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Abstract 

“πα ντα χωρει′   = everything flows”, Eraclitus, (Ephesus, 535-475 B.C.). If 
really in Nature everything changes and progresses, then at least two ques-
tions arise: 1) how can be these changes entropic but nonetheless somehow 
predictable without risk of oxymoronic behavior; 2) how can Science conform 
itself to follow this requirement of the Nature. To attempt an answer to these 
questions, the present paper introduces an ab initio theoretical model aimed 
to show that physical information is actually nothing else but straightforward 
quantum and relativistic implication of the concept of evolution.  
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1. Introduction 

Many physicists have emphasized the unreasonable effectiveness of mathematics 
in describing the physical world; among them the most authoritative one is 
Wigner [1]. An anecdote clarifies Wigner’s perplexity. Two students were dis-
cussing the ability of describing the statistical distribution of hungers in the 
world through the Gauss function, which involves the number π . Strictly 
speaking, it is hard to realize what has to do the geometrical ratio between cir-
cumference and radius of a circle with the distribution of hungers; even in lack 
of a rational explanation, though, nobody could doubt about the ability of scien-
tists to contribute to the advancement of science introducing π  in the frame of 
sophisticated mathematical algorithms. 

Even Bertrand Russel was concerned about the link between mathematics and 
physics [2]. In his book “Study of Mathematics” he says: “Mathematics, rightly 
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viewed, possesses not only truth, but supreme beauty, a beauty cold and austere 
like that of sculpture, without appeal to any part of our weaker nature, without 
the gorgeous trappings of painting or music, yet sublimely pure, and capable of a 
stern perfection such as only the greatest art can show. The true spirit of delight, 
the exaltation, the sense of being more than Man, which is the touchstone of the 
highest excellence, is to be found in mathematics as surely as in poetry.” 

Nevertheless, the outcomes of the natural sciences are subjected to experi-
mental tests: what is false or true is definable regardless of hungers and geome-
trical distresses. On the one hand, abstract numbers express reliable physical 
laws describing properties and predicting behavior of Nature. On the other hand, 
however, this epistemological shortcut in fact leaves unexplained the link be-
tween science and reality, calculation and experiment, mental ideas and actual 
story of the Universe. Quoting Einstein “the most incomprehensible thing of the 
Universe is that it is comprehensible”. 

Paradoxically, it is easy to understand the correlation between mathematical 
algorithm and natural event assuming first deterministic evolution of systems 
according to the old classical physics: once having selected properly the initial 
conditions, the successive evolution is in principle uniquely determinable. In 
practice any deterministic model requires a suitable number of descriptive pa-
rameters exactly known of a whole system, whose time evolution is codified and 
described via appropriate functions of these parameters; the mathematical defi-
nitions valid at a given time 0t t= , remain also valid, if correctly chosen, at 

0t tδ+ . Extrapolating this reasoning, the outcomes of such a model hold at any 
times 0t n tδ+  even for n →∞ : everything exactly known at 0t t=  remains 
exactly knowable forever. This should be true in principle also for a classical 
Universe, regarded as a whole physical system. 

Actually however the problem is much more complicated. 
The task of guessing the evolution of a physical system from a given initial 

condition must settle up with the probabilistic frame of the quantum theory: 
uncertainty relationships imply the impossibility of knowing simultaneously 
couples of conjugate dynamical variables. This constrain at the time 0t  pre-
vents the possibility of their exact knowledge at any later time as well. Worse still, 
an initial energy uncertainty 0δε  compels a subsequent range δε  of possible 
values that depends itself upon the choice of tδ . As a matter of fact, however, 
the fundamental laws of quantum physics are successful in conceiving correctly 
and designing operatively transistors and lasers. 

The predictive ability of science becomes further at stake considering also the 
relativistic theory, according which tδ  and δε  have meaning only relatively 
to the particular reference system where they are initially defined: e.g. the twin 
paradox exemplifies that the time is not an absolute parameter, as the reciprocal 
motion of their reference systems R and R′  implies anyway admitting different 
time lapses tδ  and tδ ′  for a given event to occur and even for their aging. 
The necessity of specifying both reference systems to describe physical events 
explains why the physical laws must be formulated in a covariant way. 
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Moreover the link between quantum and relativistic theory is still a hard chal-
lenge even today. 

To approach gradually the epistemological problem raised by these short con-
siderations, suppose preliminarily that a given event K is allowed to occur in a 
given R at the arbitrary time 1t , waiving for the moment whether or not actual-
ly this time is exactly determinable; in this R are also defined the initial time ot  
and the pertinent boundary conditions. Let K be for example the motion of a 
classical system of N particles, described by a total number J of descriptive pa-
rameters jf : e.g. position coordinates ( ), , 1r i r ix x t= , momentum components 

( ), , 1r i r ip p t= , energies ( )1i i tε ε=  and so on of each i-th particle with 
1,2,3r = . Of course jf  can include also mutual interactions, presence of ex-

ternal fields and anything else. Shortly, 
1 ,t jf  symbolize in general the j-th dy-

namical variables significant to define the state of each particle at the time 1t , in 
principle all measurable. Moreover let be known also the experimental value of 
the observable ( )1 1V V t=  of a given property V characterizing the event K at  

the time 1t  and reproduce this value as a linear combination 
11 ,

1

J

j t j
j

V A f
=

= ∑  of  

its descriptive parameters via appropriate coefficients jA . A simple example 
clarifies this point. Consider a one dimensional system of two interacting par-
ticles having initial coordinates 1ox  and 2ox  at the time ot ; concerning first 
the initial boundary condition, write  

*
1 ,1 2 ,2 3 ,1 4 ,2 5 6o o o o o o oV A x A x A A A A tε ε ε= + + + + +  

being all dynamical variables known by definition, regard the coefficients jA  
as parameters that fit the initial value oV  of total energy of the system; also, are 
experimentally measured the space and time coordinates and the energies 1oε  
and 2oε , upon which depends the interaction energy *

oε  assumed known as 
well. Repeat this reasoning, but considering now the total energy 1V  of the sys-
tem at the arbitrary time 1t ; it is in principle possible that the same equation 
links 1V  to the new space and time coordinates 1,1x  and 1,2x , energies 1,1ε  
and 1,2ε , and interaction energy *

1ε . Assuming experimentally known all these 
quantities, the new linear combination involving the same dynamical variables 
reasonably determining 1V  experimentally known as well reads  

*
1 1 1,1 2 1,2 3 1,1 4 1,2 5 1 6 1.V A x A x A A A A tε ε ε= + + + + +  

In principle it is possible that the coefficients jA , with 1 6j≥ ≥  in this exam-
ple, fit not only the initial boundary condition but also this further equation. In 
practice, however, neither the former equation nor the latter are calculable be-
cause two equations do not define uniquely the six unknowns jA ; the system of 
equations is actually undetermined. But it is possible to measure all dynamical 
variables also at the subsequent arbitrary times 2t  or 3t  and so on, which yields  

*
1 1, 2 2, 3 1, 4 1, 5 6 .k k k k k k kV A x A x A A A A tε ε ε= + + + + +  

It is clear that further sets of six experimental data obtained measuring the 
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same quantities at five additional times with respect to the initial condition, yield 
a system of six equations with six unknowns. Now the system admits a unique 
solution for all jA  fulfilling by definition also the boundary condition. In prin-
ciple this empirical procedure is possible no matter how complex is the system 
and how many its freedom degrees might be; a suitable number J of experimen-
tal measurements allow to obtain coefficients jA  that fit by definition all values 
of the observable kV  of interest at any time between ot  and Jt . The various 

,kt jf  are therefore not only the respective kx  but also any other dynamical va-
riable that concur with all kε  and *

kε  to the resulting value of the observable 

kV ; it is clear why one of the dynamical variables must be just the pertinent time 

kt . Note that, owing to the empirical character of the linear combination, even 
the higher powers of some descriptive parameters, e.g. 2

,r ip  are in principle 
admissible with their own jA  among the terms contributing to kV . 

Anyway take for granted that, by definition, all coefficients jA  fit correctly 
the known values of the experimental parameters ,kt jf  of all particles concur-
ring to the required value kV . 

On the one hand, is comprehensible the interest to describe the system at 
subsequent times after that of the initial condition for completeness of informa-
tion. On the other hand, however, since in general the descriptive parameters are 
functions of time, e.g. the dynamical variables of the various particles, the evolu-
tion of the system during a given time range becomes in fact essential require-
ment for the mathematical approach: repeating the same numerical procedure at 

1J −  subsequent times kt  after the initial ot , one can define a set of J equa-
tions and thus a square matrix of coefficients jA  whose lines fit exactly by de-
finition the experimental values kV  of the observable V in the given time range. 
Write therefore  

( ),
1

, 1 , ,
k

J

k j t j k k j k
j

V A f k J V V x t
=

= ≤ ≤ =∑             (1.1) 

the system of equations removes the indeterminacy inherent a unique observa-
tion time and contextually describes how a given observable of the system 
changes at various times 1 k Jt t t≤ ≤ , although without rational or heuristic va-
lence. Nonetheless the following evolution matrix represents the minimal condi-
tion able to characterize mathematically one property V of one event K of the 
system, although waiving any chance of physical explanation:  

1,1 ,2 ,

,1 ,2 ,

,1 ,2 ,

, , , ,

too o o

tjk k k k

J J J J tJ

t t t J

t t t J

t t t J

VAf f f

VAf f f

f f f A V

   
   
   
   = = = =    
   
             

KA V K A V




   



   
 



 (1.2) 

Every column of the matrix K  represents the values of each descriptive pa-
rameter governing V at various times, every line concerns the values of all possi-
ble descriptive parameters contributing to the value kV  at the particular time 
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kt  regardless of explaining how it was at the past 1kt −  or will be at the future 

1kt + . The matrix elements defined by a set of successive measurements fit there-
fore “a posteriori” the evolution of the observable V, i.e. simply reproducing 
mathematically what is experimentally known in the considered time range. This 
empirical procedure, in principle non-predictive, is to be repeated at all times 
and extended to each observable of any event K of interest to characterize the 
whole system. 

Moreover K  implies neither past nor future: exchanging two lines, the 
change of sign of K  is canceled by that of A  concurrently necessary, i.e. V  
remains unchanged. 

On the one hand this procedure, seemingly sterile, deserves attention as it 
shows that the link between numerical representation of the reality and physical 
events is in fact plausible: mathematics has its own rules to elaborate numbers; if 
these rules are implemented to reproduce the results of measurements, then the 
efforts of scientists are addressed to convert this empirical analysis of data, cor-
rect by definition, into rational information to be understood. So Wigner’s 
doubts are bypassed regarding in fact the empiricism as an intermediate step 
between mere observation and profound knowledge of the reality, which how-
ever remains implicitly hidden in the raw data. 

On the other hand all previous considerations evidence three key require-
ments necessary for any theoretical attempt to bridge abstract numbers and in-
formative interpretation of results: 1) it must be holistic, 2) it must have space 
time structure, 3) it must inherently have evolutionary character. These three 
points prospect the non-trivial heuristic worth of K : despite its pragmatic cha-
racter, the coefficients of each line of the matrix and thus the matrix itself fulfill 
by definition these requirements and have thus physical valence. Also, K  de-
monstrates the inherent rationality of Nature, without which no best fit tech-
nique could provide sensible outcomes. By consequence, no conceptual doubt 
exists about the effectiveness of a rational approach in describing mathematically 
the reality. 

In principle is difficult to discern, on the basis of a linear combination of pa-
rameters only, whether for example two arbitrary time ranges tδ  and tδ ′  
differ because they refer to different reference systems in reciprocal motion or 
because of the presence of a gravity field or even because the quantum uncer-
tainty implies corresponding energy ranges δε  and δε ′ . Is evident thud the 
necessity of overcoming the mere empiricism hitherto preliminarily proposed, 
while acknowledging that the predictive ability of any theory is nothing else but 
its ability to reproduce the values of the aforesaid coefficients via rational path as 
general as possible, i.e. starting from first principles. In particular, it appears also 
necessary to identify rationally one by one the parameters jf  in fact concur-
ring to describe exhaustively any physical event K. 

The idea is at this point to bypass the best fit approach, valid by definition, by 
introducing a general function  
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( ) ( )
( ) ( )

, , , , , ,

, , , ,

, , , , , , , ,

, , ,

r j r j j r j r j r j r j

j j r j r j r j r j

x p t p p x t

x t x t

ψ ψ ε

ε ε

= ⋅⋅⋅ Φ =

= Φ = Φ
        (1.3) 

the index r stands for the set of three space coordinates and related vector com-
ponents of all dynamical variables characterizing the system, e.g. possible inter-
nal and external vector fields ,r jΦ  suitable to affect the evolution of all its con-
stituting particles, the dots indicate any further j-th descriptive parameter addi-
tional to ,r jp  and jε  possibly necessary. The last three positions allow writing 
implicitly and simply ( ), ,r j kx tψ ψ=  via the various ,r jx  of all j-th descriptive 
parameters contributing to the k-th line of K  at the time kt . For example 

( ), ,j r jx tε  is itself a shortcut of ( ), ,, ,j j r j r j kx tε ε= Φ ; indeed jx  at various 

kt  are somehow determined themselves by the strengths of the fields possibly 
acting on the system. So the Equation (1.3) can be shortened without loss of ge-
nerality writing ψ  as  

( ), ,, , , , ,r j k r j j j jX t X x y zψ ψ= =                (1.4) 

having nested into X all possible descriptive parameters implicitly governing the 
physical state of the system. 

It is clear that the strategy of implementing the form (1.4) as a starting point, 
requires to extract successively from ,r jX  information about the possible ex-
ternal fields concurring to the internal interactions in defining ,r jΦ  previously 
quoted. But how could the primordial function ψ  summarize the variety of 
phenomena symbolized by every possible observable kV  for all possible physi-
cal events K? 

Try to simplify the problem: although in principle the following considera-
tions hold even for 3r > , as postulated in some physical theories [3], assume 
for simplicity and without conceptual limitation a two dimensional space time, 
with the time coordinate and one space coordinate only. In this assumed one 
dimensional space 1r =  can be omitted, whereas the space coordinates and re-
spective vector components are represented by the unique index j that now re-
fers to the various particles of the system. Accordingly, it is eventually possible 
to write more shortly ( ),j kx tψ ψ=  intending now j extended to the freedom 
degrees of all particles of a given physical system at the time kt . So any physical 
effect determining the behavior of the system is described via one dimensional 
approach with two space time coordinates only for each freedom degree; this 
bypasses the difficulty of guessing one by one the descriptive parameters that ef-
fectively govern case by case the event K. Compare now the early empirical ex-
pression (1.1) with the series expansion of ψ  around arbitrary initial coordi-
nates ojx  and ot , which reads  

( ) ( ) ( )
1 1

,

1 , ,
!

j oj k o

i
J I

k o j oj k o j
j i j

x x t t

V V x x t t x t
i x t

ψ ψ ψ
= =

= =

 ∂ ∂
= + − + − =  ∂ ∂ 

∑∑  (1.5) 

the summation over i accounts for the arbitrary number I of terms of the series, 
that on j reproduces the same number of terms of the linear combination (1.1), 
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the index k  still represents the time at which the descriptive parameters j are 
expressed when defining the time change of an appropriate function ψ  of all 
the necessary parameters. The notation indicates that the derivatives of ψ  are 
calculated at arbitrary j ojx x=  and ot t=  defining oV  in a given R, e.g. the 
laboratory. So each term j of (1.1) takes the form  

( ) ( ), ,
1 1

,

0

1
!j k j o

j oj k o

J I i i i i
t j t j j oj k o oj o

j i

i i i
i
oj o i i i

j k x x t t

i

i

i
A f A f x x t t

ii

x t

ψ

ψ ψ

′ ′− ′

= =

′ ′−
′

′ ′−

= =

′=

 
= + − − ∂ ′ 

∂ ∂
∂ =

∂ ∂

∑∑ ∑
     (1.6) 

the additive term is assumed known, being the initial boundary condition of the 
problem. Each j-th term is still related to the respective parameter jf  of the 
best fit procedure at the time kt , although with a small difference. Previously 

,kt jf  were selected quantities implied by the physical event K (all measurable 
dynamical variables, among which jx  and kt ) tentatively introduced one by 
one; the best fit procedure aimed to calculate the respective coefficients jA  re-
producing the known values of kV  (the specific physical property of interest) at 
the time kt . Here instead the series expansion yields numerical coefficients 

i
j oj oA ψ′= ∂  given by derivatives of a unique unknown function ψ  calculated 

once for all at prefixed space and time coordinates initially set. The descriptive 
parameters are ( ) ,,

k

i i i
t j j ki i f x tδ δ′ ′−′ = , i.e. combinatorial factors times various 

products of space time ranges j j ojx x xδ = −  and k k ot t tδ = − : the dynamical 
variables previously tentatively introduced via the respective descriptive para-
meters ,kt jf  correspond now to the space coordinates of all particles that still 
represent space and time experimental inputs. If these latter are known, then 
(1.6) and (1.1) are equivalent as concerns the best fit approach, defined again by 
a linear system of equations with best fit unknowns i

oj oψ∂ . Yet, as by definition 
the coordinates depend upon all fields possibly acting on the system, summa-
rized by ,r jΦ  at given kt  and nested like in (1.4) and (1.3), further calcula-
tions are necessary to go back from these coordinates experimentally measured 
to the strength of the fields hidden in ψ . Nonetheless there is more information 
in (1.6) than in (1.1): the correlation of the actual experimental data to the initial 
conditions is not simply reasonable, it is required by the concept of space time 
ranges themselves. 

The next step to overcome the legitimate Wigner doubts is just the time cor-
relation (1.5), which does exist indeed and involves space time ranges as they 
appear in (1.6), not the local ,j kx t  and ,oj ox t . 

The worth of this information appears just from these equations comparing 
the particular cases where 1i =  and 2i =  in (1.6). Since in the former case 

0,1i′ = , the summation on i′  yields for each j term x j t kx tδ δ∂ + ∂ , where x∂  
and t∂  are mere numerical coefficients corresponding to the respective i

oj oψ′∂ . 
Whatever the numerical values of these coefficients might be, the space and time 
ranges appear separately: all jxδ  on the one side and ktδ  on the other side 
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can be put independently equal to zero to describe local or simultaneous events. 
The case 2i =  is conceptually different and more interesting, as the j-th term 
of (1.6) reads 2 2 2x j t k x t j kx t x tδ δ δ δ′ ′ ′ ′∂ + ∂ + ∂ ∂ , being x′∂  and t′∂  new numerical 
coefficients; the space and time ranges appear together in the mixed term 

j kx tδ δ  with mixed coefficient x t′ ′∂ ∂ . In general all higher order terms of the 
sum over 1i >  imply mixed space time ranges. 

Hence the first order and second order terms of the series do not imply mere-
ly two different degrees of numerical approximations in calculating kV  of the 
Equation (1.5). It is clear that 1i =  is the classical case: a glance to this equa-
tion indicates that space and time terms are in fact separate dynamical variables 
like in (1.1). In the linear combination (1.1) the time is an independent input 
parameter, arbitrarily set, as a function of which the x-coordinate is next calcul-
able consistently with any event occurring in the system, e.g. the interaction be-
tween particles. But in general the mixed terms modify strongly this point of 
view; for example it is no longer possible to put 0ktδ =  independently of jxδ : 
simultaneity and locality are in general conflicting concepts. 

Moreover the Equation (1.6) introduces contextually the concept of evolution 
regarding in the same way also the initial configuration of the system through 
products of ranges oj ox tδ δ . So (1.6) shows that the local space and time coor-
dinates separately measured and purposely introduced to carry out best fit cal-
culations are actually mere mathematical parameters useful for empirical calcu-
lations only; the space time ranges of coordinates are instead physical parame-
ters collecting together sets of local space coordinates jx  included within jxδ  
that define the evolution of allowed states of physical systems during a finite 
time lapse ktδ . Without this correlation, the system would be that of the matrix 
(1.2), i.e. describable as if it would consist of a list of mathematical terms unre-
lated and disconnected each other at various times. 

