 
hours of sleep compared to highly trained subject #4 with only four hours of sleep. The 
subjects reporting regular exercise patterns exhibit approximately similar capability to deal 
with stress-responce patterns as opposed to the subject #8 who lacks such a pattern. The 
non-invasive measurements were made in similar environments corresponding to standard 
daily routines. The sensors have no disruptive physiological and behavioural effects. 
 
The posteriori correlation with questionnaire based subjective self-evaluations 
suggests that the increase of the CSSI corresponds to the decreasing adaptive 
capacity over a given time frame. The smaller the value of CSSI the higher is the 
subjet’s capability to deal with various forms of stressors. 

We show the high variability among normal individuals that is captured by 
our analyses in real-life situations based on thousands of data points. That is 
different compared to other studies that use a higher number of individuals, but 
only just a few data points. The data yielding the CSSIs of the eight individuals 
are based on the tables shown in Appendix. 

4. Conclusions 

Physiological and behavioural phenomena in psychiatry are characterized by 
clinical features of different kinds evolving over time. Stress is among the more 
important physiological and behavioural phenomena in psychiatry. Currently, 
there is no clinical tool to evaluate stress levels over fine-grained time periods 
available for mental health professionals. Current stress measures are limited to 
the use of subjective data and clinically hardly useful occasional measures of 
stress hormones in the blood. None of the two is a gold standard for stress 
measures in numerous clinical settings as they are either subjective, i.e., allowing 
for no reliable follow-up of stress in, say, alexithymics or the epidemiologically 
growing group of patients with neurocognitive disorders. Similarly, the objective 
measure at hand do not allow for an adequate follow-up or the changes over 
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time in a non-invasive way. 
An alternative is introduced in the presented communication. It is based on 

measuring physiological and behavioural parameters non-invasively over time, and 
combining them as complexity indicators allowing for congruency comparison 
between parameters may be a better way forward. Although this seems likely, it has 
still to been shown, however, that this approach is really superior in clinical settings 
and for many conditions than simply asking subjects about their stress level. 

The presented approach allows for the extraction of complex information that 
we consider as a possible indicator of stress as it evolves over time. Currently 
there is no commonly admitted gold standard of how to measure stress objec-
tively or to distinguish various forms of stress, such as the various acute stress 
responses mentioned, or chronic stress. This differential approach also suggests 
that a single CSSI may not be sufficient as an indicator of different forms of 
stress. However, different CSSI can be calculated based on various combinations 
of surrogate data, once complexity analyses have been carried out. Thus, our ap-
proach needs validation in at least two clinical domains. 

First, an elaboration is needed to choose the most appropriate CSSIs as indi-
cators of more specific forms of stress. Second, we need to confront our ap-
proach to other measure of stress although, as mentioned, there is no established 
gold standard. Thus, the validation of the presented approach rests with using 
both subjective data of stress levels collected over time and objective measures of 
experimentally collected stress-related neurohormones at short time intervals. 
This approach is opening up a complex field of research that has to show its 
usefulness in clinical settings and to figure out what might be the best interface 
between complexity analysis and user-friendly information transfer to clinicians. 
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Appendix: Stress Coefficient Tables 

The presented and similar tables are transformed into upper triangular matrices, 
used to compute CSSIs by inserting zeros below the main diagonal to obtain a 
square matrix.  
 
Table A1. The stress coefficients of subject #1. The stress coefficients are obtained from 4 
equidistant time segments of acquired data encompassing about 15 hours of data acquisi-
tion. 

Quantities 
Heart 
Rate 

Blood 
Oxygenation 

Perfusion 
Skin 

Temperature 
Relative 

Movement 
Steps 

Frequency 
Heart Rate 1 0.566519 0.3333 1.63602 0.718639 0.973919 

Blood 
Oxygenation 

 1 0.58833 2.88784 1.26852 1.71913 

Perfusion   1 4.90854 2.15613 2.92205 
Skin 

Temperature 
   1 0.439262 0.595299 

Relative 
Movement 

    1 1.35523 

Steps 
Frequency 

     1 

 
Table A2. The stress coefficients of subject #2. The stress coefficients are obtained from 5 
equidistant time segments of acquired data encompassing about 15 hours of data acquisi-
tion. 

Quantities 
Heart 
Rate 

Blood 
Oxygenation 

Perfusion 
Skin 

Temperature 
Relative 

Movement 
Steps 

Frequency 
Heart Rate 1 0.436976 0.108716 0.452929 0.149075 0.161365 

Blood 
Oxygenation 

 1 0.248793 1.03651 0.341152 0.369277 

Perfusion   1 4.16615 1.37123 1.48427 
Skin 

Temperature 
   1 0.329136 0.35627 

Relative 
Movement 

    1 1.08244 

Steps 
Frequency 

     1 

 
Table A3. The stress coefficients of subject #3. The stress coefficients are obtained from 3 
equidistant time segments of acquired data encompassing about 15 hours of data acquisi-
tion. 