This is the first hint to reproduce the coefficients jA  of (1.1) from first prin-
ciples, thus overcoming both empiricism and Wigner’s doubts. 

In effect it will be found in the following that j kx tδ δ , not the local j kx t , is a 
sensible definition of space time compatible with quantum requirements. This 
shows that (1.6) lays prospectively the basis of both relativity and quantum 
physics: the necessity of a space time frame defined via sets of local coordinates 

j kx tδ δ  is in principle also consistent with the quantum lack of determinism 
based on local coordinates both exactly knowable. 

Anyway, apart from mathematical details, the known value of any kV  in (1.2) 
is still reproducible in principle solving once more a set of linear equations of the 
unknown i

oj oψ∂ . The expected rationality inherent the best fit calculation ap-
pears now through the mathematical properties of ψ . With a correct choice of 
this function, the coefficients i

oj o jAψ′∂ ↔  describe conceptually and not only 
mathematically the evolution of physical systems; in practice this function still 
maps the systems like the mere empirical approach (1.2) and makes plausible the 
numerical representation of the reality. The key point is the underlying link with 
the concept of time evolution of physical systems with respect to their initial 
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conditions. 
Thus the basic idea is that a general function, ψ , must exist able to describe 

specific events of interest implementing the holistic concept of system evolution: 
if it is true that the Nature is a complex system under continuous modification, 
then the physical laws should also conform themselves to this principle. Accor-
dingly, space and time should appear as inseparable properties in this evolutio-
nary scenario that also implies the holistic view previously outlined as actual 
mathematical requirement. 

On the one hand if the function ψ  would be known, then there would be no 
necessity of determining in advance via best fit approach the power series (1.6) 
of the dynamical variables, which in fact would be calculable themselves through 
ψ  and its derivatives; this chance exemplifies in principle the starting question 
of this section, i.e. to show why the rational knowledge of phenomena allows 
mapping the reality into numbers regardless of speculations about the geome-
trical origin of π . On the other hand this conclusion introduces the aim of the 
present paper, i.e. to understand how an appropriate function representing the 
physical phenomena through the concept of holistic evolution in fact prospects a 
conceptual path alternative to empirical best fit calculations; in this way ψ  also 
removes the necessity of knowing in advance case by case the specific event to be 
described. Therefore the previous question about the mathematical structure of 
the reality overlaps to the following ones: “how all information codified in phys-
ical formulas is in fact deducible from ψ ?” and also “are the current results of 
such theoretical basis susceptible of predictive outcomes prospecting the possible 
future Universe”? 

Clearly the second question concerns the development of science and has 
heuristic valence in describing anything effectively allowed to happen in a 
changing Universe. 

The purpose of the present paper is to highlight some straightforward hints 
towards this aim, i.e. how in principle could a single function ψ  describe all 
variety of phenomena occurring in the Universe. 

For simplicity and brevity of exposition the model is deliberately one dimen-
sional: this choice does not represent a conceptual limit, it merely aims to simpl-
ify the theoretical approach with mathematical formalism as simple as possible. 
Also, the model purposely considers scalar quantities: for example v is the com-
ponent of the velocity vector v ; analogous consideration holds for the compo-
nent p of the momentum p . These positions allow writing only ( ),x tψ ψ=  
without subscripts. The time evolution of this function in a given R is therefore 
given by ( ) ( ), ,x x t t x tδψ ψ δ δ ψ= + + − . 

To add a further step forwards, consider more closely the particular space 
time interval introduced by (1.6)  

( )( )st j oj k o j kx x t t x tδ δ δ= − − =                 (1.7) 

as stδ   consists of two ranges, the first problem is how to define position and 
size of both jxδ  and ktδ  in an appropriate reference system R. For example 
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the coordinates ojx  and ot  can be defined in order to fix the distances of one 
boundary of jxδ  and ktδ  on the respective axes, e.g. ojx  and ot , from their 
common origin O of R, imagined as a two dimensional space time plane with the 
time on the vertical axis and the length on the horizontal axis; so jx  and kt  
fix the sizes of the ranges. However a better chance exists in this respect: it is 
possible to introduce the following average values calculated via the boundary 
coordinates themselves of the ranges only  

, .
2 2

oj j o k
j k

x x t t
x t

+ +
= =                   (1.8) 

To describe self-consistently size and position of jxδ  and ktδ  in the space 
time plane, these mean values are defined on the respective axes of R as follows  

,c k j c k jv t x v t xδ δ′′ ′= =                    (1.9) 

the first definition relates jxδ  to the average time kt  needed for a hypotheti-
cal particle to travel through the whole range size, whatever it might be, the 
second definition relates ktδ  to the displacement rate of its average coordinate 

jx  related to the position of both range boundaries only. Clearly these defini-
tions need introducing two velocities cv′  and cv′′  compliant with the strategy 
of having defined mean values characteristic of both ranges only; if indeed just 
these definitions characterize size and position of both ranges in a self-consistent 
way, then any reference to O, and thus to R, is lost. In other words, replacing 
(1.9) into (1.7) neither ojx  nor ot  appear anymore explicitly in 

( )st c c k jv v t xδ ′ ′′= : these mean values of coordinates are in effect identically 
compatible with different ojx′  and ot′ , i.e. with any other O′ . Multiplying now 
side by side (1.9), one finds ( )2 2 2 2

c c k o j ojv v t t x x′ ′′ − = −  i.e.  
2 2 2 2 2 2 2 2, .jk c k j c o oj c c cv t x v t x v v vδ ′ ′′= − = − =            (1.10) 

The actual value of cv  does not require in principle any specific hypothesis; 
is however interesting its particular value, necessarily constant without contra-
dicting (1.10), consistent with ( )2

ktδ  and ( )2
jxδ  regardless of the reference 

system R where are defined jxδ  and ktδ ; the expression at the right hand side, 
formally identical to that at the left hand side, can be referred indeed to another 
reference system oR . It is significant that a unique constant 2

cv  fits different 
time and space coordinates and that this equation implies different time and 
space ranges in different inertial reference systems R and oR  even in reciprocal 
motion. 

However, the fact that space time terms i i
j kx tδ δ ′  more complex than that of 

(1.7) also appear in (1.6), suggests that a more complex space time metric is to 
be expected too. Since now all of these hints seem a reasonable step towards the 
special and general relativity. This also suggests that a model prospectively 
aimed to account someway for these suggestions should consider since the be-
ginning not only tδ  and xδ  but also, at least, ( ) 2t t t tδ δ δ δ δ ′= = −  and 
( ) 2x x x xδ δ δ δ δ ′= = − . Thus the problem is how to handle methodically both 

changes δψ  and 2δ ψ , rather than ψ  itself, to describe systematically the 
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physical properties of any system concerned by ψ . Despite ψ  is not known, 
are essential and enough to this purpose the general definitions  

( ) ( ) ( ), , , ,x x t t x t x tδψ ψ δ δ ψ ψ ψ= + + − =          (1.11) 

and, increasing again x xδ+  by xδ  and t tδ+  by tδ ,  

( ) ( ) ( ) ( )2 2 , 2 2 , ,x x t t x x t t x tδ δψ δ ψ ψ δ δ ψ δ δ ψ= = + + − + + +   (1.12) 

the former defines δψ δ  , the latter 2 2δ ψ δ  . Note that being by definition  

( ) ( )0 0, ,ψψ ψ δ δ∂
= + + ⋅⋅⋅ = −

∂
     



 

where 


 is any descriptive parameter of a physical system in the sense pre-
viously introduced, it is possible to put at the first order of approximation  

( ) ( )0

0

ψ ψ δψ ψ
δ

− ∂
= ≈ + ⋅⋅⋅

− ∂

 

   

 

neglecting the higher order terms. 
Here and in the following x and xδ  symbolize the r-th space coordinate of 

each j-th particle of the system and its change as a function of tδ  upon which 
depend possible changes of all dynamical variables and their x-components, e.g. 

jδε  and jpδ ; the same holds for ( )jpδ δ  and ( )jδ δε , and so on. Although 
is considered for brevity and simplicity of notation one dimensional space coor-
dinate only, from a conceptual point of view the number of actual coordinates is 
not necessarily limited to the usual three currently accepted. 

The remainder of the paper concerns these points through an “ab initio” 
theoretical model whose exposition aims to be as self-contained as possible. Such 
model aims to deduce both well known results, as a validation, and new 
achievements, as innovative implications: in both cases, however, the assessment 
benchmark is its conceptual root in the Equations (1.11) and (1.12) only. 

Despite for sake of brevity and clarity of exposition physical properties like 
energy and momentum have been taken for granted and explicitly mentioned as 
well acknowledged concepts in this introductory section, actually all of them will 
be inferred self-consistently themselves uniquely through (1.11) and (1.12); this 
holds also for quantities like charge and mass that apparently have nothing to do 
with the concept of evolution defined by these equations. Although seemingly 
trivial and innocuous, these two equations are unique source of information and 
unique input enough to infer all considerations exposed below in a consequen-
tial way, while overcoming Wigner’s doubts and renouncing to any hints from 
physics theories currently existing. For completeness, when necessary, are also 
shortly sketched some results previously published to emphasize their connec-
tion with the present conceptual frame. 

2. The Model 

To infer information of physical interest from the initial positions (1.11) and 
(1.12), the simplest idea is to relate appropriately xδ  and tδ , and possibly 
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even 2 xδ  and 2tδ , to δψ  and 2δ ψ  in an arbitrary R. In principle this 
correlation can be expressed implementing δψ  to obtain two identities 

( ) ( )x x t tδψ δψ δ δ δψ δ δ= =  that merge into  

.x t
t x

δ δψ δ
δ δψ δ

=                         (2.1) 

The ratio at the left hand side introduces a new concept implied by δψ , the 
velocity v; this dynamical variable, not evident nor necessary in (1.11) and (1.12), 
is defined by the identity  

1 , .xv
x v t t

δψ δψ δ
δ δ δ

= =                      (2.2) 

The significance of this result, which follows the Equation (1.11) only, appears 
rewriting both sides according to the Equation (1.12) i.e. implementing likewise 
the identity 2 2δ ψ δ ψ= . Dividing both sides by 2xδ  still via x v tδ δ=  just 
introduced, an analogous reasoning yields the further identity  

2 2

2 2 2

1 .
x v t

δ ψ δ ψ
δ δ

=                         (2.3) 

The explicit physical meaning of these identities appears when δ → ∂ , i.e. 
when the range sizes described by δ  tend to zero. On the one hand this is 
possible because no restrictive hypothesis has been introduced about the ranges, 
on the other hand 0xδ →  and 0tδ →  do not necessarily imply equal limits 

xψ∂ ∂  and tψ∂ ∂  of the Equations (1.11). As written, the left hand side of 
(2.3) reads ( ) ( ) ( ) 22 , 2 , ,x x t x x t x t xψ δ ψ δ ψ δ+ − + +   , whereas the right 
hand side reads ( ) ( ) ( )2 2, 2 2 , ,v x t t x t t x t tψ δ ψ δ ψ δ− + − + +   . The limits of 
these expressions for δ → ∂  are indeed 2 2xψ∂ ∂  and 2 2 2v tψ− ∂ ∂ ; as such, 
they are defined in general by the local analytical dependence of ψ  upon either 
dynamical variable. 

All this makes sense, as in fact the symbols δ  indicate arbitrary changes not 
only of ψ  but also of x and t; just for this reason, therefore, nothing can be “a 
priori” inferred from the ratios between δψ  and xδ  or tδ  since both these 
latter are arbitrary, unknown, unrelated and thus implementable separately and 
independently each other. Instead, despite (2.3) is trivial identity,  

( )
2 2

2 2 2

1 , ,x t
x v t
θ θ θ θ∂ ∂
= =

∂ ∂
                 (2.4) 

has physical meaning while the aforesaid limits imply contextually ψ θ→ ; the 
notation remarks that θ  yields in particular the local analytical form of ψ  
resulting from the specific correlations of δψ  with xδ  and tδ  (2.2) and 
(2.3). So the local behavior in the infinitesimal space range dx  and time range 
dt  fulfills at any ,x t  just the Equation (2.4). All quantities concerned by δ  
are arbitrary and finite by definition; thus they have been handled, and will be 
again handled also in the following, according to standard algebraic rules like-
wise any finite dynamical variable. Instead the limits δ → ∂  imposed to them 
define a further local condition/constrain that in fact eliminates their total arbi-
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trariness and thus implies the mutual interdependence of both sides of (2.3) 
around a common limit: the initial analytic form of ψ , whatever it might be, 
turns locally into that, θ , fulfilling both local limits. In this specific case one has 
found the D’Alembert equation describing the dynamics of a homogeneous elas-
tic string vibrating with fixed extremities and with constant propagation rate v of 
the perturbation around the equilibrium position of the string. Obviously the 
local dependence of θ  upon x and t is found by solving the resulting differen-
tial equation. 

This first example has emphasized how to infer information about one specif-
ic physical system through the local extrapolation θ  of ψ  as a function of 
both 0tδ →  and 0xδ → . Although the Equations (2.3) and (2.4) have iden-
tical analytical form, they remark the transition from non-local to local descrip-
tion of the concerned physical system: the former is in fact non-calculable, being 
mere identity, the latter takes physical meaning because is calculable and com-
parable with the experience. Otherwise stated, it is reductive to regard (2.3) as 
intermediate algebraic step towards (2.4); it actually describes a non-real and 
non-local world that does not have identifiable physical properties of the real 
and local world accessible to the experiment. Non-locality and non-reality are 
concurrent features of a further world, the quantum world, that can be not only 
guessed but also implemented to understand the microscopic properties of mat-
ter. 

It is easy to generalize this result to the case where the string is 
non-homogeneous simply considering another possible chance of defining the 
link between δψ  and both xδ  and tδ  via the trial positions 1x kδ  and 

2t kδ , i.e. introducing two different proportionality factors 1k  and 2k  con-
cerning separately the previous xδ  and tδ . In this case δψ  is defined via 
these generalized increments, both still unknown and arbitrary of course, where 
however the functions 1k  and 2k  prospect a new result even more general 
than (2.3). Now let us repeat the previous steps. To modify the correlation of 
δψ  upon xδ  and tδ  via the respective factors 1k  and 2k , multiply first 
both sides of (2.2) by 1k , still keeping the definition x v tδ δ=  although with a 
different expectation value of the resulting local v. So the identity  

( )1
1 1 1, ,

kk k k x t
x v t

δψ δψ
δ δ

= =                 (2.5) 

yields the further identity according to (1.12)  

1
1

kk
x v t

δψ δψδ δ
δ δ

   =      
                   (2.6) 

and thus, dividing both sides by xδ ,  

1
1 ,

kk x v t
x x v t v t
δ δψ δ δψ δ δ
δ δ δ δ

   = =      
             (2.7) 

formally the Equation (2.7) results from two steps, taking first the changes (2.6) 
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of the quantities at both sides of (2.5), which are subsequently related to xδ  
and tδ  to obtain (2.7). Of course the limit δ → ∂  is not implemented at this 
intermediate step, as this would mean differentiating the quantities at both sides 
before having introduced the second function 2k ; instead it is convenient to 
keep still finite changes of xδ  and tδ , which again can be further worked out 
regarding them like any finite physical variable, to introduce 2k  too. Write 
thus without loss of generality  

( )1 2
1 2 2 2

0 0

1 , , , ,
k kk k k k x t

x x v v t t v v
δ δψ δ δψ
δ δ δ δ

   = = =   
   

     (2.8) 

being 0v  a constant velocity by definition; therefore  

2 2 1
1 2 0 02

2

1 , .
kk k v v v v

x x t t kv
δ δψ δ δψ
δ δ δ δ

    ′= = =   ′   
        (2.9) 

Now it is possible to infer from the Equation (2.9) the pertinent differential 
equation once more via the position δ → ∂  that implies thus a new local func-
tion ψ ϑ→ , i.e.  

( ) ( )1 22

1 , , , , .k k x t v v x t
x x t tv

ϑ ϑ ϑ ϑ∂ ∂ ∂ ∂    ′ ′= = =   ′∂ ∂ ∂ ∂   
   (2.10) 

The particular result with 2k const= , which thus can be included in ( )1 ,k x t  
at left hand side, yields the well known equation of the wave propagating 
through a non-homogeneous string with one fixed extremity. Obviously the 
functions θ  and ϑ  fulfilling the respective local limits implied by (2.4) and 
(2.10) are different; is indeed different the local behavior of either function cor-
respondingly to the respective differential equations. The notation emphasizes 
that θ ϑ≠ : these functions describe different physical systems because of the 
different correlation of δψ  with xδ  and tδ . 

The outcomes (2.4) and (2.10) highlight the strategy of the present paper: the 
arbitrary function ψ  initially introduced according to (1.4) to describe in prin-
ciple the physical properties of any system is implementable in various ways, 
depending on how is expressed the possible correlation between its change δψ  
with respect to that of its dynamical variables xδ  and tδ . In other words the 
crucial point is not the analytical form of ψ , but how it changes as a function of 

xδ  and tδ : whatever ψ  might be, in fact this procedure identifies itself the 
possible kind of problem and outlines its mathematical solution as well via the 
resulting differential equation. 

These results are not accidental outcomes inherent the explanatory examples 
just carried out; in effect no “ad hoc” hypotheses have been made on the con-
cerned systems, e.g. homogeneous or non-homogeneous string, having simply 
introduced two different ways of describing the local change, i.e. the evolution, 
of ψ . 

Let us exemplify further possible ways to handle δψ  and 2δ ψ  to confirm 
further the general worth of this strategy. To this purpose multiply both sides of 
(2.9) by 2v′  so that  
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1 2
0 ,

k kv v
x x t t

δψ δψδ δ
δ δ δ δ

   =   
   

               (2.11) 

which suggests the following definitions according to (2.8)  

( )0
0 1 2, , .

pvpv v p k k
x t t x t

δδ δε δψ δψε
δ δ δ δ δ

= = = =        (2.12) 

As the unique Equation (2.9) cannot specify both 1k  and 2k , which are still 
undefined, nothing excludes in principle the chances 2 1k k≠  or 2 1k k= . Yet, 
even so, it appears that the positions (2.12) are not merely formal. To under-
stand the physical meaning of the “new” quantities p and ε , note that the first 
equation implies  

( )0 0 1 2, . . , .pv i e pv const k kδ δε ε= = + ≠         (2.13) 

By definition 2 1δε ε ε= −  and ( )0 2 0 1 0pv p v p vδ = − = , whereas 

1 2ε ε ε≤ ≤  and 1 0 0 2 0p v pv p v≤ ≤ ; of course all quantities labeled “1” and “2” 
are arbitrary. As it possible to multiply side by side these equations, write  

( )0 0pv pv constδ εδε δε= + . Intuitively εδε  should read ( )2 2δ ε  with nota-
tion that avoids confusion between ( )22

2 1δε ε ε= −  and ( )2 2 2
2 1δ ε ε ε= − : in 

effect if ε  is specifically regarded as mean value within its own allowed range 
δε  of variability, i.e. ( )2 1 2ε ε ε= + , one finds  

( )( ) ( )2
2 1 2 1 2 2εδε ε ε ε ε δ ε= + − =  whatever 2ε  and 1ε  might be. The 

same reasoning for ( )0 0pv pvδ  yields ( )2
0 2pvδ . The idea of local variables 

ε  and 0pv  allows an interesting implication noting that in general 
( )constδε δ ε≡ ± ; so merging (2.13) one finds  

( ) ( ) ( )2 2
0

1 1
2 2

pv constδ δ ε δ ε= +              (2.14) 

i.e. ( )2 2
0 2pv constε ε= + . Also, since ( )22 22const const constε ε ε+ = + − , 

then  

( )22 2
0 , .pv const constε ε ε′ ′= + = +           (2.15) 

To examine either chance, calculate with the help of (2.12), (2.2) and (2.9)  

( ) 1
2 1 1 2

2 0

1 1 .
kx vpv k k k k

t x t t k v
δψ δψ δ δψε ε ε
δ δ δ δ

  
+ = + = + = + = +  

   
(2.16) 

Regarding separately the addends at the initial and final left and right hand 
sides, this chain of equations is consistent: ε  and pv at the left hand side cor-
respond respectively to ε  and ( )0v v ε ; in effect 0p vε=  is nothing else but 
(2.13) with 0const = . This justifies regarding p and ε  of (2.16) as momen-
tum and energy in agreement with (2.23). Yet another chance also consistent 
with 1 2k k≠  is  

1 2 ,k k= −                        (2.17) 

i.e. 0pvε + =  so that 0v v= − : in effect v is actually velocity component de-
fined by xδ  during the time range tδ . 

The well known Equation (2.15) will be inferred again later; these short notes 
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aim to justify preliminarily the positions (2.12) according which, regarding from 
now on 0v c=  with usual notation, p and ε  are nothing else but momentum 
and energy of a relativistic free particle. Simply regarding p and ε  as local 
random values in their allowed ranges pδ  and δε , i.e. anticipating here the 
concept of quantum uncertainty, it also appears in (2.14) why 0v  must be upper 
bound: if not, then p necessarily finite in its finite range pδ  could be consistent 
with an infinite energy ε ′  allowed by diverging δε  once multiplied by a val-
ue of 0v →∞ . 

So the finite value of c follows as a corollary. 
Also, it is not surprising that the energy is defined an arbitrary constant apart; 

it will be shown shortly, however, that the constant has in this context a peculiar 
physical meaning. If 1 2k k= , then 0v v=  and thus 2pvε ε+ =  i.e. pcε = . 
The implications of this chance will be examined in the following. 

2.1. Diffusion Equations 

With 0v v c= = , according to (2.8), the Equation (2.11) reads  

( ) ( )
2

2 2
1 2, , , , ;

c k k k x t k x t
x x t t

δψ δψδ δψ ψ
δ δ δ δ

  ′
′= = = 

 
     (2.18) 

since it is certainly possible to introduce an arbitrary function g such that 
gδψ τδψ ′= , being τ  a time dimensional constant, this equation reads  

( )2 2
0, , , , .

k gD D v g g x t
x x t g
δ δψ δψ τ δψ δψ
δ δ δ τ

′ ′  ′= = = = 
 

  (2.19) 

Whatever the function 2k g  might be, D has physical dimensions of diffu-
sion coefficient; in effect with the position δ → ∂ , which implies the local be-
havior of ψ ′  described by ψ β′→ , the last equation reads  

( ) ( ), , , , .D D D x t x t
x x t

β β β β∂ ∂ ∂  = = = ∂ ∂ ∂ 
        (2.20) 

This is just the general form of diffusion equation in a homogeneous and iso-
tropic medium in the absence of internal sources or sinks. But diffusion of what? 
Although β  is by definition dimensionless function, two relevant examples are 
reported below. To this purpose are anticipated here for clarity the concepts of 
mass and energy kT; both concepts will be inferred later self consistently in the 
frame of the present theoretical model. 

It is possible to multiply β  at both sides by a constant mass per unit volume 

0 0m V ; so the equation  

( ) 0

0

, , ,
mC CD C C x t

x x t V
β∂ ∂ ∂  = = = ∂ ∂ ∂ 

            (2.21) 

where C is an appropriate function describing the local value of mass density, 
concerns the matter transport function under non-equilibrium concentration 
gradient. It is known that other important phenomena fulfill (2.20); in fact the 
extension to these cases, e.g. the Fourier heat diffusion, is also possible in an 

 

DOI: 10.4236/jmp.2018.914161 2510 Journal of Modern Physics 
 

https://doi.org/10.4236/jmp.2018.914161


S. Tosto 
 

analogous way. Implementing a different dimensional factor to the local func-
tion β , i.e. multiplying both sides by an appropriate constant energy 0 , one 
finds the famous equation  

( ) ( ) ( )0 0 0K , , , K K , , ,x t kT x t T T T x t
x x t

β β β∂ ∂ ∂  = = = = = = ∂ ∂ ∂ 

 
   (2.22) 

where now with usual notation K replaces D to express the heat diffusion coeffi-
cient simply identifying ( ),x t kT≡ . 

Note that the present strategy to infer information about physical systems re-
veals unexpected links between seemingly different laws: it is significant the fact 
that elementary manipulations of the equation of vibrating string lead to the 
diffusion equations. 

2.2. Energy and Momentum 

The Equation (2.8) reads according to (2.9)  

1 1 1 22

1 , , , ,p p k k k k v c
x t x tc

δ δε δψ δψε
δ δ δ δ

= = = = =     (2.23) 

because of course the positions (2.12) still hold also in this particular case. This 
equation can be implemented in two ways. 

The first way is  

2

1 1p t p
x v c

δ δ δ
δ δε δε

= =                     (2.24) 

and thus the second equality yields  

2 .vp
c

δ δε=                         (2.25) 

Here v still appears because the ratio x tδ δ  is explicitly present in (2.24). 
The ranges explicitly written as 2 1p p pδ = −  and 2 1δε ε ε= −  by definition, 
where of course the quantities labeled with subscripts 1 and 2 are arbitrary, yield  

2 2 1 12 2 ;v vp p
c c
ε ε− = −  

this result reads therefore  

1 2 1 22 , , ,vp p p p
c
ε ε ε ε= ≤ ≤ ≤ ≤              (2.26) 

where p and ε  are random values by definition included within the respective 
ranges. 

The second way is highlighted rewriting (2.25) as  

( ) ( )
,

pc c
x t

δ δ ε
δ δ

=  

which yields  

, , ;o o o op x t const n p pc
c
εδ δ δε δ ε= = = = =

        (2.27) 

the constant n , required to fulfill products of different variables, will be justi-
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fied soon below; the notation emphasizes that op  and oε  are not constants. 
Thus, in agreement with (2.2), one also finds  

, .o o
xv p v
t

δδε δ
δ

= =                   (2.28) 

A few remarks help to simplify the notations in the following: 
− the subscripts of opδ  and oδε  will be omitted as both ranges are arbitrary, 

so they actually symbolize any sizes of the respective pδ  and δε ; 
− the velocities v and c are profoundly different, as the former is defined as ra-

tio of two range sizes whereas the latter is a universal constant of the Nature; 
− the definitions of two “new” quantities, momentum p and energy ε , have 

been guessed in (2.23) by dimensional reasons according to the constant  , 
once having defined dimensionless the coefficients 1k  and 2k . 

The lack of specific assumptions on p and ε , e.g. about the sizes of their al-
lowed ranges, implies their physical definition on mere dimensional basis. At the 
moment n has been formally introduced in (2.27) as mere proportionality factor 
of a constant,  ; dimensional reasons are enough to justify this position. In the 
following, see next Equations (3.1) and (3.2), it will be shown that n is actually 
an arbitrary integer, whereas the pertinent reasoning will also explain why the 
physical laws need quantization. The Equation (2.27) is particularly interesting 
as it correlates the products x pδ δ  and tδεδ  of four ranges of different dy-
namical variables, regardless of the necessity of the position δ → ∂  and re-
gardless of the range sizes; despite all changes of dynamical variables are arbi-
trary, the fact of having introduced a relationship between xδ  and tδ  im-
plies the general and non-local character of this connection. 

Consider now the Equations (2.28) and (2.26): the former concerns ranges, 
the latter local values. Let us show that relevant physical information is obtaina-
ble merging these equations. Multiplying side by side  

2

, cv p p
v

δε δ ε= =                   (2.29) 

one finds  
2 ;c p pεδε δ=                       (2.30) 

thus (2.30) is compatible with  

( )2 2 2 .const c p constε ′ ′′+ = +               (2.31) 

So follow three relevant equations  

( )22 2 2 2
02 , ,vp pc const const const v const

c
ε ε ′′ ′= = + = −  (2.32) 

Introduce now the boundary condition 0p =  to which corresponds 

0 0ε ε= ≠ , because in general the third equation is different from zero; strictly 
speaking, in effect, there is no reason to expect that 0ε  is necessarily null too. 
So this boundary condition yields 0 constε = ± ; moreover it implies defining a 
“new” quantity m not yet explicitly mentioned hitherto although implicitly 

 

DOI: 10.4236/jmp.2018.914161 2512 Journal of Modern Physics 
 

https://doi.org/10.4236/jmp.2018.914161


S. Tosto 
 

inherent the physical dimensions of p and ε , i.e.  

0
20

lim
v

p m
v c

ε
→

= =                      (2.33) 

so m is the rest mass. Calling c the constant velocity 0v , with usual notation, the 
last result reads thus  

( ) ( )222 2
2 , .vp pc mc

c
ε ε= = +              (2.34) 

Clearly the particular case pcε =  corresponds to v c= , which however re-
quires 0m =  in the second (2.34). It is immediate to verify that the two Equa-
tions (2.34) are consistent for 0m ≠ , as they imply the Lorentz factor 

2 21 v c− , whereas it also follows 

( )
( )

( )
( )

22 2
2 2

2 2, .
1 1

mc mv
p

v c v c
ε = =

− −
             (2.35) 

The second equation is compatible with p± ; this is not surprising because 
actually the component of p along an arbitrary direction can have both signs. 
Much more interesting is the analogous conclusion for ε± , which implies states 
of negative and positive energy separated by a gap 2ε . 

Note that in addition to the concepts of mass, momentum and energy, follow 
from (1.11) and (1.12) the constancy of light speed and Lorentz transformations 
of energy and momentum. 

A problem however arises now about why the first (2.34) is consistent with 
pc ε=  for v c=  whereas both (2.35) and the second (2.34) itself do not. A ra-

tional answer to this question will be given in the next Section 4.3. Note at the 
moment that the factor 2c v  of (2.34) yields 2c v lengthν = , being ν  an ar-
bitrary reciprocal time; so, calling “wavelength” the new length λ  defined in 
this way and multiplying both sides of the first (2.34) by 1ν − , one finds 

const pε ν λ= = . Thus  
2

, , ,const cconst p
v

ε λ
ν λ ν
= = =              (2.36) 

where obviously const h= ; so cν λ=  is defined even for v c= . These posi-
tions, here reasonably guessed, are easily verified starting again from (2.34) re-
written as 2p x c tεδ δ= . With the help of (2.27), trivial manipulation turn 
equivalently this result into both forms  

( ) ( ) ( ) ( )
, .

pc pc c c
energy momentum

t p x
δ ε δ ε
ε δ δ

= = = =
   

In both cases, dimensional considerations confirm the validity of the three 
positions (2.36), regarding in particular xδ λ↔ : i.e. the range size xδ  cor-
responds to one or more momentum wavelengths, the range size tδ  corres-
ponds to one or more frequency quanta. This suggests that actually onλ λ= , 
with n integer= , which formally is compatible with the constant appearing in 
(2.36) as const n=   as in effect it has been guessed in (2.27). Therefore it is 
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possible to write, in agreement with (2.2),  

1 1 2π, 2π , , .p
t t x xω ωε ν

δ δ δ δ λ
= = = =
            (2.37) 

It is interesting the fact that the Equations (2.36), pillars of quantum mechan-
ics, are obtained contextually to the relativistic expressions of momentum, ener-
gy and rest mass. 

2.3. Lagrange and Hamilton Equations  

Write (2.28) as  

;p
t x

δ δε
δ δ

=  

rewriting left hand side via (2.27) with 1n =  for simplicity, this equation reads 
then according to (2.23)  

t x t x t x
δ δ δε δε
δ δ δ δ δ δ

   = =  
   

  

and thus  

, .xx
t x x t
δ δε δε δδ
δ δ δ δ

  = = 
 





 

Also now the general concept of energy takes physical meaning via the limit 
δ → ∂ , which implies ε φ→  as well; hence the result is  

( ), , .x x
t x x

φ φ φ φ∂ ∂ ∂  = = ∂ ∂ ∂ 




                (2.38) 

So φ  is the particular local energy resulting from ε  whose local behavior is 
described just by this equation. It is easy to realize that the resulting φ  turns 
out to be Lagrangian energy. The most intuitive interpretation of φ  compatible 
with both sides of (2.38) is indeed  

, , ;pp p F p
x x t
φ φ∂ ∂ ∂
= = = =

∂ ∂ ∂
 



              (2.39) 

as all of this is coherent with φ  equal to energy, these equations define φ  
reasonably consistent with the Lagrangian T Uφ = −  of a physical system. In 
effect defining  

US d , ,t F
x

φ ∂
= = −

∂∫  

one finds  

S S, d dpt t p
t x x t

φφ∂ ∂ ∂ ∂
= = = =

∂ ∂ ∂ ∂∫ ∫               (2.40) 

in agreement with the well known definition of action S. Moreover, the second 
(2.39) yields  

( )T UU = , 2Tp x xp
x x x x
φ φ∂ −∂ ∂ ∂

= = − = =
∂ ∂ ∂ ∂

  



         (2.41) 
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owing to Euler’s theorem of homogeneous functions. Hence  

H T U.x
x
φ φ∂
− = = +

∂




                   (2.42) 

It is immediate to conclude that (2.42) yields the Hamilton function. 
As the Equations (2.3) and (2.9) have sensible implications, (2.4) and (2.10), 

whereas (2.39) and (2.42) allow describing correctly the dynamics of any particle, 
the present approach appears significant: a relationship between space and time 
ranges xδ  and tδ  has been established even without knowing anything 
about the initial ψ , simply admitting possible relationships between arbitrary 
( )xδ δ  and ( )tδ δ . Once more, however, it is worth emphasizing that every-

thing follows via (2.27) from (1.11) and (1.12) only. 
Instead of attempting to explain some particular physical event on the basis of 

the intuition about its presumed theoretical foundation, we started from arbi-
trary changes of an introductory function, ψ , which is not “a priori” specified 
but rather is “a posteriori” identified case by case depending on its possible local 
change described by the analytical form of the pertinent differential equation. 

2.4. The Group Velocity 

In (2.2) v is defined by the time range tδ  necessary for a particle to travel 
ideally the range size xδ . Note now that (2.1) reads formally  

, , k ,
k

x
t t x

δ δω δψ δψδω δ
δ δ δ δ

= = =  

where ω  and k are two “new” quantities called frequency and wave vector re-
spectively; in this case the concept of velocity at the left hand side is different 
from that of (2.2). These definitions introduce a further concept of velocity, be-
cause at the local limit δ → ∂  one finds  

.
k

x
t

ω∂ ∂
=

∂ ∂
                         (2.43) 

It is immediate to show that also the positions (2.36), in particular the third 
one, allow calculating consistently the group velocity of a matter wave packet 
through the following simple chain of equations. Implementing δε  and pδ  
with the help of (2.28) one finds  

1
1 1

2π , 2π , 2π
2π

v
p

δε δν δ ν δ κ λ ν
δ δκδλ δ λ

−
− −

Ω
= = = = = Ω =      (2.44) 

whatever const  might be. This suggest a possible quantum definition of veloc-
ity additional to the direct ratio between space range xδ  and time range tδ . 
Once more the position δ → ∂  implies the local definitions ωΩ→  and 

kκ → , whereas v turns to the first equality into local group velocity gv , i.e.  

.
kgv ω∂

=
∂

                        (2.45) 

Eventually, note that the third Equation (2.36) alone is enough itself to con-
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firm this result. Write  

n , n = , n ;
k

c cc
v

ωλ λν
ν

= = =               (2.46) 

as ncδ λδν νδλ= + , trivial manipulations yield  

2
1

n n n ,c c cδ δν δνλ λ
δλ δλ δλ−= + = −  

whence  
2

1

n nn n .c c c c
v

δν δ δλ λ
δλ δλδλ−

 = = − = − 
 

 

Therefore  

nn

cv
δλ
δλ

=
−

 

yields for δ → ∂  the local dispersion equation  

,
nn

g
cv
λ

λ

=
∂

−
∂

                      (2.47) 

i.e. the well known group velocity of a matter packet wave.  
In summary, relevant equations of physics are simply inferred and described 

through various chances of changing an arbitrary function ψ  of time and space, 
regardless of its early specific physical meaning and without need of introducing 
initial hypotheses. This concerns crucially the functions 1k  and 2k  introduced 
in general in (2.8) and (2.9), whose specific analytical form determines the cor-
relation of δψ  with xδ  and tδ : as it has been just highlighted, if 1 2k k=  
in (2.9) then one obtains the diffusion Equation (2.10), if instead 1 2k k≠  then 
one obtains further results concerned later thanks to the additional freedom de-
gree allowed to 2k . 

2.5. The Relativistic Velocity  

The starting point is the first Equation (2.34), which must be rearranged in order 
to find a sum rule between two arbitrary velocities 1 2v v+  and their corres-
ponding 1v′  and 2v′ , e.g. in two different inertial reference systems R and R′ . 
As 1 2v pcε− = , calculate first  

1 2 1 2
2 2

1 2 1 21 2

1 1 1 , ;o
o

v vv
v v v v vp c p c

ε ε
+ = + = =

+
 

in this way one has introduced 1 2v v+  through the invariant momentum. It is 
necessary now to define in general ov  in a form suitable to relate 1 2v v+  and 

1 2v v′ ′+ , e.g. in another reference system. A reasonable position is the following 
linear combination that does not involve neither 1 2v v  nor 1 2v v′ ′ , i.e.  

2 2

1 2 1 2

,o
c cv

v v v v
= −

′ ′+ +
 

so that the sought result is  
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1 2
1 2 2

1 2

.
1

v vv v
v v c

+′ ′+ =
+

                    (2.48) 

Accordingly any v summed to or subtracted from c still yields c. 

3. Preliminary Implications of the Model 

The results so far obtained are enough to get four relevant consequences, ex-
posed below. 

3.1. Statistical Formulation of Quantum Uncertainty  

Write (2.27) as  

x p n const tδ δ δεδ= × =                   (3.1) 

being n an arbitrary integer. The reason of this definition is to make (2.27) in-
dependent of a specific reference system. Suppose that (3.1) holds for ranges de-
fined in R whereas x p n constδ δ′ ′ ′= ×  holds for that defined in any R′ , with 
n′  arbitrary integer as well; the prime symbols account for the respective Lo-
rentz transformations of range sizes. Actually the reference systems are indis-
tinguishable because neither n nor n′  are specific numbers, they instead sym-
bolize by definition whole sets of allowed integer numbers: so any specific n of 
the first set that turns into a new specific n′  of the primed set does not imply in 
fact distinguishable sets of the respective reference systems. This point is better 
understood introducing appropriate measure units , , ,Pl Pl Pl Plx p tε  to express 
the respective range sizes; for example it is possible to express the size of xδ  as 

*
x Pln x× ; i.e. *

xn  is a dimensionless length expressing the actual range size in 

Plx  units.  
Is evident the hint to the well known Planck units, whose choice implies 

Pl Pl Pl Plx p tε= =  by definition. Without having introduced the gravity con-
stant yet, this explicit reference appears here premature; it is enough to emphas-
ize that the Planck units fulfill this equation by definition. The crucial fact is that 
introducing the dimensionless lengths * * * *, , ,x p tn n n nε , the couples ,Pl Plx p  and 

,Pl Pltε  fulfill the condition Pl Pl Pl Plx p tε= . In this way, dividing side by side 
with the Equations (3.1), one finds  

, .Pl Pl Pl Pl
Pl Pl Pl Pl

x p tn const x p t
x p t
δ δ δε δ ε

ε
= = = = =  

It implies that with this choice of measure units, the statistical formulation of 
quantum uncertainty reads simply  

* * * *
x p tn n n n nε= =                        (3.2) 

the stars indicate arbitrary real numbers, n is instead an arbitrary real integer 
number. This reasoning shows that in fact the Equations (2.27) hold regardless 
of any reference system; otherwise stated, the problem of specifying the refer-
ence system where are defined the four uncertainty ranges is physically mea-
ningless, provided that the local dynamical variables are systematically replaced 
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by respective uncertainty range totally unknown in any physical problem. This 
holds also for the derivatives, which are defined in the present model as mere ra-
tios of uncertainty ranges arbitrary, unknown and conceptually unknowable: for 
example is meaningless to inquire whether xδ  refers to Cartesian or curvili-
near or cylindrical reference frame. What is crucial in this reasoning is that the 
four starred numbers be not specifiable and unspecified in any physical problem 
formulated via the Equations (2.10); in short, the quantization of n is necessary 
to make (3.1) independent of any specific R. For clarity and self-contained expo-
sition, this is shortly sketched in the next subsection. The results quoted here for 
completeness are reported more in detail elsewhere [4] [5]. 