Quantities 
Heart 
Rate 

Blood 
Oxygenation 

Perfusion 
Skin 

Temperature 
Relative 

Movement 
Steps 

Frequency 
Heart Rate 1 0.260791 0.608796 0.203685 0.743987 0.0761693 

Blood 
Oxygenation 

 1 2.33442 0.781028 2.85281 0.292071 

Perfusion   1 0.33457 1.22206 0.125115 
Skin 

Temperature 
   1 3.65264 0.373957 

Relative 
Movement 

    1 0.10238 

Steps 
Frequency 

     1 
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Table A4. The stress coefficients of subject #4. The stress coefficients are obtained from 8 
equidistant time segments of acquired data encompassing about 15 hours of data acquisi-
tion. 

Quantities 
Heart 
Rate 

Blood 
Oxygenation 

Perfusion 
Skin 

Temperature 
Relative 

Movement 
Steps 

Frequency 

Heart Rate 1 1.67598 1.92038 2.51267 0.42252 1.68351 

Blood 
Oxygenation 

 1 1.14583 1.49923 0.252104 1.0045 

Perfusion   1 1.30843 0.220019 0.876657 

Skin 
Temperature 

   1 0.168155 0.670009 

Relative 
Movement 

    1 3.98446 

Steps 
Frequency 

     1 

 
Table A5. The stress coefficients of subject #5. The stress coefficients are obtained from 3 
equidistant time segments of acquired data encompassing about 15 hours of data acquisi-
tion. 

Quantities 
Heart 
Rate 

Blood 
Oxygenation 

Perfusion 
Skin 

Temperature 
Relative 

Movement 
Steps 

Frequency 

Heart Rate 1 4.98645 1.96584 1.17414 2.68461 0.708285 

Blood 
Oxygenation 

 1 0.394236 0.235466 0.53838 0.142042 

Perfusion   1 0.597272 1.36563 0.360297 

Skin 
Temperature 

   1 2.28645 0.603238 

Relative 
Movement 

    1 0.263832 

Steps 
Frequency 

     1 

 
Table A6. The stress coefficients of subject #6. The stress coefficients are obtained from 8 
equidistant time segments of acquired data encompassing about 15 hours of data acquisi-
tion. 

Quantities 
Heart 
Rate 

Blood 
Oxygenation 

Perfusion 
Skin 

Temperature 
Relative 

Movement 
Steps 

Frequency 

Heart Rate 1 2.27671 1.58872 0.985259 0.402659 1.82687 

Blood 
Oxygenation 

 1 0.697813 0.432756 0.17686 0.802418 

Perfusion   1 0.62016 0.253449 1.1499 

Skin 
Temperature 

   1 0.408683 1.85421 

Relative 
Movement 

    1 4.53703 

Steps 
Frequency 

     1 
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Table A7. The stress coefficients of subject #7. The stress coefficients are obtained from 3 
equidistant time segments of acquired data encompassing about 15 hours of data acquisi-
tion. 

Quantities 
Heart 
Rate 

Blood 
Oxygenation 

Perfusion 
Skin 

Temperature 
Relative 

Movement 
Steps 

Frequency 

Heart Rate 1 1.27931 0.723648 2.3792 1.36328 1.07331 

Blood 
Oxygenation 

 1 0.565655 1.85976 1.06564 0.838974 

Perfusion   1 3.28779 1.8839 1.48319 

Skin 
Temperature 

   1 0.573 0.45112 

Relative 
Movement 

    1 0.787295 

Steps 
Frequency 

     1 

 
Table A8. The stress coefficients of subject #8. The stress coefficients are obtained from 3 
equidistant time segments of acquired data encompassing about 15 hours of data acquisi-
tion. 

Quantities 
Heart 
Rate 

Blood 
Oxygenation 

Perfusion 
Skin 

Temperature 
Relative 

Movement 
Steps 

Frequency 

Heart Rate 1 1.81883 6.96364 3.11701 0.388888 0.383757 

Blood 
Oxygenation 

 1 3.82864 1.71375 0.213812 0.210991 

Perfusion   1 0.447613 0.0558456 0.0551087 

Skin 
Temperature 

   1 0.124763 0.123117 

Relative 
Movement 

    1 0.986805 

Steps 
Frequency 

     1 
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