3.2. The Old Quantum Mechanics 

It is usually assumed that the quantum problems are tackled via the operator 
formalism of wave mechanics, introducing operators and wave equations. For 
comparison purposes, this section sketches very shortly results concerning one 
case where the wave equation can be exactly solved: the non relativistic hydro-
genlike atom. The aim is to show that identical information is obtainable via a a 
“corpuscular approach”, which does not require solving any wave equation; it is 
enough to replace x xδ→  and p pδ→ , instead of i x− ∂Ψ ∂ , and proceed 
via elementary algebraic manipulations. These results help understanding how 
the relativity fits the conceptual frame so far outlined. 

The starting point is the classical component of = ×M r p  along an arbitrary 
direction defined by the unit vector w  is wM = × ⋅r p w . Consider thus  

( ) ( ) , ,wM = ∆ ×∆ ⋅ = ×∆ ⋅∆ = ∆ ⋅∆ ∆ = ×∆r p w w r p W p W w r  

which introduces a range of possible values for wM  included in wM∆ . If ∆p  
and ∆W  are orthogonal, then 0wM = ; else, rewriting ∆ ⋅∆W p  as 
( )W W∆ ⋅∆ ∆ ∆p W  with W∆ = ∆W , the component Wp W±∆ = ∆ ⋅∆ ∆p W  
of ∆p  along ∆W  yields w WM W p= ±∆ ∆ . Thus, according to Equations (3.1), 

wM l= ±  , being l the usual notation for the integer quantum number of angu-
lar momentum. So wM  is effectively a multi-valued quantized function because 
of the uncertainties initially postulated for r  and p . One component of M  
only is actually knowable; the same considerations for the y and x components 
would trivially mean changing w . 

Just this conclusion on the physical uniqueness of wM  suggests that the av-
erage values 2

xM , 2
yM  and 2

zM  should be equal; so the quantity of 
physical interest to describe the properties of quantum angular momentum is l, 
as a function of which M2 is now inferred as well. The components averaged 
over the possible states summing ( )2l  from −L to +L, where L is an arbitrary 
maximum value of l, yield ( ) ( )22 2 1i

i

l L
i l LM l L=

=−
= +∑   i.e.  

( )
3

2 2 2

1
1 , .i w

i
M M L L M l

=

= = + =∑                  (3.3) 

Consider the quantum system formed by a particle in a central force field, e.g. 
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an electron around a nuclear charge; the concept of force will be justified in the 
conceptual frame of (1.12) and (1.11). Assuming the origin O of R on the nuc-
leus, let 2 22p m Ze rε = −  be the classical electron energy, where m is the 
electron mass. As 2 2 2 2

rp p M r= + , putting again r rp p→∆  and r r→∆ , 
one finds  

2 2 2

2 .
2 2

rp M Ze
m rm r

ε
∆

= + −
∆∆

                    (3.4) 

Two numbers of states, i.e. two quantum numbers, are expected because of the 
radial and angular uncertainties. In effect the Equations (2.1) and the quantum 
M2 yield ( )2 2 2 2 2 22 1 2n m r l l m r Ze rε = ∆ + + ∆ − ∆  , which reads  

( ) ( )222 2 4

2 2 2

1
, , .

22 2o o o o

n r Ze m nl l Z e mE E
mm r n

ε ε ε
∆ −+

= + − = =
∆

 





  (3.5) 

Minimize ε  putting 0oε = , which yields  
12 2 2

2 , ,C C
n Z er n

n mc cZe m
α λ λ α

−
 ∆ = = = = 
 

 



        (3.6) 

and thus ( ) 2 2
min 1 1 ol l n E nε  = + −  ; so 1l n≤ −  in order to get 0ε < , i.e. 

a bound state. The reason of both ways to express r∆  will be explained in the 
section 6. Here are of interest the electron energy levels and rotational energy of 
the atom as a whole around O  

( )22 2 4

min 0 0 02 4 2

1
, , .

2 2el rot el rot

Z l lZ Ze e mE E E
rn n

ε ε ε ε ε
+

= + = − = − = =
∆ 

  (3.7) 

The physical meaning of r∆  is related to the early Bohr radius, i.e. elε  is 
due to charges of opposite sign delocalized within a diametric distance 2 r∆  
apart. So n and l are properties of the phase space, i.e. numbers of allowed 
quantum states. 

Consider now the identity r n r nω ω∆ ≡ ∆  . So it is consequently true that  
2π 1 , , ,r v v r n

nh p
ω ω∆

= = = ∆ = 


 

where the last equation of the chain introduces the momentum p by dimensional 
reasons and reads  

2π , .hr n pλ
λ

∆ = =                       (3.8) 

It shows the link between De Broglie momentum, Planck energy and condi-
tion 2πn rλ = ∆ , according which an integer number of steady electron wave-
lengths λ  is defined along a circumference of radius r∆  along which the 
electron wave propagates at rate v. For such electron waves one finds  

2 2

.
2 2el

Z pc Z mc
n n

αε α  = − = − 
 

                (3.9) 

The first chain of equalities will be explained in the next section 6, in particu-
lar as concerns the evident link of pc and 2mc  with 0E . Note here that intro-
ducing α  to express the quantum energy levels implies defining the De Broglie 
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momentum as a corollary, in agreement with (2.36) and (2.37): appears inter-
esting that the energy levels elε  of the system are linked to the kinetic energy 
pc of the electron moving along the circumference of radius r∆  via the coeffi-
cient 2Z nα . On the one hand, this result emphasizes the electromagnetic cha-
racter of the interaction between electron and nucleus; comprehensibly r∆  is 
proportional to 1α− , as the coupling constant determines the force exerted in 
an interaction, i.e. the greater α  the smaller r∆ . On the other hand, it also 
appears that the key role of the quantum uncertainty in determining the allowed 
energy levels (3.7) also evidences the kind of interaction itself. 

These results confirm that the operator formalism and the uncertainty equa-
tions are equivalent in describing the quantum systems. As concerns the spin, 
the paper [6] [7] has shown that it can be inferred without additional hypotheses 
from the quantization itself. Simply rewriting identically  

( ) ( )2 22 21 2 2M l= + −  , one finds  

( )22 2 2 21 1 12 1
2 2 2

M l M l l      + + + = = + + +            
  

     (3.10) 

after having added ( ) 21 2l +   at both sides. Trivial manipulations of the initial 
M  exposed in the quoted paper show that  

( )2 2 11 , ,
2or s sJ J J l l l= + = + =             (3.11) 

and that in general these consideration introduce the spin component 2l′  ; 
being of course l′  an arbitrary integer, the quantum uncertainty implies itself 
the existence of bosons and fermions. No information is necessary about r∆  
and rp∆ , which in effect are unknown and unknowable because of the quantum 
uncertainty. 

Besides its inherent worth, the hydrogenlike model has been explicitly quoted 
here because it also provides useful information about the characteristic lengths 
in the atom, the first of which is of course the Bohr radius inferred in (3.7). The 
first powers of α  scale further significant lengths starting from this radius, 
whose essential form reads 2 2

Br e m=   as a function of the fundamental con-
stants. One infers the following lengths  

2 2 8
2 3

2 2 3 5, , ,B B C B e B N
e er r r r r r

mce m mc mc
α λ α α= = = = = = =

 



  (3.12) 

whose values are  
9 11

13 15

5.3 10 cm, 3.6 10 cm,

2.8 10 cm, 2.4 10 cm.
B C

e N

r

r r

λ− −

− −

≈ × ≈ ×

≈ × ≈ ×
 

the Bohr radius scales Br  down to Cλ , electron Compton length, and then to 

er , classical electron radius. Further lengths, shorter and shorter, will be intro-
duced later to extend these definitions and sketch short range nuclear forces. 
Indeed the fact of having found these well known specific lengths suggests that 
even the fourth position should reasonably have its own physical meaning at the 
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smaller 3α  scale too; if so, Nr  can be related to nothing else but the scale of 
lengths within the atomic nuclei, whose sizes in effect are known to fall between 

1310 cm−  (proton of hydrogen) to 1210 cm−
  (heavier nuclei). 

3.3. Velocity Dependence of Mass 

Owing to (2.28), 2 1 2 1vp vpε ε− = −  reads 2 2 1 1vp const vpε ε− = = − ; so (2.35) 
yields  

2 2

2 2
.

1

mc mvvp const
v c

ε −
− = =

−
 

This result is more expressively rewritten in the form 2 2 21mc v c const− =  
fulfilled by  

( )2 2 2
0 0, 1 , .m c const m m v c m m v= = − =          (3.13) 

The physical meaning of this result, the dependence of m on v via the constant 

0m , will be clarified soon below. In the following are introduced three interest-
ing ways to implement further the Equations (2.25) and (2.34), to show in par-
ticular how results of special relativity are obtainable regarding the local dynam-
ical variables ε  and p as random and unknown values defined in the respective 
quantum uncertainty ranges δε  and pδ . 

3.4. Quantum Correction to Special Relativity 

The strategy is still that followed to find (2.15) and to infer (2.31) and (2.32) 
from (2.29). Consider the Equation (2.25) and (2.26) rewritten in the particular 
case v c=  as  

* * * * *
1 2 1 2, , , ;c p pc p p pδε δ ε ε ε ε= = ≤ ≤ ≤ ≤         (3.14) 

the former equation defines the maximum energy range *δε  allowed to the lo-
cal *ε  consistently with the given momentum range pδ  allowed to any local 
p. Here energy and momentum ranges are linked each other, whereas in fact 
they were independent in the Equation (2.28) owing to the arbitrariness of v; so, 
the upper limit allowed for v implies an upper limit to the size of *δε  com-
pliant with any possible pδ . Anyway this latter is arbitrary; thus both energy 
and momentum ranges are in fact arbitrary as well, but now correlated. The 
second position emphasizes the local dynamical variables *ε  and p allowed in 
the respective ranges. The fact that (3.14) is not mere formal way of rewriting 
(2.25) but contains additional physical information, is easily proven: multiplying 
side by side both (3.14) one finds ( ) ( )

2 2* 2c pδ ε δ=  i.e., as in (2.14), 
( )22 const pc constε ∗ ′ ′′+ = + . So the second (2.34) is instantly inferred via the 

correlation between pδ  and *δε  through c. 
However just the fact that the (3.14) appears suitable to be directly linked to 

(2.34) rises a quantum problem. Replace (2.36) in the Equation (2.34) via the po-
sitions * *hε ν=  and thus *p h λ= , being * *cλ ν=  in fact implied itself by 
the third (2.36) for v c=  too. Then ( ) ( ) ( )2 2 2* * 2h hc mcν λ= +  requires 
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0m = . On the one hand nothing hinders in principle to express (2.34) via the 
corresponding quantum energy and momentum, in agreement with the dual 
wave/corpuscle character of matter. On the other hand (2.34), as written, seems 
inadequate to allow both 0m ≠  and (2.36). It is reasonable to expect that fur-
ther terms to be included in (2.34) could overcome this difficulty: the attempt to 
generalize the standard result of the early special relativity is not only legitimate 
but also necessary. 

The subsection 3.2 has been explicitly enclosed in the present exposition to 
emphasize that the quantum eigenvalues leave out any information about the 
range sizes; the Equations (3.3) to (3.12) elucidate this assertion. In other words 
the previous results obtained implementing 2 1p p pδ = −  could have been 
identically obtained considering any other 2 1p p pδ ′ ′ ′= − , as the range boundary 
coordinates are inessential as concerns the quantized eigenvalues of angular 
momentum and energy. The same holds of course even implementing a linear 
combination of momentum ranges, e.g. 2 1p p p a p b pδ δ δ′′ ′′ ′′ ′= − = +  via the 
constant arbitrary coefficients a and b. This means that the local value p defined 
by 1 2p p p≤ ≤  could be identically replaced by any p′  defined by 

1 2p p p′ ′ ′≤ ≤ ; the same holds of course for any p′′  defined by  

1 1 2 2ap bp p ap bp′ ′′ ′+ ≤ ≤ + : the only essential requirement is that any range sizes 
xδ  and pδ  fulfill (3.1), whatever the boundary values might be. Now let us 

introduce in the relativistic domain this peculiarity of the quantum world. This 
means that the local values of pc  and *ε  defined the respective ranges (3.14) 
can be replaced by linear combinations of momentum and energy. 

The chance of demonstrating the actual effectiveness of this reasoning has 
heuristic worth in demonstrating the close connection between quantum and 
relativistic theories. 

In practice, to generalize the standard relativistic result (2.34), implement 
again the first (3.14) with the same steps from (2.29) to (2.31) and then to (2.32), 
but rewriting the third and fourth positions as  

2 2
1 0 2 1 0 2,o p opp p p p pε εε ε σ ε σ ε ε σ σ∗ ∗ ∗ ∗≤ + + ≤ ≤ + + ≤  

εσ  and pσ  are dimensionless arbitrary constants, a and b are arbitrary con-
stants having physical dimensions 1mass−  and expressing conveniently the oσ  
coefficients. The equations to be implemented are thus  

2 2
2, ,p a

bc p pc ap
cεδε δ σ ε ε σ∗ ∗ ∗= − = − +            (3.15) 

where in fact 0a b≠ ≠  extend the previous procedure simply introducing ad-
ditional 2ε ∗  and 2p  terms with respect to (3.14) while however keeping a 
physical meaning still compliant with that of ranges *δε  and pδ , as it appears 
via dimensional considerations. In other words, the second (3.15) still has the 
usual form ( )* c constδ δ= +  . Repeat therefore exactly the same procedure 
just outlined to merge (3.14), i.e. multiply side by side the second and first (3.15) 
with the a and b terms exchanged of place; omitting for simplicity of notation 
the asterisk, one finds  
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( )2 2 ,p aap bp p pc p pcεσ εδε δε εδ σ δ δ+ = + +            (3.16) 

which yields  

( ) ( )( ) ( )22 21 1
2 2 p apc ap bp p pcεδ σ ε δ σ δε εδ δ= − + +   

and then  

( ) ( )( ) ( ) ( )22 21 1 , 2 .
2 2 p apc ap pc b aεδ σ ε δ σ δ ε δ= − + = −      3.17) 

Hence, reasoning as before, this result implies:  

( )22 2
1 22 .p aconst pc const ap const pc constεσ ε σ ε′ ′′+ = + − + + +   (3.18) 

As hold for (3.18) the same considerations carried out for (2.34), because also 
the new terms 2ap ε  and a pc  vanish for 0p → . Merging the constants, one 
finds  

( ) ( )
( )

222 2 2 2
0

22 2
2 1 0

2

, .

p apc ap pc mc

const const mc const const

εσ ε σ ε= − + + +

′′ ′− = + =

 


            (3.19) 

The notation ( )22mc  has been kept resulting from the primed constants like 
in (2.32), in order that this equation reduces to (2.34) in the particular case 

0a =  and 0a = . Of course the constants εσ  and pσ  can be included in 
the respective energies; i.e. with the positions  

( )22 2 2
0

, , ,

,

p
p

a
a

p

ap p a

m c mc

ε
ε

σ ε σ ε
σ σ

σ

′ ′ ′= = =

′ ′= = +


 
 

(3,19) reads  

( )22 2 2 2( ) 2 .ap c m c a p p cε ε′ ′ ′ ′ ′ ′ ′ ′= + − +               (3.20) 

As expected, thanks to the higher order terms 2ε  and 2p  in (3.16) one 
finds again an equation like the second (2.34) plus two additional terms 

22a p ε′ ′ ′−  and a p c′ ′  not present in the standard special relativity. The quan-
tum correction terms are negligible in (3.20) if 2 22 aa p p cε ε′ ′ ′ ′ ′ ′− +  , i.e. if  

2

2

12 1, ,a a
a

p m p c
m

aε ε
′ ′ ′

− + =
′ ′′




               (3.21) 

then a  and am  fix the scale where the quantum correction plays a significant 
role. Moreover, if in particular 2a a p cε′ ′ ′ ′

 , then is effective only the term 
22a p ε′ ′ ′−  in (3.20). These points deserve attention. 

First of all, replace hε ν′ ′=  and p h λ′ ′= ; being again ( ) ( )2 2h hcν λ′ ′= , 
(3.20) reads  

( )
22 222 2

2 2 22 2 2

,
2

a
a a a a

a
a a

a

h hc hm c a h h a h m c

h m
m c

λ
ν ν ν

λλ λ λ

λ

  
′ ′ ′ ′ ′ ′ ′ ′ ′= − = − = −  ′′ ′ ′   

= ≥

  


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hence (3.20) is compatible with the quantum condition (2.36) even for 0m′ ≠ , 
whereas 0m′ =  is also possible if in particular vanishes the quantity in paren-
thesis. The last inequality holds for aλ λ′ = , because in general aλ λ′ ≥ , what-
ever λ′  might be. 

Moreover rewrite the second (3.15) with the help of (2.36) as  

( )
2

2
2 2

2 , .p a
a a

h ch h h
m c mεσ ν ν σ ν ν

λλ
+ = − + =           (3.22) 

To recognize the physical meaning of this equation under the condition that 

am  is the constant mass defined by the Equation (3.21), useful positions are:  
22

2 2
2 2 , , , .a

a a a
a

h m c h rm c n r n
m ε

λ
ν λ λ σ

λ λ
′= = = =         (3.23) 

The first one is an identity, whose left hand side is simply rewritten introduc-
ing the Compton length aλ  of am . The second one is a formal way to link hν  
and 2

am c  via the parameter r to be defined. The third one regards λ  of (3.22) 
as an integer multiple of aλ ; in fact the conceptual difference between p defined 
by (2.23) and p h λ=  is that xδ  is a mere space range that can take in prin-
ciple any value, the wavelength λ  requires introducing quantized lengths nλ , 
which explains why anyway the quantization must be introduced via h in 
n xδ  of (3.1). Although this idea is introduced here as a reasonable input, a 
previous paper [6] has shown that in effect a huge amount of interesting results 
is accordingly obtainable. The fourth one will be explained after having replaced 
the first three (3.23) into (3.22), which reads  

2

2

1 .
2 2 2

a a
p

m chrh r
nε

νν σ σ + = − + 
 


               (3.24) 

For sake of generality the notation emphasizes that n′  defining r is not nec-
essarily coincident with n defining the ratio aλ λ . Is attracting the fourth posi-
tion (3.23) with n′  arbitrary integer that expresses the left hand side as εσ  
times the harmonic oscillator energy; indeed (3.24) becomes  

2

2

1 .
2 2 2

a a
p

m chn h n
n εε

νν σ
σσ

 
′ ′+ = − + 

 

  

Now it is necessary to express the fact that am  is a constant, which in fact 
means regarding the quantum numbers n and n′  as proportionality factors 
linking 2

am c  and hν . The limit n′ → ∞  yields ( ) 22p an h n m cν σ′ ′=  and 
thus, by comparison with the second and fourth positions (3.23), 2p εσ σ= ; so 
the last equation reads  

2

2

12 , 2 .
2 2 2

a a
p

m chn h n
nε ε

εε

νν σ σ σ
σσ

 
′ ′+ = − + = 

 

       (3.25) 

It appears that if 0am = , then 2a εσ  is the energy of harmonic oscillator 
of frequency ν . Analogous conclusion holds if ( )22 1 2 n nεσ ′= , in which case 

0 02 2a n h hν ν′= +  with 0 2n nν ν ′= ; as both n and n′  are arbitrary integ-
ers, n n′  must be regarded as a new arbitrary integer itself and thus anyone 

 

DOI: 10.4236/jmp.2018.914161 2524 Journal of Modern Physics 
 

https://doi.org/10.4236/jmp.2018.914161


S. Tosto 
 

among the numbers already implied by 2n  and 2n′ . So ν  is an arbitrary 
multiple of the fundamental frequency 0ν . The fourth position also allows ex-
pressing (3.24) as a function of quantum numbers only  

2 2
2 2

1 1 12 ,
2 2

a

a

n
n n

n m c
ε

ε ε
εε

σ
σ σ

σσ
 ′

′ ′+ = − + 
 

  

which yields  

2
2 2

1 1 .
2

a

a

n
m c nεσ

 ′= + 
 


                    (3.26) 

Next, inserting the positions (3.23) in (3.24) trivial manipulations yield  
2

2 2 2

2 3 1
22

a

a a

m n n n
m n m c nε ε εσ σ σ

  ′  ′ ′ ′= − = −    
    


 

Clearly ν  appearing in (3.24) implied by 0a′ ≠  and 0a ≠  is different 
from *ν  previously found consistent with 0m =  only; (3.20) skips this re-
striction. 

It is known that (3.20) is a valuable equation of quantum gravity able to solve 
three cosmological paradoxes [8]. It is hard to guess what has to do the cosmol-
ogy in this conceptual frame; but in fact this is not the correct way to regard this 
equation. Rather it is correct to say that the additional terms due to 0a ≠  and 

0b ≠  add a quantum correction to the standard relativistic formula, actually 
having quantum character itself being inferred from (2.30) and (2.31); then, once 
having acknowledged this result, further studies also acknowledge that this cor-
rection has valuable cosmological implications as well. 

3.5. Operator Formalism 

The subsection 3.2 has shown that the corpuscular approach to quantum me-
chanics provides sensible results in agreement with the wave formalism. This 
subsection shows that also the wave formalism enters in the conceptual frame 
hitherto exposed. Implement the quantum relativistic Equation (3.20), noting 
that  

( ) ( ) ( )( )
2 22 2 2 2 2 2, 2 .amc pc mc ip mc ip c ap pcε ε ε ε ε′′ ′′= + = + − = + −  (3.27) 

Admitting that even the single factors at the right hand side have physical 
meaning, it is possible to introduce imaginary momentum   and energy   
in agreement with the early positions (2.9) and (2.12); the momentum and 
energy equations take indeed the forms  

2 2, , ,i i
x t

δψ δψ ε
δ δ

′′= = ± =                 (3.28) 

being simply required  

1 0 2 0 0, , .k ik k ik k= = ± =   

The correct correspondence of signs in (3.28) is indeed such that 1 2 0k k+ =  
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and thus 0v + =  , in agreement with (2.17). Whatever the specific form of 
ψ  might be, replacing p and ε ′′  of (3.27) with the new definitions (3.28) one 
finds  

2

;mc mc
x x c t

δψ δψ δψ
δ δ δ

    + − = −    
    



 
           (3.29) 

in this way the Equation (3.27) turns again into a real form. Introduce now the 
positions  

2 22 2

2 2, ,
t xt x

δ ψ δψ δ ψ δψ
δ δδ δ

   = ± = ±   ′′   
             (3.30) 

being  

,x c tδ δ′ =                         (3.31) 

which are justified soon below. In principle the positions (3.30) are compatible 
each other because tδ  and xδ ′  are arbitrary finite ranges that can be deter-
mined in order to fulfill both equations. Note that the more general positions 

( )22 2t q tδ ψ δ δψ δ=  and ( )22 2x q xδ ψ δ δψ δ= , with q arbitrary factor, 
would have been in principle reasonable and possible; however q could be in-
cluded in m of (3.29), so its specific value is inessential; more important are in-
stead the signs of q, as it will appear shortly. Taking the upper signs (3.30), (3.29) 
reads as follows  

2 2 2 2 2

2 2 2 2 2 2 2

1 1 1 .mc
x c t v t v t

δ ψ δ ψ δ ψ δ ψ
δ δ δ δ

  = − − + 
 

 

The addend 2 2 2v tδ ψ δ  has been summed and subtracted at the right hand 
side in order to split this equation as follows  

22 2 2 2
2 2 2

2 2 2 2 2 2

1 10, ,mc x v t
x v t c t x

δ ψ δ ψ δ ψ δ ψ δ δ
δ δ δ δ

 − = = − + = 
 

   (3.32) 

the first equation is still the precursor (2.3) of the D’Alembert Equation (2.4) and 
is clearly an identity 0 0=  owing to x v tδ δ= ; the second equation only in-
volves explicitly m through its reciprocal Compton length. To show why, and 
how to implement further these equations, note that the first couple of Equa-
tions (3.32) merged together yields  

( )
( )

22 2 2
2 2 2 2

2 2 2 2, ,
1

mcv
v

t x t v c
δ ψ δ ψ δ ψ
δ δ δ

= =
−

    

so that one finds  

( )
( )
( )

( )
( )

22 22 2
2 2

2 2 2 2, ;
( )1 1

mc mv
ctx c v c v c

δ ψ δ ψ
δδ

= =
− −

          (3.33) 

then the position 

xt
c
δδ ′ =                          (3.34) 

yields by consequence  
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( )
( )

( )
( )

22 22 2
2 2

2 2 2 2, .
1 1

mc mv
t xv c v c

δ ψ δ ψ
δ δ

= =
′ ′− −

             (3.35) 

Reasonably therefore the positions (3.30) imply (3.32), which yield (3.35) in 
agreement with (2.35). Hence  

( )
( )

( )
( )

22 22 2
2 2

2 2, .
1 1

mc mv
t xv c v c

δψ δψ
δ δ

   ± = ± =   ′   − −
        (3.36) 

It is useful to introduce now the local limit δ → ∂  of the Equations (3.30); 
once more, the resulting equations take then physical meaning via this limit 
condition, which introduces an appropriate function ( ),x tχ χ=  defined by 
the local properties of ψ ; also now indeed the consequent position ψ χ→  
turns the Equations (3.30) into the respective differential equations that 
represent the actual behavior of the particle. So  

( )
2 22 2

2 2, , ,x t
t xt x

χ χ χ χ χ χ∂ ∂ ∂ ∂    ′= ± = ± =   ′′∂ ∂∂ ∂   
       (3.37) 

obtained equating the left hand sides of (3.35) and (3.36), are both fulfilled by  

( )( )( )
0 0

1log , ,o ot t x x
t x

χ ξ η ζ ξ
δ δ

′= − − + + =          (3.38) 

being ξ , ζ  and η  three arbitrary constants. The second equation remarks 
through the constants 0x  and 0t  that the physical dimensions of ξ  are 
( ) 1space time −× . This equation, which emphasizes the space time range 
( )( )o ot t x x′− −  already found in (1.7), will be also implemented in the short-
ened form  

( )log .txχ ξ η ζ′= + +                   (3.39) 

An interesting corollary of (3.38) follows from  
( ) ( )( )0 0log logt t x xχ ζ δ δ δ δ= +  valid for 0η = . As  

0 0 0x x m x m x C Cδ δ δ δ= = , strictly speaking C m xδ=  and  

0 0C m x constδ= =  are linear mass densities in the present one dimensional 
model; of course in a realistic four dimensional space time C and 0C  must be 
intended as usual mass densities, as emphasized in (2.21) and in the next (4.13). 
Consider χ  during a fixed time range, so that 0t tδ δ  is regarded as a time 
constant; then  

( ) ( )0 0log , log .const C C const t tχ ζ δ δ= =          (3.40) 

Although χ  is dimensionless, appropriate units clarify its physical meaning: 
multiplying for example both sides by the energy kT already introduced preli-
minarily in (2.22) but to be defined shortly later, one finds  

( ) ( )0 0 0, log , .kT kT C C constkTχ µ µ µ µ= + = =      (3.41) 

Hence χ  is proportional to the chemical potential µ  an arbitrary space 
time constant 0µ  apart. 
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Eventually note that xδ ′  and tδ ′  defined in (3.31) and (3.34) fulfill 
x t x tδ δ δ δ′ ′= ; this equation is also fulfilled putting x xδ δ γ′ =  and 
t tδ γδ′ =  with γ  arbitrary factor, in which case it reduces to identity. In partic-

ular γ  could be the Lorentz factor, in fact introduced in (2.34); so one infers that  

.x t x tδ δ δ δ′ ′=                        (3.42) 

is a relativistic invariant in different inertial reference systems. Moreover, divid-
ing both sides by ν , write the identity  

1, , , .x x
t t

δ δ ν γν ν ν
γν ν γ δ δ

′
′ ′= = = =

′ ′ ′
             (3.43) 

With γ  equal in particular to the Lorentz factor 2 21 v c− , as suggested by 
tδ  and tδ ′ , it is possible to regard the frequency ν ′  as that related to ν  in 

different inertial reference systems R′  and R. Moreover it is also possible to 
regard ν  as the frequency recorded by an observer moving in R at rate v with 
respect to the frequency oν  emitted by the source. Noting that o oc vν ν> , let 
ν  be such that o oc v cν ν ν= +  so that ( )1o v cν ν= − . Thus replacing in the 
second (3.43) one finds  

1 .o
v cν ν
γ
−′ =  

This equation is nothing else but the Doppler shift of frequencies reciprocally 
moving at rate v along their sight line. 

As (3.39) shows that both signs of (3.30) are admissible, consider now sepa-
rately either sign of the Equations (3.36). 

1) The negative sign yields  

( ) ( )

2

2 2
, , , ,

1 1

mc mvi i p p
t x v c v c

δψ δψε ε
δ δ

± = = = =
′ − −

     (3.44) 

which of course confirm (3.28); so, for δ → ∂  and thus ψ ϕ→ , the local lim-
its read  

( ) ( ), , , , , .p
p pi i p x t x t

t x
ε

ε ε

ϕϕ
ε ϕ ϕ ϕ ϕ

∂∂ ′ ′± = = = =
′∂ ∂

       (3.45) 

In these equations the physical meaning of p±  is immediately evident: p is 
actually a component of the vector p along the x axis on which is defined xδ . 
Instead ε±  is more interesting, as it indicates the existence of states of negative 
energy. 

Note that holds for (3.44) and (3.45) the same remark carried out for (2.3) and 
(2.4): also now the left hand side of (3.44) are in fact not calculable explicitly be-
cause are indeterminate not only δψ  but also xδ  and tδ . However are in 
principle calculable their limits for δ → ∂ . Now also the relativistic quantities 
(3.45) come from and are compliant with the non-real and non-local (3.44). In 
effect even the Equations (3.45) bring back to the early postulates of the old 
quantum mechanics, despite obtained from the relativistic (3.27): this is imme-
diately evident via the following positions:  
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( ) ( )0 0log , , , .i ii p x t x t
x x t
ϕϕ ε∂ ∂Ψ ∂Ψ ′= Ψ = = ± = Ψ = Ψ
′ ′∂ Ψ ∂ Ψ ∂

 

  
 (3.46) 

In this case Ψ  has the same analytical form of χ . This point deserves fur-
ther attention. 

The relativistic equations (3.44) are implied by the invariant xt of (3.39), as 
shown in (3.42); obviously, replacing xt with another function nrψ χ≠ , the 
Equation (3.37) would not hold. By consequence, in this case p and ε  in (3.44) 
would be reasonably replaced by non relativistic quantities nrp  and nrε  nu-
merically different but having however an analogous physical meaning by di-
mensional reasons: the notation emphasizes the non-relativistic character of 
their classical approximation. Replace thus x t′  of χ  in Equation (3.39) with 
any function ( ),nr nr x tψ ψ= , putting for example ( ) ( )nr x tx tψ ψ ψ= : with this 
Newtonian position where time and space are independent entities defining dis-
tinct dynamical variables of classical mechanics, the Equations (3.39) turn re-
spectively into  

( )log , ;nr nr nr x tχ ξψ η ζ ψ ψ ψ= ± + + =  

for simplicity of notation, the symbols of the constants have been kept un-
changed. Hence the first two Equations (3.44) turn into  

, ;nr nr
nr nr

nr nr

i i p
t x

δψ δψ
ε

ξψ η δ ξψ η δ
= ± =

+ +
 

  

Put eventually 0η = , for example assuming η  proportional to 1c− ; as c is 
infinite in classical physics, these equations take the well known form  

, , , .nr nr
nr nr nr nr nr nr nr nri i p p p

t x
δψ δψ

ε ψ ψ ξ ε ξε
δ δ

′ ′ ′ ′± = = = =  
 

Clearly these expressions, suggested by the outcomes (2.23), agree with (3.28) 
and specify via the limit δ → ∂  which function is actually involved by the 
change symbol δ . Hence  

, , , ;ef ef
ef efi i p p p

t x
ψ ψ

ε ψ ψ ξ ε ξε
∂ ∂

′ ′ ′ ′± = = = =
∂ ∂

        (3.47) 

these results are the well known equations of the old quantum theory; the sub-
script “ef” stands for “eigenfunction”. The modern quantum physics was born 
postulating these crucial equations, whence the importance of having found 
them as corollaries: the present theoretical approach brings back just to early 
formulation of quantum mechanics and its basic assumptions. 

2) Consider now also the plus sign of (3.36), which yields  

( ) ( )

2

2 2
, .

1 1

mc mv
t xv c v c

δψ δψ
δ δ

= ± =
′− −

               (3.48) 

The Equations (3.64) correspond to the Equations (3.28), whereas the Equa-
tions (3.48) read ( ) ( )t p xεδ δ± = ±  , i.e. t p xεδ δ± = ± ; this expression is a 
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particular case of the Equations (3.1) regarding 0p pδ = ± −  and 0δε ε= ± − , 
where the reference boundaries of these ranges coincide with zero momentum 
and zero energy. Considering indeed the particular case 0 0t p xε δ δ± = ±  and sub-
tracting side by side one finds again the expected more general result 
( ) ( )0 0t p p xε ε δ δ± − = ± −  in agreement with (3.1) as 0δε ε ε= −  and 

0p p pδ = − . So (3.48) link the operator formalism (3.28) and (3.67) to the un-
certainty equations (3.1) and their relativistic implications (3.44). 

Note eventually that the Equations (3.37) are well known in the operator for-
malism p̂ i x= − ∂ ∂ , where in effect it is taken for granted that  

2 2 2 2p̂ x= − ∂ ∂ ; indeed (3.37) express nothing else but  
( )22 2 2 2p̂ i x x= − ∂ ∂ = − ∂ ∂   previously inferred from (3.30). 

In conclusion this simple approach has found the operator formalism and 
contextually the uncertainty equation, both compatible with relativistic concepts. 
These outcomes have several further corollaries, the most relevant of which are 
shortly summarized in the following. Final remark to close this section. The 
range products x pδ δ  and tδεδ  characterize the quantum uncertainty (3.1), 
whereas the product x tδ δ  characterizes the invariant space time (3.38): the 
connection between quantum physics and relativistic physics is comprehensible 
corollary if space and time are mixed in either way. In this respect, what about 
the other mixed term pδεδ  also possible in alternative to x pδ δ  of (3.1)? 
According to (3.1) it yields  

p F
x

δεδεδ
δ

= = 
                   (3.49) 

the “new” quantity F, so far not explicitly concerned but only anticipated in Sec-
tion 3.2 for exposition purpose only, takes in this way justification and physical 
meaning, it is usually known as force. The concept of pressure and energy den-
sity also follow from this result dividing both sides by the arbitrary surface 2x∆   

2 2 .F
x x x
δε

δ
=

∆ ∆
 

                    (3.50) 

4. Some Classical Corollaries 

Are concerned in this section several interesting outcomes still hidden in the 
approach hitherto outlined. 

4.1. The Fermat and Maupertuis Principles 

The key equations are (3.1) and (2.25). Consider an arbitrary time range t∆  
during which one particle moves between two coordinates 1x  and 2x  defining 
the total path x∆ . It is possible to write  

2 1, 0;t t t tδ∆ = − ∆ =  

the second position expresses that the time interval is arbitrary but fixed by defi-
nite time boundaries within which hold the following considerations. Since x∆  
traveled by the particle can be imagined as the sum of elementary ranges xδ  
corresponding to elementary time steps ktδ , write kt tδ∆ = ∑ . Being both time 
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and space steps arbitrary, it is possible to replace the sum with an integral and 
write the following chain of equations with the help of (2.25)  

2 2 2 2

1 1 1 1

.
t t t t

t t t t

n p x xt t
v

δ δ δδ
δε δε

∆ = = = =∫ ∫ ∫ ∫


 

Hence, integrating along an element dx  of trajectory for δ → ∂ ,  
2

1

d0
t

t

xt
v

δ δ∆ = = ∫  

so the Fermat principle, also expressible identically as nd 0xδ =∫  with n c v= , 
is actually a straightforward corollary of the uncertainty equation. 

In an analogous way one finds the Maupertuis principle. Calculate p xδ δ  for 
dx xδ →  and tδεδ  for dt tδ → ; in this way, even considering vanishingly 

small range sizes still holds the concept of local velocity lv , i.e.  
d d lx t x t vδ δ → = . Considering the coordinates ( )1 1x x t=  and ( )2 2x x t=  

and integrating both sides, one finds according to (3.1)  
2 2

1 1

d d .
x t

x t

p x tδ δε=∫ ∫  

The right hand sides involves ( )1 1tδε δε=  and ( )2 2tδε δε= . Suppose now 
that 0δε =  because ε  is constant itself; then, being 2 1=p p pδ −  by defini-
tion, one finds  

2 2 2

1 1 1

1 2d d d 0,
x x x

x x x

p x p x p xδ = − =∫ ∫ ∫  

i.e. 
2 2

1 1

1 2d d
x x

x x

p x p x=∫ ∫  and thus 
2

1

d
x

x

p x const=∫  for any 1 2p p p≤ ≤ . Hence, 

along an element dx  of trajectory,  
2

1

d 0, .
x

x

p x constδ ε= =∫  

4.2. Further Considerations on the Group Velocity 

The reasoning already carried out for a beam of particles, see (2.46), is extended 
here considering a light beam propagating in a dispersive medium at rate v c< . 
The Equations (2.37) and (2.36) yield  

( ) ( )
1

1 , n , ;
nn
c cv

p c v v
δε δν δν νλ

δ νδ δ νδλ
δν

−
−= = = = = =        (4.1) 

of course gv  of a light wave packet is found through the local limit δ → ∂ , i.e.  

( )
.

ng
cv
ν
ν

=
∂
∂

                         (4.2) 

It is instructive to examine closer the Equation (4.2) in order to evidence that 
a further aspect of the motion of a corpuscle of mass m is describable by a wave 
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packet moving as a whole with at rate gv ; the reasoning involves explicitly its 
energy ε  to describe the propagation of the overall shape of the wave packet 
amplitude through the space. Differentiating the Equation (2.34)  

( )2
2 ;p pc v

vv
δδ ε δ= − +  

and replacing p h λ=  in this equation, trivial calculations yield  

( )2
2 .h vc

vv
δδ ε λ δλ

λ
 = − + 
 

 

Require now purposely 0δε = , i.e. the wave transports a fixed amount of 
energy; for example constε =  could be just that of one free particle. So  

,m
m

vvδ ν
δλ λ

= − = −                       (4.3) 

being mv  the particular value of v fulfilling the given condition; the frequency 

mν  is then formally implied by dimensional reasons too. Hence  
1,m mvδν δλ−− = −  

so that  

( ) ( )1 , n ;
n

m m
m m

m mm m m

m

c cv
v v

δν δν
δ νδ νδλ
δν

−= = = =  

then, for δ → ∂  once more, m gv v= . 
The key step of the reasoning is the well defined amount energy ε  trans-

ported at the rate gv , by consequence of which results defined the frequency 

mν  corresponding to the unique mv . The different definitions of λ  in (2.36) 
and in (4.3) are significant; their comparison yields  

2 1.m mv v
c

ν
ν

= <  

Think now one Planck frequency (2.37) as that included in a packet of waves 
of different wavelengths propagating in a dispersive medium with different 
λ-dependent velocities: in effect, the Equations (3.1) regard hν  and h λ  as 
random values within energy and momentum ranges that in turn define various 
frequencies and momenta corresponding to δλ  and δν . Both statements 
agree with the fact that the propagation of the particle or its related wave cor-
respond to gv  and not to the single phase velocities λν . Just for this reason 
from (3.1) can be inferred the corpuscular and wave aspects of quantum physics. 

The equations now obtained directly from the Equation (2.34) emphasize a 
new implication: neither ωε  nor pω  show explicit reference to the mass, 
which now becomes mere dimensional parameter inherent the definition of  . 
Appears thus the necessity of explaining how and why the mass is apparently 
waived from the quantum Equation (2.37) of momentum and energy. In other 
words, a valid reason is required to replace m with m m′− , being m′  a new 
mass even compliant with 0m m′− =  as a limit case. Tentatively this implies 
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defining m as a velocity dependent variable, as in effect it has been already found 
in the Equation (2.33) and more specifically in (3.13). On the one hand this 
strategy seems at least in principle adequate to highlight why a moving mass m 
could turn into an immaterial wave. On the other hand further confirms should 
be provided next to validate the following way of describing this subtle point. 

4.3. The Refractive Index 

According to (3.64) and (2.35), if 0m ≠ , then p and ε  are calculable for 
v c<  only; however even v c→  is admissible if contextually 0m → . Imple-
menting concurrently both limits, p and ε  tend to the indeterminate forms 0/0, 
which admit in principle finite values. Let p′  and ε ′  be these limit values, 
assumed existing by definition: the reverse question rises now, i.e. whether or 
not v c<  requires 0m ≠ . The answer is negative: as the speed of photons in 
dispersive materials is lower than that in the vacuum, it is possible in principle 
that photons travel in a dispersive medium at the same v allowed to a beam of 
massive particles. The fact that v c<  is compatible with both 0m =  and 

0m ≠ , suggests that the kinetic mass m should actually be function of v itself: if 
so, then the separate correspondences 0m v c≠ → <  and  

( )0, 0v c m m< ↔ = ≠  merge into the unique correspondence  
0 0m v c m≠ ↔ ≤ ↔ =  provided that an appropriate function of ( )m m v=  

does exist. In other words it should be true that both 0m ≠  and 0m =  are 
compatible with a unique v c≤  via ( )nm m= . In fact this conclusion has been 
already inferred in (2.33), where the concept of mass was introduced in the 
present model as rest mass. The following reasoning represents the extension of 
this concept to the kinetic mass. 

Regard m of (2.33) as a particular case of a general dynamical variable related 
to p through v and examine how the new concept of mass could tend to zero 
correspondingly to v c→ ; is interesting in this respect the position  

2 21 , ,m m v c m m′ ′= − ≥                    (4.4) 

which regards m as a constant mass while introducing a new mass ( )m m v′ ′= . 
The Equation (2.33) has anticipated this conclusion in the particular case where 
m m′=  for 0v → , whereas a further hint to the concept of rest mass has been 
provided by (3.13). Replacing formally m of (4.4) in both (3.64) one obtains 
p m v′ ′=  while contextually 2m cε ′ ′= ; then, eliminating m′  from these re-

sults, one still finds 2p v cε′ ′=  in agreement with (2.34). So m′  fulfills the 
same relativistic formula of p with initial mass m, despite now the limit for 
v c→  corresponds to the finite value p cε′ ′=  implemented in (3.14) and 
(3.15); this relationship between energy and momentum is expected in general 
for a wave, see Equation (2.24). Hold for m′  all steps from (3.14) to (3.20). The 
wavelike implication of (4.4) is further acknowledged considering c pδε δ′ ′=  
of (2.14). 

In conclusion, according to the quantum uncertainty the behavior of a cor-
puscle of mass m should inherently have a wave-like propagation too, whereas 
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the fact that m m′=  for 0v =  shows that m and m′  are rest and kinetic 
masses. So the Equation (4.4) in fact generalizes the concepts of m and v  in-
troduced in (2.33): m′  is the particular value pertinent to m at the specific 
speed v. As a consequence note that 2p v c pε ε′ ′= =  define a pure number  

n , n c
pc p c v
ε ε ′

= = =
′

                    (4.5) 

that introduces the refractive index of the medium where propagates an elec-
tromagnetic wave at velocity v c≤ ; owing to the Equation (6.2) in fact n 1≥ , 
as it has been already introduced in (2.46) and (4.1). Moreover the position (4.4) 
also agrees with (2.45); indeed  

2

2 2 , ,v h v h c cp n
vc c

ε ν λ λ λ
λ ν ν

′ ′
′ ′ ′= = = = = =

′ ′
 

takes into account that nλ λ′=  depends on the refractive index of the medium 
through which propagates the electromagnetic wave or the De Broglie pilot wave. 
The position (4.4) introduces thus the first step to explain how and why the 
concept of mass does not explicitly appear in (2.45): once having introduced the 
refraction index, v is in fact eliminated from the equations being replaced by n. 
Formally this means expressing the displacement rate v of the particle in c units; 
yet v appears subsequently also as the rate λν  at which a single wave phase 
propagates. This fact encourages thinking that somehow it should be possible to 
infer a formula that specifically emphasizes what the Equations (3.64) and (2.45) 
already show themselves, i.e. the way m and λ  replace each other in defining p 
and ε . The mathematical approach to this task proceeds noting that  

( )2 2 2 211 1 i.e. ,
2

m m m v c m c m m vδ δ′ ′ ′= − = − − ≈ +     (4.6) 

so that the right hand side represents kinetic energy. On the one hand m′  cor-
responds to the classical mass defining the kinetic energy, although for v c

 
the deviation of m′  from m is irrelevant for practical purposes. On the other 
hand it is possible to write  

22

2

11 1, 1.
n

gvm m m
m m c

 ′ −  + − = + =  ′ ′   
          (4.7) 

The second equation is direct consequence of the first one; it emphasizes that 
the concerned velocity v is actually gv  of (2.45), because in general this latter 
and not v of (2.3) is related to and describable by n. This confirms that m′  is 
the effective value of m when the particle velocity takes up just the specific value 

gv  pertinent to the group velocity at which propagates the wave packet. As ex-
pected m m′=  for 0v = , whereas 0m =  for n 1= ; in effect according to 
(3.13) m m′  is definable even for v c→ , so (2.33) and (4.4) are compliant 
with these limits. Regard thus the addends of (4.7) as probabilities, whose sum 
represents the certainty of concerning the existing particle through its mass dis-
placement velocity or wave propagation rate. The first addend describes the 
probability for the particle to loose its classical kinetic mass, till to become an 
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immaterial propagation wave; the second addend, previously introduced to ex-
press the actual velocity gv  of the particle, takes the meaning of reciprocal re-
fraction index n of the resulting wave, being it in effect still related to the propa-
gation rate of the wave/particle. The addends account therefore for the dual be-
havior of matter in a probabilistic way correspondingly to the probability of 
energy fluctuation, thanks to which the particle effectively displaces with velocity 
dependent mass or with frequency dependent propagation rate of a wave packet: 
indeed, one must also expect an appropriate energy fluctuation to balance the 
chances of mass energy loss. Obviously to this mass change correspond different 
p and ε  and thus different λ , whence the necessity of linking m with a group 
of waves that spread with collective gv  given by (2.45). So the worth of (4.7) is 
that of having emphasized the quantum probabilistic meaning of the relativistic 
position (4.6). 

These considerations rise however three questions. 
The first one can be formulated as follows: as (4.7) is made by mass and mass-

less terms, what determines either property of matter? Obviously the immediate 
answer points to the kind of experiment made on the particles constituting the 
body of matter. Also this is the non-real essence of quantum mechanics, which 
actually regards the matter neither as a packet of waves nor as a cluster of cor-
puscles, but as an undefined state of probabilistic mixing of both states until 
some experiment “creates” either state. The electron diffraction in the two slit 
experiment and the Thomson experiment inspired by the Millikan result eluci-
date the physical meaning of the addends of (4.7). To this equation is also related 
the physical meaning of the EPR thought paradox, showing that the quantum 
properties are not pre-definable outcomes according to some principles of clas-
sical mechanics, rather they are created by the experiment itself. In effect (3.1) 
exclude not only the concept of trajectory, but also that of distance and velocity; 
as shown in 3.2 the local space time coordinates must be replaced by the respec-
tive ranges, so concepts like “superluminal” distance are actually unphysical. In 
this sense the EPR paradox shouldn’t even be formulated: replacing systemati-
cally x xδ→  and t tδ→  are missing the concepts themselves of point to 
point space distance and time to time lapse needed to define any “superluminal” 
effect; remember that in effect according to (2.8) and (2.9) 0v c=  is introduced 
“as such”, i.e. as a fundamental constant of Nature regardless the ratio xδ  over 

tδ . 
The second one concerns the addition of velocities. Consider an electromag-

netic wave that appears in the point where 0m = . An example is the annihila-
tion of m by collision with its antiparticle purposely assumed in the vacuum: one 
would naively expect that the new born electromagnetic wave should propagate 
at rate classically resulting from its own velocity c summed up to that v initially 
characterizing the moving center of mass of the annihilating particles. Yet (2.48) 
has already negatively answered this question. 

The third question concerns the energy fluctuation necessary to account for the 
mass change when 0m → . This point is concerned in the next two subsections. 
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4.4. Energy Fluctuation 

The corpuscle/wave dualism has been accepted as compelling experimental evi-
dence since the early experiments of electron diffraction, simply acknowledging 
that either behavior depends on the kind of experiment. Yet this shortcut leaves 
in fact unexplained why mass appears explicitly in (3.64) whereas it is hidden in 
the proportionality constants (2.36), despite both concern momentum and 
energy of a free particle. The fact that both equations have been inferred in the 
frame of a unique model based on the definitions (1.11) and (1.12) stimulates 
one to think that even this duality could find rational explanation, i.e. explaina-
ble by a logical physical reasoning in the conceptual frame of the present model, 
without need of supplementary “ad hoc” hypotheses. This hope is supported by 
the probabilistic character of (4.7), direct consequence of the concept of velocity 
dependent mass elucidated in the form (4.4): in effect the chances 0m =  and 

cλν =  or respectively m m′=  and 0gv =  appear in principle reciprocally 
consistent and compliant with the unity, i.e. the certainty that anyway something 
travels through the space time as amount of mass or wave: in the former case it 
is appropriate to think about corpuscle displacement velocity, in the latter about 
wave propagation rate. The validity of this idea is proposed in this subsection 
not only by evidencing its self-consistency, but also quoting as a verification 
further well known results contextually obtainable. 

The results of the point 4.3 have been obtained considering initially a particle 
of mass m that displaces at rate v; next has been considered also its probability of 
mass, i.e. energy, fluctuation, which eventually turns it into massless electro-
magnetic wave or matter wave traveling at rates 1n−  or gv  respectively. On 
the one hand, besides the formal similarity with the propagation of either kind of 
wave, the Equations (4.5) and (4.4) show that this virtual process scales both p 
and ε  to p′  and ε ′  by a common factor related to the refractive index. On 
the other hand, this also implies an energy change that occurs in a time range 

0t t t∆ = − , being 0t  the arbitrary time at which the mass m starts modifying its 
value. 

Owing to (2.34), consider thus the energy change 2 2p c v pc vε ε ε′ ′ ′∆ = − = −  
since when the particle starts loosing its initial mass m to when eventually 

0m →  according to (4.7). The fluctuation driven energy change is summarized 
by the following equations  

2
2 2

2 n , , , n .c cv v v p v v p
vv

ε δε δε δε′′ ′ ′ ′∆ = = = = − =
′′′′

     (4.8) 

The energy range ε∆  must not be confused with δε  of (3.1): δε  con-
cerns the quantum uncertainty unavoidably constraining the arbitrary variability 
range allowed to the conjugate dynamical variables of any system, ε∆  is in-
stead the specific energy fluctuation allowed in particular to the particle during 
the mass loss virtual process that “converts” it into a wave. The time length re-
lated to ε∆  is thus  
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2
2 . . n .

n
t i e t tδ

ε δε
∆ = = ∆ =

∆
                 (4.9) 

The Equation (4.9) yields  
2

2

1 1, ,v t
t t tc

δ
δ

ν
ν ν

δ ν δ ∆
∆

∆
= = = =

∆
             (4.10) 

these positions are easily understood; the respective energies proportional to 2v  
and 2c  are also proportional to the frequencies δν  and ν∆ . Of course the 
only way to regard this result in the wave formalism of quantum mechanics is 
the link between frequencies and energies, which in fact is just the Planck posi-
tion: precisely in this sense the probabilistic Equation (4.7) introduces the ratio 
( )2m m′ , mass addend, and the corresponding ratio δν ν∆ , wave addend. This 
confirms that the corpuscle/wave behavior has probabilistic origin and follows 
an energy fluctuation of quantum matter. 

Are the Equation (4.8) along with its premises and implications true indeed? 
To support the validity of (4.7) and thus (4.8) itself, is now tested their direct 
consequence, the Equation (4.9), in three particular cases of major physical in-
terest. Write first with the help of (3.1) and (2.25)  

2

2 2 2 ,
n

v x xt
c c t
δ δ

δε δ
∆ = = =

                 (4.11) 

noting that 2c t∆  has physical dimensions of diffusion coefficient D introduced 
in (2.19); this suggests that v x Dδ σ= , being σ  an appropriate proportionali-
ty coefficient to be determined. So  

2xD v x
t

δσ δ
δ

= =                    (4.12) 

The coefficient σ  is crucial to specify the kind of problem precisely con-
cerned. 

1) Putting first 1σ =  means describing one particle that displaces with dif-
fusion coefficient D through xδ  at average velocity v. Strictly speaking, as pre-
viously remarked about the Equation (3.60), in the present one space dimen-
sional model (3.39) defines C as linear density mass length  instead of the ac-
tual 3mass length ; yet C regarded in the usual 3-dimensional space allows to 
define the actual physical dimensions of flux J of matter, i.e. 2mass length time . 
Multiplying both sides of the first equality v x Dδ =  by Cδ , being C mass per 
unit volume, yields v C D C xδ δ δ= . This result is more appropriately rewritten 
as v C D C xδ δ δ= ± ; the double sign accounts for the fact that v is actually a 
velocity component on the x-axis along which is defined xδ , correspondingly 
to the definition 2

0v τ  of the Equation (2.19). Simple dimensional considera-
tions allow defining the equation  

, ,C mJ D J v C C
x V

δ
δ

= ± = =               (4.13) 

that introduces with the minus sign the concept of mass flux J, i.e. mass trans-
ferred per unit surface and time through the volume V; so Cδ  is due to the 
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diffusion driven matter transfer between the surfaces xδ  apart of an ideal cube 
of matter of volume V. The Equation (4.13) completes the Equations (2.19), as it 
is well known. Anyway, merging both expressions (4.13) of J, one finds 
vC D C xδ δ= − ; then, recalling (3.60) and (3.61) as already done in (2.22), the 
limit δ → ∂  yields  

0

log , log .C D Cv D kT
x kT x C

µ µ
 ∂ ∂

= = − =  ∂ ∂  
          (4.14) 

The double sign of v is obvious, being it a velocity component. For simplicity 
and brevity v and D have been regarded not dependent on x, to make quickly 
recognizable the link of these results with well known concepts of elementary 
diffusion theory; also, the diffusion process has been assumed at the constant 
temperature T. With the minus sign in (4.13), positive D, one acknowledges 
once more the definition of chemical potential µ  in agreement with (3.61). 
Moreover, as the xµ−∂ ∂  is equivalent to a force  , this yields also the 
famous Einstein-Smoluchowski relationship between mobility   and diffu-
sion coefficient D, i.e.  

, .vD kT= = 


                   (4.15) 

Eventually the plus sign in (4.13), which instead corresponds to negative D, 
describes phenomena like the spinodal decomposition of alloys of appropriate 
composition [9]. 

2) Putting next 2σ =  and writing thus (4.12) as 2v x Dδ =  means describ-
ing one particle that travels with diffusion coefficient D the distance 2xδ  at 
average velocity v± . The factor 1/2 specifies therefore that the particle displaces 
around the mean coordinate x  towards both sides of xδ , in which case 2xδ  
at the right hand side of (4.11) reads ( )22x x xδ → −  and takes thus the statis-
tical meaning of average square displacement 2xδ  of the particle traveling 
through the whole range around x . So the second equality (4.12) yields  

2 2 ,x D tδ δ=                         (4.16) 

i.e. the famous Einstein equation of one dimensional Brownian motion. 
3) The validity of the Equation (4.8) is further checked implementing the 

property n 1≥ . Consider now a system of particles, the i-th of which has energy 

iε . The fact that ε∆  is in general 2n  times greater than 0δε ε ε= −  suggests 
the possible chance of regarding the former as 0E Eε∆ = −  and the latter as the 
sum of an appropriate number N of terms 0i i iδε ε ε= −  such that 

( )2
0n i iε δε ε ε∆ = = −∑ ; clearly N depends of the value of 2n  and size of all 

ranges 0i iε ε− . Anyway the initial Equation (4.8) is compatible with the position  

( )2 2
0 0 0n n i iE E ε ε ε ε− = − = −∑                (4.17) 

simply requiring  

 

DOI: 10.4236/jmp.2018.914161 2538 Journal of Modern Physics 
 

https://doi.org/10.4236/jmp.2018.914161


S. Tosto 
 

2 2
0 0 0n , n ;i iE Eε ε ε ε= = = =∑ ∑  

as in principle n can take any value from 1 to ∞, the number of terms of the sum 
is arbitrary. The Equation (4.17) is well known and reported in all standard 
textbooks concerning the fluctuations of thermodynamic systems: it yields  

( ) ( )( )2
0 0 0i i j jE E ε ε ε ε− = − −∑∑  and thus ( ) ( )22

i iε ε− = −∑   regard-

ing appropriately 0E  and 0iε  as average quantities. So with 0E →   and 

0iε ε→ , follows then immediately  

( ) ( )2 2 .N ε ε− = −                      (4.18) 

4.5. Liouville Theorem 

An interesting question concerning (3.1) is the following: is oδε ε ε= −  simply 
an energy range or is it even compatible with the physical meaning of difference 
between two diverse forms ε  and oε  of energy? This question, which ac-
cording to (2.25) involves op p pδ = −  too, is answered rewriting identically 
(3.1) as  

.x pp x
t t

δ δδε δ δ
δ δ

= =                     (4.19) 

The first equality reads  

, ,xp x
x t

δε δδ δ
δ δ

= =


                    (4.20) 

the second equality reads  

, .pp p
x t

δε δδ δ
δ δ

= =                      (4.21) 

Now fulfill the idea that δε  defines the difference of two distinct energies, 
specifically T and U introduced in section 2.3, which implies the chance of writ-
ing in general T Uε = ± . To highlight this point, concerning in particular the 
energies already introduced in (2.41) and (2.42), introduce the following posi-
tions  

( ) ( )T U, T T , , U Ux x xδε δ δ= ± = =            (4.22) 

in this way the sign of pδ  in (4.20) is uniquely defined since T only depends 
on x , whereas is expected the double sign in (4.21) because both energies T and 
U depend on x. As in effect pδ  is the component of δ p  along the x-axis, so 
that it can actually take in principle both signs, rewrite explicitly (4.21) as  

, ,o o o
o o

p p p p
p p p p p

x t t
δε δ δ δ δ δ
δ δ δ

′ ′− −′ ′ ′ ′= ± = − = =           (4.23) 

the double sign on the one hand emphasizes that both p and op  are actually 
components of the vectors p  and op  along the x-axis. The last two equations 
also agree with the fact that in principle  

op pδ δ′ ′   
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in lack of any information about the ranges, both inequalities are actually possi-
ble. Regarded in this way, i.e. implementing range boundaries arbitrary and in-
dependent each other, the notation (4.23) effectively defines δε  as difference 
of two energies reasonably dissimilar according to (4.22). Taking the ratios side 
by side of the first Eqs (4.20) and (4.21) one finds  

x p
x p

δ δ
δ δ

= ±
 

                       (4.24) 

It is immediate to link (4.24) and (4.22), noting that the former defines at both 
sides ratios with physical dimensions of reciprocal time range. Multiplying both 
sides by  , the equations  

0, 0x p x p
x p x p

δ δ δ δ
δ δ δ δ

+ = − =
   

                 (4.25) 

define energies that, in agreement with (2.42) and (2.38), correspond respective-
ly to  

H T U 0, T U 0.δ δ δ δφ δ δ= + = = − =  

Hence simple considerations on the range boundaries imply the concepts of 
Hamiltonian and Lagrangian according to the previous Equations (2.38) and 
(2.42): φ  has been identified with the Lagrangian of a particle, H with the Ha-
miltonian of the system. In particular, is of interest here  

H T U , x pconst
x p

δ δ
δ δ

= + = = −
 

 

for the following reason. According to the quantum uncertainty, the left hand 
side of (3.1) reads nδ δ⋅ =x p  , where the number of scalars, so far intuitively 
associated to the three usual space dimensions only, is actually arbitrary, i.e. ex-
tensible to any number j of extra-dimensions required by some theories or, al-
ternatively, to the number of freedom degrees allowed to the system of particles: 
in fact any freedom degree has its pertinent δ x  and δ p . Thus it is sensible to 
introduce the dimensionless quantity ( ) jx pδ δ   where fall all points in the 
multidimensional phase space defined by the sizes of all xδ  and pδ  of the 
corresponding particles with respect to  . Accordingly  

( ) jp xδ δ δΩ =   

yields  

( ) ( ) ( )j jp x x p
j x j p j x p

t x p x p
δ δ δ δ δ δ δ δδ δ δ δ
δ δ δ δ δ
Ω  Ω Ω

= + = + 
 

 

     

the range δΩ  includes all points of coordinates x and p falling within 
( ) jx pδ δ   elementary cells of j-dimensional volume ( ) jx pδ δ  in the phase 
space. So  

( )1 x p
j t x p
δ δ δ δδ δ
δ δ δ
Ω Ω Ω

= +   

yields then  
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( )1 0x p
j t x p
δ δ δ δδ
δ δ δ
Ω  

= Ω + = 
 

   

according to the first (4.25) ( ) 0tδ δ δΩ = , i.e. the volume constδΩ =  along 
phase space trajectories where H const= . 

5. Some Thermodynamic Corollaries 

The last results have somehow linked the relativistic Equation (2.25) to impor-
tant results of classical statistical thermodynamics. The importance of this topic 
is shortly highlighted in the following three subsections. 

5.1. Statistical Sets of Particles 

Let us implement once more the Equation (2.26), and calculate the change of 
v c pc ε=  according to the following chain of equations  

( )
2 log .

pcv pc pc pc
c

δ
δ δε δ

ε ε εε
   = − =   
   

 

Since by definition  

log log log ,o

o

p cpc pcδ
ε ε ε

    = −     
     

 

being op  and oε  arbitrary constants, it is possible to write  

log log .ovv v v v
c c c c c

δ   = − 
 

 

Consider now preliminarily the case of an ideal gas of non-interacting free 
particles/atoms/ions/molecules and let ip  and iε  the momenta and energies 
of each particle. Then, owing to the last equality, it is possible to write for each 
i-th particle  

log log , , 1;o i
i i i i o o i

v v
c c

δΠ = Π Π −Π Π Π = Π = <  

moreover it is also possible to sum terms like this of each particle over all par-
ticles of the system, so that it is possible to write  

log logi i i o i
i i i
δΠ = Π Π − Π Π∑ ∑ ∑  

whence  

1 1log log , , ,i i o i i
i i i

N N
N N

δ δ δΠ = Π Π − Π Π Π = Π Π = Π∑ ∑ ∑   (5.1) 

being N the number of particles of the system. Note that this result is actually 
more general than prospected here. Suppose first two interacting particles only; 
in this case we expect 1p′  and 1ε ′  for the first particle and 2p′  and 2ε ′  for 
the second one because of their interaction: despite the first (2.34) holds for a 
free particle, it is reasonable to think that changing appropriately i ip p′→  and 

i iε ε ′→  one can describe at least approximately even an interacting particle. 
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For example it is possible to replace i ip ε  with ( )i i i i ip pε σ ε′ ′ = , being iσ  
an appropriate correction factor. Anyway, 1 1p ε′ ′  and 2 2p ε′ ′  are in principle 
calculable; summing these terms, the left hand side of (5.1) involves 1 2v c v c′ ′+ . 
In the case of three particles mutually interacting one would obtain  

1 1 2 2 3 3p p pε ε ε′′ ′′ ′′ ′′ ′′ ′′+ +  defining 1 2 3v c v c v c′′ ′′ ′′+ + , and so on for any number 
of particles all mutually interacting. On the one hand this means that now the 
previous iΠ  is replaced by i i iv cσ′Π = , whereas the summation is possibly ex-
tended to a different number of terms. On the other hand this reasoning holds 
also for i i iv cσ′′ ′ ′Π =  and also for multiple primed probabilities. In fact, summing 
all iv c  or all iv c′′  does not change the conceptual statistical meaning of the 
sum; in other words, whatever iv′′  might be, one could include appropriate 
correction factors to the various iv  of the allowed states; normalizing the sums, 
one still obtains an equation like (5.1). To calculate how each iv  turns into iv′  
and next into iv′′  because of these interactions, is in general difficult and must 
be examined case by case; yet, if we content ourselves to describe the evolution 
of the system as a whole from the non-interacting to the interacting state, the 
form of the final equation is still similar to the previous (5.1) obtained for free 
particles. Omitting for simplicity the primed or multiple primed notations for 

iΠ  and iv  in the following, introduce the positions  

, log , log , ,o o o o i j o
i

S N S N S Sσ δ σ= − Π = −Π Π = − Π Π Π = Π∑  (5.2) 

where σ  is now a proportionality constant. The factor N in (5.2) simply shows 
that S is an extensive property. Introduce the condition expressed by the equiva-
lent positions  

, ,v const vδ δ= Π = = Π                   (5.3) 

where const  can be 0 or more in general 0≠  in this one dimensional model 
where v  is actually a component of v  that can take both signs. The first con-
dition regards a completely disordered system of particles regarded as a whole at 
the equilibrium, whose velocities are randomly distributed both by modulus and 
direction with equal probability. The second condition assumes a macroscopic 
system in an unstable situation out of equilibrium, e.g. gas with an internal 
pressure gradient due to a non uniform distribution of velocities; this can hap-
pen for example for a system of charged particles in an inhomogeneous external 
field. Whatever its particle velocity distribution might be, both chances are as-
sumed compatible with the third position (5.2). 

Actually nothing compels these positions, which in effect are purposely in-
troduced to plug the present considerations into the realm of statistical mechan-
ics. In practice ( ) 0velocity distributionδ =  shows that the equilibrium corres-
ponds to the maximum possible disorder of the system as concerns the velocity 
distribution of its constituting particles. This statement, assumed valid in general 
and not in the present one dimensional case only, can be regarded as boundary 
condition of (5.2) as it implies constΠ = , in this particular case S const= . 
According to (5.2) this constant can be nothing else but the right hand side, i.e.  
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log ,B o oS σ σ σ′ ′= − Π = Π                 (5.4) 

This is nothing else but the Boltzmann definition of dimensionless entropy: 
note that oΠ  constant indeed does not mean that it has one fixed value only, 
but that it does not depend on the index of summation states I, whereas it de-
pends of course on T. 

This simple procedure has introduced the function S as sum of consistent 
functions logi i−Π Π  of all particles of the system; the summation over i has 
been extended to the velocities iv  of all particles of the system. This summation 
is surely positive and finite because all iv c< . 

It is possible to ask at this point whether this kind of equation is uniquely re-
ferable to the property i

i
constΠ =∑ , or it has a more general worth, e.g. in the 

case of probability distribution function of states such that 1i
i
Π =∑ . This ex-

pectation is sensible, being a particular case of the second (5.3). The next subsec-
tion concerns just this point. 

5.2. The Entropy 

The starting point is now (3.38) with the minus sign. The way to implement this 
equation is similar to that just described for the Equation (5.1): any space time 
factor x tδ δ  is regarded as j kx tδ δ , with notation that goes back to the section 
1 in order to specify an arbitrary j-th state of a system of particles at the time kt . 
The system defined in this way is a statistical set in the sense previously hig-
hlighted for each iv c v c→ , in agreement with the definition of j j kv x tδ δ= : 
in other words, the variation of configuration of the system implies reasonably 
the change of local space coordinates of a cluster of j-th particles enclosed in 

jxδ  during the time range ktδ : both ranges define a possible state in the phase 
space as described in the subsection 4.5. Actually both xδ  and tδ  were in-
herent the definition of iv  in subsection 5.1; similarly W must be be introduced 
here in order to describe the non-instantaneous evolution of a local small vo-
lume of the system during space time ranges that represent its configuration 
change rate. The Equations (3.60) and (3.61) show that this way of thinking al-
lowed to infer the chemical potential µ  hidden in χ ; let us examine here the 
possibility of extracting further thermodynamic information from this function. 

The algebraic steps are listed one by one after rewriting (3.38) as  

log , .W W x tχ ζ ξδ δ η− = − = +                 (5.5) 

1) On the basis of the section 5.1, define  

( ), , log , 0,k k k k k ku a W E a S E a W S W W a a tχ ζ−= = + = = − = >  (5.6) 

being ka  positive factor dependent on the time kt  only; 
2) regard j kx t x tδ δ δ δ→ , i.e. any local space time coordinate xt is defined as 

one that characterizes the j-th state of each particle in the space range jxδ  
during the time range ktδ , which implies jkW W→  while jku u→  and 

jkS S→  as well  
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( ) ( ) ( ), ,jk jk j k jk jk j k jk jk j kW W x t S S x t u u x tδ δ δ δ δ δ= = =      (5.7) 

3) sum over all allowed states j accessible during an assigned ktδ  by all par-
ticles in the phase space  

, , , log ,k k k k k k jk k jk k jk jk
j j j

U a a S U u W S W Wζ= Θ + = Θ = = −∑ ∑ ∑  (5.8) 

whereas the factor ka  is defined by  

, ;k o k k o k kU U a S U aζ= + = Θ                 (5.9) 

4) the last Equation (5.9) defines a “new” quantity T called temperature  

( ), ,k
o k k k k

k

U
U U TS a T T T t

S
δ
δ

= − = = =           (5.10) 

uniquely defined for a body of matter at the thermal equilibrium. Note that the 
first equation has been written introducing at the left hand side the summation 
over jkW  only. Also note that  

log 1jkk
jk

jk jk

SS
W

W W
δδ

δ δ
= = − −  

i.e.  

log 1jk

jk

S
W

W
δ
δ

− − =                     (5.11) 

the j-th addend contributing to kS  is to be considered to calculate the right 
hand side. Multiplying both sides by jkW  one finds  

logk
jk jk jk jk

jk

S
W W W W

W
δ
δ

= − −  

and then, summing over j, owing to (5.8) one finds  

, .o o k
k k k k jk

j jk

S
S S S W

W
δ
δ

 
Θ = + = −   

 
∑             (5.12) 

Normalizing via kΘ , this result reads  

1
o
k k

k k

S S
= +
Θ Θ

                       (5.13) 

If 0o
kS >  this equation emphasizes the certainty resulting from the sum of 

two positive terms, which therefore can be regarded as probabilities. If kS  
measures the disorder of the system, then reasonably o

kS  measures the order: 
the sum of these probabilities yields the certainty that both order and disorder 
concur to define the state of any system. In other words, any system can be par-
tially ordered and partially disordered; e.g. some parts of a crystal lattice can 
contain in general local point and/or line pile up defects inside a surrounding 
defect free volume. 

This probabilistic interpretation is possible if 0o
kS ≥ : in other words, the 

probability of modifying the local order/disorder of the system requires accord-
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ing to (5.12) 0jk jkS Wδ δ ≤  inside any jxδ  at different ktδ  at which is cal-
culated jkSδ . Let be therefore 1jk jk jkS S Sδ += −  and 1jk jk jkW W Wδ += −  the 
changes allowed to occur within any space range jkxδ  at any time within ktδ  
and rewrite W of (5.5) according to the positions (5.7) via (3.1) and (2.28); once 
more the space ranges, and not the local space time coordinates they represent, 
are physically appropriate to describe the changes in the system. Replacing 

tδ δε=   and x p vδ δ δε= =  one finds 
2

2
jk

jk
k

x
W

t
δ

ξ η
δδε

= +
  

having expressed jk kv x tδ δ=  according to the current notation; clearly 

jkδε  is the pertinent energy change corresponding to the configuration change 
in progress within jkxδ . Hence, keeping jkδε  and jkxδ  constants, write 

2

2
1

1 1
jk jk

k kjk

W x
t t

δ ξ δ
δ δδε +

 
= − − 

 



 

and thus 

( ) ( )
1

2
1

2
1

jk k k
jk

jk k kjk

S S t S t
x

W t t
δ δ δ

ξ δ
δ δ δδε

−

+

+

  −
= −   − 

 . 

In this way kS  and o
kS  describe the changes occurring in 1ktδ +  with re-

spect to ktδ  in the given region jkxδ  of the system. Certainly the local jkS  is 
due to the corresponding local changes of jkx  and jkε ; however it is in prin-
ciple possible that even at 1ktδ +  both these latter remain still included in the 
same range size jkxδ  where they were at ktδ ; this simply means that jkSδ  is 
small enough to imply correspondingly small changes of jkx  and jkε  that 
therefore still remain included within the same jkxδ . While acknowledging that 
this is in principle admissible because all range sizes are in principle arbitrary, it 
is interesting to compare what happens at 1ktδ +  and ktδ . If for example 

1k kt tδ δ+ >  by definition, i.e. the former is greater than the latter because it must 
include increasing values of local time coordinates kt , then 0jkWδ <  implies 

1jk jkW W +< . The negative sign of jkWδ  means that on the one hand 0o
kS ≥  

fulfils via 0jk jkS Wδ δ ≤  the probabilistic meaning of (5.13) and that on the 
other hand it also implies all 0jkSδ ≥ . Thus summing over j all terms jkSδ  at 
all ktδ  one infers 

0k jk
j

S Sδ δ= ≥∑ .                (5.14) 

Clearly this is just the second law of thermodynamics because, as written, it 
concerns an isolated system; the conclusion is in effect true if no external action 
perturbs the system. If not so, then any action altering substantially the configu-
ration of the system modifies by consequence the j-th range size too; in general 
different jkxδ  and jkδε  are reasonablyimplied before and after the external 
action. Thus, in particular, it can result that 1jk jkx xδ δ+ <  while however (5.13) 
can be again fulfilled: 0jk jkS Wδ δ ≤  still holds even with 0jkWδ >  but 

0kSδ < . Clearly in the system no longer isolate the external action has modified 
the spontaneous tendency towards increasing entropy. 
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It is worth remarking once more that the evolution of the physical system has 
implemented two subsequent time lapses ktδ  and 1ktδ + , not two deterministic 
time coordinates kt  and 1kt + :  these latter and the respective deterministic 

jkε  and 1jkε +  representing the external action would be incompatible with the 
Heisenberg principle. 

5.3. The Statistical Distributions 

Let the change Wδ  of W be W W wδ = ± , being w an arbitrary amount added 
or subtracted to the initial value of W. On the one hand W can increase or de-
crease by any physical reason with respect to its initial value; the double sign in-
dicates that no reason is guessable to expect that the change consists of either 
increase only or decrease only of the initial value W. On the other hand it is also 
reasonable to expect that 0W qWδ = , being q an arbitrary proportionality factor 
and 0W  an arbitrary value allowed to W consistent with (5.5); this position 
means that anyway the change Wδ  implies a new quantity still related to the 
meaning of thermodynamic probability 0W  coherent with W. In other words, 

0W  is such that 0W W qW′ = +  and 0W W qW′′ = −  are respectively compati-
ble and physically consistent with W w± . The fact that both W ′  and W ′′  
must fulfill (5.8) likewise the initial W, allows expecting the consistency of the 
following considerations with the equations up to (5.10) as well. If so, then  

0 , 0W W w q W qδ ± ± ±= ± = >                  (5.15) 

yields  

01 ;
1

W w
q W w

±

± ±

=
±

                      (5.16) 

put in this form, once more the space time Equation (5.5) of W is implemented 
via W w  and related 0W w , similarly to the position (5.8) leading to the re-
sults (5.10). The Equation (5.15) has been written in order to emphasize how w 
is to be regarded in agreement with either sign, i.e. 0W w q W+ ++ =  and 

0W w q W− −− = . In conclusion, recalling the Equation (5.5),  

( ) ( )0
0

0

, exp ;
exp 1

Ww w
q

ζ
χ ζ ζ

±
±

±
−

= =
− − ±

 

also here appears the space time function χ− . Hence, according to the reason-
ing to infer the Equation (4.14) via (3.60) and (3.61), at any given time 

( )0log C C constχ ζ
−
− = +  and thus 0kT kTµ µ− . In conclusion  

( )( )
0

0

.
exp 1

Ww
q kTµ µ
±

±

=
− ±

                  (5.17) 

This equation follows from the arbitrariness of 0µ , consistent with that of 

0ζ ; the multiplicative factor 1w−  has simply included 0ζ  in the constant ad-
dend of chemical potential µ  together with ζ . Implement now either  

0 0,W q W w W q W w− + + −= − = +  

of (5.15): being 0W >  by definition, there is no constrain to the number w−  
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related to the negative sign in the Equation (5.17), whereas the positive sign of 
this equation requires 0w q W+ −≤  i.e. 0 1w q W+ − ≤ . This constrain suggests the 
possible physical meaning of w q± ±  in (5.17). Let 0W  be the numbers of 
states with a given energy µ , i.e. the degeneracy of the state, and w q Nµ± ± =  
the number of particles in the given state; if so, then it is easy to realize that in 
the latter case Nµ  can take only the values 0 and 1 whatever µ  might be [10]. 
All details published elsewhere are omitted here for sake of brevity. Thus (5.17) 
is the well known formula of statistical distribution of fermions and bosons with 
degeneracy 0W . 

5.4. The Phase Space 

Entropy and Liouville theorem, both previously inferred, are the key concepts to 
introduce the phase space. As this topic is well known, are reported here just a 
few remarks aimed only to emphasize the link between space time and phase 
space; i.e. the concept of space time is actually the third essential ingredient to 
introduce “ab initio” the statistical mechanics. To this purpose consider in par-
ticular the Equations (3.39) and (3.1). 

Being x and t arbitrary and independent variables, which represent for exam-
ple the space coordinate of a given particle at various times in the space time, 
any value of xt can be obtained keeping constant either factor and allowing ap-
propriate values of the other one; both ways of defining an arbitrary space time 
coordinate j kx t  are numerically and conceptually equivalent to describe each 
one among N particles of the system at given time kt  in the range of space 
coordinates 1j j jNx x x≤ ≤  or at jx  during the time range 1 2kt t t≤ ≤ . Ac-
cording to (3.1), indeed, the space time coordinate of each particle is defined 
within allowed variability ranges 1j jN jx x xδ = −  and 2 1k k kt t tδ = − . So is phys-
ically significant the amount 2

j k j kx t pδ δ δ δε=  , whatever these range sizes 
might be. To highlight this point consider the following equations obtained im-
plementing (3.1) and (2.28)  

( )( )

2 2

,j k
j k j j k k

x t
p v v p

δ δ
δ δε δε δ

= =
 

 

whence  
2

j
k k j k

j j k

x
v t t x

v p
δ

δ δ δ
δε δ

= =


 

and thus, comparing the initial and final ranges of coordinates,  

j k k jx t x tδ δ δ δ=                        (5.18) 

the initial equation regards the j-th space coordinate jx  at the time kt , the 
former defined within the interval jxδ  the latter in the time range ktδ ; the fi-
nal equation rewrites the first one with exchanged indexes j and k. As in effect 
the first two equations are summarized in the third one, it means that the con-
cerned particle is described at different times jt  and kt  by different space 
ranges jxδ  and kxδ , to which correspond the respective momenta jpδ  and 
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kpδ ; moreover it also follows j k k jp pδ δε δ δε= , as it must be because anyway 
the Equation (3.1) must be fulfilled no matter how any particle moves in the 
space time. In other words, as j and k are not specified or specifiable, the particle 
moves actually through any random space and time ranges in the phase space 
according to its position and momentum of the space time. This can be better 
evidenced and generalized rewriting with trivial manipulations the last equation 

, ,

q q q q
j k j j q kjq

k k kj

qk
kj kjq

j kj

p x x p
x t x x x t

F

p
F t

x F

δ δ δ δ
δ δ δ δ δ δ

δε δε

δδε
δ

δ

= = = =

= =



       (5.19) 

i.e. one particle initially at any random jx  within jxδ  at the random time kt  
included in ktδ  is actually found within another qxδ  at the subsequent time 

kjqt  within time range kjqtδ . Obviously this chain could be further extended 
starting again from the last term q kjqx tδ δ , which in effect has the same form of 
the first one but is simply rewritten with different subscripts; the first and last 
terms of this chain represent different space time coordinates and thus its ability 
of the particle to fill various coordinate and momentum ranges defining the 
whole phase space. All accessible local coordinates of space time correspond to 
the respective local coordinates of space phase, with equal probability. 

5.5. Further Comments about the Diffusion Coefficient 

The diffusion coefficient D introduced in (2.19) is usually concerned in prob-
lems of matter displacement under non-equilibrium conditions, essentially due 
to concentration gradients; the same holds for the heat diffusion coefficient (2.22) 
in non-thermal equilibrium problems, typically in the presence of temperature 
gradients. However, the four equations from (4.13) to (4.16), as well as the next 
(5.20) and (5.21), suggest a more profound physical meaning of D. In this re-
spect deserve attention the following three remarks. 

1) The dimensional definition of D is m ; this yields D D m mδ δ= − , i.e. 
( ) ( )log logo oD D m mδ δ= − , being of course oD  and om  arbitrary con-

stants. Then, reasoning likewise in (4.14), the right hand side yields 
( ) ( )( ) ( )log = logo om V m V C Cδ δ , being C the amount of mass in a given 

volume V. Hence, being ( )log oC C kTµ= , as found in (3.60) and (3.61), one 
finds ( ) ( )log oD D kTδ δ µ= −  and therefore  

( )exp
o

D kT
D

µ= −                     (5.20) 

this is the usual form to express the dependence of diffusion coefficient on tem-
perature via the activation energy µ  and the reference constant oD . 

2) Assume now a body of matter of mass m in equilibrium at temperature T 
and implement the reasonable idea that both D and   take finite ranges of 
allowed values. Let minD  and max  be the respective limit values of interest 
here; is then significant the particular case where the Equation (4.15) concerns 
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the minimum temperature minT  defined as follows  

min
min

max

.zpDT
k k

= =



                   (5.21) 

Dimensional considerations are useful to guess an order of magnitude esti-
mate of minT . The reciprocal mobility 1−  has physical dimensions 
mass time , whereas D is h mass ; so their product represents the minimum 
energy zp . The notation emphasizes that the energy of interest to calculate 

minT  excludes the contribution of thermal vibrations, being instead due to the 
mere confinement of a particle or a body of matter within a finite delocalization 
range xδ ; accordingly, it is sensible to define minT  as zp kε . In fact the Equa-
tions (3.1) justify the existence of this form of energy and related force. 

Consider indeed one particle of mass m ideally delocalized between two infi-
nite potential walls xδ  apart; in a one dimensional model it is possible to write  

2

2 2, ,
2 2zp
p D
m m x x

δ ω σε ω
δ δ

= = = =


            (5.22) 

having expressed D mσ=   via an appropriate proportionality constant σ . 
This result is understandable thinking an oscillating particle confined in xδ , so 
that m bounces back and forth between the potential walls with frequency 

1 tω δ= . In fact tδ  is the time lapse to complete one oscillation cycle; 

max 0p pδ = −  is the range defined by the maximum delocalization momentum 

maxp p=  related to the range size and 0p =  when the particle inverts its mo-
tion on both potential walls. This picture agrees with 0pδ ≠ , i.e. with the 
physical impossibility of conceiving a localized particle at rest and thus with 

0p =  in fixed point exactly defined. The circular frequency here introduced is 
justifiable from a more realistic three dimensional point of view, where the back 
and forth one dimensional motion of m reads actually 2m xωδ=  and thus 

( )2 2zp m xωδ= ; i.e. m describes a closed circular path at tangential velocity 

tanv xωδ=  inside its confinement delocalization volume V, so far not yet in-
troduced explicitly. In effect it is also possible to evidence the confinement vo-
lume writing  

2 2 2 2
3

2 2 3 , , .
2 22 2

zp
zp zp zp zp

zpzp zp

p
F V x

m mVm x mV
δ

δ
δ

≈ = = ≈ =
  

     (5.23) 

Anyway it is sensible that minT , being presumably a fixed value, cannot de-
pend on the arbitrary m and specific zpV ; rather minT  is to be regarded as a 
universal property of matter uniquely defined. Both requirements suggest res-
tarting from the relativistic energy equation 2pc vε =  of one free particle of 
arbitrary mass m, which however must no longer appear explicitly. Implement-
ing thus the wave expression of momentum p h λ= , which in fact allows in-
troducing the expected oscillation behavior as that related to the concept of wa-
velength λ , one finds  

2 2

,pc hc
v v

ε
λ

= =                       (5.24) 
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which thus also defines  

( )
2

min

max

.zp
zp

hc
vλ

=  

The 3D generalization of this result is obtained imagining an arbitrary amount 
of mass delocalized in an appropriate range 2 r∆ , regarded as the diametric size 
of a hypersphere of radius r∆  to which is related the maximum value of zpλ : 
the idea is to implement steady matter waves of wavelengths zpλ  propagating 
through the hypersphere at rate maxv . Regard thus an arbitrary mass of an iso-
late free corpuscle ideally bouncing within one diametric distance, whose extent 
corresponds to one half wavelength; the largest zero point wavelength is that 
with steady nodes on the opposite boundaries of the hypersphere diameter and 
is thus 4zp rλ = ∆ . This implies that min

zp  defined by the zero point momentum 
wavelength zpλ  corresponds to back and forth delocalization through twice the 
diametric size 4 r∆  of the hypersphere: this is the physical meaning of (5.22) 
where ( )= 2 2zp v rν ∆  whence zp zphν ω=  . Also, imagining asymptotically 
v c→  to simulate maxv  and recalling (5.22), it is possible to conclude  

min min
min

min

2 π, , .
4 4

zp zp
zp

hc hc cT
r k k r r

ω= = = = =
∆ ∆ ∆

 
         (5.25) 

These results will be calculated later; regardless of the numerical values, how-
ever, it is possible to remark since now some interesting implications: 
− The Nernst theorem is automatically fulfilled, i.e. the absolute zero actually 

does not exist being clearly impossible to remove the zero point energy, 
which is an intrinsic feature itself of any amount of confined matter. 

− As expected, the related zero point temperature min
zp k  does not depend on 

the specific amount and physical nature of m. 
− Is in principle possible the quantization of temperature, which accordingly 

should start from minT  and change by discrete steps of the order of minT  it-
self. 

3) The reasoning to infer (5.21) and (5.25) introduces minD , whose physical 
meaning is relevant: it implies that minT  is somehow linked to the possible gra-
nular structure of the space time. 

To show this last point, calculate the change ( )j kx tδ  of the space time coor-
dinates around any local coordinate jx  and kt . The result is elucidated by the 
following chains of equations implementing once more the Equations (3.1):  

( ) ( ) , ;j
j k k j j k k jk j k jk

k

x
x t t x x t t v x t v

t
δ

δ δ δ δ
δ

= + = + =  

since the expression at right hand side reads  

( ) ( ) ( )

( ) ( )

2 22
2

22 2

,

, ,

k jk j jk
k jk

k jk j k jk jk

k jk j jk k jk j

t v x p
t p

t v x v x

t v x x t v x

δδ
δ δ δ

δε δ

δ δ

−
= = =

−

= − = −









 

with notation of (6.4), then  
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( ) ( ) ( ) ( )
22 2 2

2
3 3 , .jk jk

j k jk jk
jk jk jk

v D
x t D v

v v v

δ δ
δ δ= = = =





  

It is possible to identify here a minimum value of ( )j kx tδ  defined by 

minjkD D→  and jkv c→ , at least asymptotically. Anyway one finds  

( ) ( ) ( ) ( ) ( )
2

22 2 2 2min
3min

, , , .j k k j jkinv inv

Dx t t c x v c
c

δ δ δ δ= ≡ = − =    (5.26) 

Whatever the specific value of minD  might be, is interesting the conceptual 
idea of “granular” space time determined by a minimum linear size of cells, in 
the present one-dimensional model ( )length timeδ × , that define any macros-
copic values of xt within these cell; the third (5.26) corresponds to the definition 
of invariant interval, which is known to be the basis of the special relativity [11]. 

Accordingly, the Lorentz transformations, in particular, should actually be 
nothing else but the straightforward consequence of the granular nature of space 
time.  

5.6. Further Comments about the Zero Point Energy 

This section generalizes the idea of regarding the zero point energy and volume 
(5.23) as intrinsic properties of matter, rather than as operative thermodynamic 
parameters related to specific experimental conditions. According to (5.23), 
think the zero point volume zpV  considering for example an atom surrounded 
by neighbor lattice atoms; zpV  corresponds to its free lattice volume, whatever 
it might be depending on temperature and mobility. The fact that zp  is de-
fined by the confinement lattice volume around a given atom/ion, implies the 
limit 0zp →  simply because for an isolated free particle zpV →∞ . Nonethe-
less zp  depends itself on T, both because of the thermal dilation of matter that 
modifies the size of lattice spacing and because the T dependent mobility allows 
one lattice atom to spread well beyond its volume at minT  via the so called 
“self-diffusion” [12]. Moreover zpV  also depends on the presence of lattice de-
fects, which affect the free space available for its delocalization. In particular, one 
expects that the lattice atom is quenched in one lattice site at minT T=  only; in 
other words the volume V is a thermodynamic parameter experimentally set, 
whereas zpV  is determined by the physics of matter. In the absence of external 
fields at minT T= , therefore, minkT  is the minimum non-thermal energy of the 
lattice atom/ion, as it results from all possible interactions with lattice neighbors 
that determine the available free confinement volume; at minT T> , the thermal 
energy kT represents actually the additional contribution to the non-thermal 
zero point energy ( )zp zp T=  , so that it seems reasonable to think that in gen-
eral the simple kT should be implemented as zpkT +  . This holds in particular 
for the FD and BE statistical distributions. In the case of a single free particle this 
does not hold, as its delocalization volume is infinity by definition: but in general, 
when considering the thermodynamic properties of a body of matter, zp  can-
not be longer omitted at least in principle. 
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To justify the legitimacy of this conclusion, consider first an ideal gas inside 
which energy exchanges occur via direct collisions between its molecules only. 
Without hypothesizing specific interactions between molecules, e.g. long range 
Coulomb or dipole interactions between electron shells, holds between p and   
of each molecule the general equation  

2 2

;pc hc
v x

τ
λδ

= =                      (5.27) 

the second equality introduces the time lapse τ  between any successive shocks, 
during which the molecule travels freely the distance v xτ δ= . During each τ  
therefore   remains constant, since inside the gas the energy changes are sup-
posedly due to direct collisions only. In particular, as concerns the zero point 
energy,  

( )
2

3 2
2 3 , ;zp

hc xτ λδ= = 


 

the notation is justified by the free volume   dependence analogous to that of 
the Equation (P77). The fact that   involves xδ  is not surprising; 1xδ −  
comes from   in (5.27) and agrees with pδ  , being pδ  the total range of 
momentum change ( )p p− −  after one shock between molecules. 

Let 


 be the distance between one molecule just after its last shock and the 
wall of the recipient containing the gas; in general xδ≠ . Moreover, as 

/ = forceε λ−∂ ∂ , (5.27) yields  
2

2, ,hc xτ λ δ
λ

= = =


 


                 (5.28) 

where   is the impact force of the concerned molecule against the wall. If A is 
the surface of the wall, then the pressure due to the shock of one molecule is  

2

.hc
A A

τ
= =





                       (5.29) 

If   is such that A =


  , then the former equation becomes 2hc τ=


  ; 
so, since the numerator has physical dimensions energy volume× , the result 
reads  

2, .o o
o o hc τ= =





 
  


                   (5.30) 

Note that in general neither τ  nor   are necessarily constants independent 
of time; so the pressure   inferred in (5.30) could be variable during subse-
quent time lapses τ . Also note that to infer this result in the present one di-
mensional model it is enough to think the plane A orthogonal to the space coor-
dinate xδ . In a general three dimensional approach one should integrate over 
all possible incidence angles of the molecule against the wall to obtain the pres-
sure, as it is well known. This would entail a numerical factor, which however 
can be included in o o   and thus is irrelevant for the present purposes. Moreo-
ver, it is still possible to define a statistical value of   averaging the shocks 
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over several time lapses during a time range t τ∆  . So is defined the quantum 
pressure  

( )2
2 , , .o o

zp zp zp zp
zp

T= = =


 
    


 

This result has been obtained considering the delocalization volume of one 
molecule; it holds in general for any number N of molecules regarding zp  no 
longer as volume of a single molecule but as total experimental volume expV  of 
ideal gas simply with the position zp expV N= . The right hand side is the av-
erage confinement size of the molecule. It is significant to conclude that the 
pressure of the gas must be expressed not only taking into account the variable 
dynamical parameter expP  experimentally determined but adding to this latter 
the contribution zp  having merely quantum nature; in effect the present rea-
soning waives considerations about any state equation of ideal or real gases. Also, 
regarding the macroscopic volume expV  as a further dynamical parameter expe-
rimentally set, it contains the quantum contribution zpN . So, extending the 
reasoning carried out for one gas molecule to the case of N molecules, one finds  

2

2 , , .eff exp eff exp exp o o
zp

fNP P V V N f= + = − =  


         (5.31) 

The volume zp  is easily understandable, being intuitively evident that the 
molecules have finite size contributing to the total volume expV  experimentally 
measurable. Even zp  is guessable: if the zero point energy is simulated by an 
oscillator characterized by a non-thermal vibrational frequency that determines 
the zero point energy, see the next Equation (5.22), then the energy of any oscil-
lator in the gas volume defines a confinement non-thermal energy density 
equivalent to pressure, see next Equations (8.34). Indeed (5.31) shows that even 
at 0expP = , e.g. the core of a free body of matter in the vacuum with zero ap-
plied pressure, there is a residual internal pressure, non-eliminable, e.g. it could 
act substantially similarly to the repulsion between electron shells of molecules; 
moreover the latter equation shows even a non-reducible residual volume 

oN=  . The relationship between energy, pressure and volume follows directly 
from (5.29) as 2c A constτ= =  at fixed temperature: indeed at the right 
hand side of the first equality appear fixed quantities, of course at given 


 and 

τ  and thus constant T. So  

( )
2

2 .eff eff zp zp
fNP V N

 
= + − 
 
  


 

This equation reminds closely the characteristic terms of the Van der Waals 
equation, where f and zp  are approximately regarded as gas constants; this 
holds also here, even though the pressure and volume terms (5.31) have been 
inferred considering initially an ideal gas via quantum considerations about its 
constituting molecules. The interactions between these molecules, even not hy-
pothesized and purposely introduced “a priori”, appear as quantum effects re-

 

DOI: 10.4236/jmp.2018.914161 2553 Journal of Modern Physics 
 

https://doi.org/10.4236/jmp.2018.914161


S. Tosto 
 

gardless of specific considerations about their actual nature, which is in effect 
“hidden” in parameters like τ  or 


 or f descriptive of the properties of the 

gas; hence is not surprising that the coefficients o o   and o  contribute to 
that characterizing the famous Van der Waals equation. The conceptual reasons 
underlying this equation are well known; is interesting however that the form of 
the resulting equation based on the present approach is analogous to that just 
found. 

These considerations are now extended to the concept of temperature once 
having introduced the quantum meaning of minT  related to zp  to show that 
the zero point energy, typical quantum effect, affects the macroscopic properties 
of gases: ideal gas is the one where these quantum effects are approximately neg-
lected along with the long range mutual interactions as well. 

If effectively exists a minimum temperature 0≠ , then it must be defined by 

min zpkT =  . However, the right hand side is in general function of T itself; in-
deed it has been shown that 2 3

zp lV −∝ , being lV  the lattice volume available 
around a given lattice site. So the thermal dilation modifies zpε , whose 
non-thermal physical meaning however still holds identically. Moreover the lo-
cal mobility is itself T dependent, as it is intuitive to think; in effect it is known 
that by self diffusion, atoms in a given lattice point can exchange of place with 
lattice neighbors, so that the actual volume allowed to a given atom is increased 
by the number of neighbor elementary cells accessible. 

These considerations should be also extended in particular to the statistical 
distributions of bosons and fermions, usually written as a function of kT only: 
taking into account the considerations elucidated in the case of the Van der 
Waals equation, one should conclude that strictly speaking in the case of a solid 
body the simple term kT should be replaced by ( )qk T T+ , where qkT  ac-
counts for the quantum contribution related to the T-dependent zero point 
energy with ( )q qT T T= . 

( )( )
( )

0
min

0

,
exp 1

, 1.

zp

zp zp

Ww nT k
q k

T n integer

µ µ±

= = +
− ±

= = ≥

 


 

         (5.32) 

Even though the value of minT  is presumably much lower than the ordinary 
temperatures today attainable and experimentally measurable, the Equation 
(5.25) suggests the chance of being tested in a situation where zp  is relevant, 
i.e. in the case of theoretical models of solid state physics. In effect the paper [13] 
implements the ideas of quantized temperature and statistical distributions 
(5.32), both introduced as hypotheses; the specific heat calculated agrees very 
well with the experimental data from very low T up to the melting point for sev-
eral metals with different crystal structures. 

6. Some Relativistic Corollaries 

In this section are examined some relevant relativistic corollaries of the previous 
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results. The importance of the following considerations is shown by the chance 
of obtaining contextually relativistic results in the same conceptual frame of the 
quantum results previously obtained. The next two subsections emphasize the 
importance of the previous equations (3.15) and (4.9), now again under test after 
their previous validations, see respectively Equations (3.20) and (4.6), (4.7), (4.13) 
to (4.18). 

6.1. The Invariant Interval 

Implement the Equation (3.15), once more under test after the result (3.20), re-
written as follows  

( )
2

2, ,a p
bc pr r ap c
c
εσ ε σ∆ = ∆ ∆ = − − = −          (6.1) 

depending on whether 1r   one has c p∆ ∆ . Hence, squaring both sides, 
( ) ( )2 2c p∆ ∆  reads  

( ) ( )2 2 , 0,c p K K∆ − ∆ =                  (6.2) 

where anyway K is the resulting value from the left hand side of the Equation 
(6.2). 

Consider first 0K > . 
Implementing (3.1), one finds  

( ) ( )2 22 2 2 ,c x t K− −∆ − ∆ =   

whence  

( )
( )

2
2 2 2

2 ;c t x K
t x

∆ −∆ =
∆ ∆

                   (6.3) 

this equation reads identically  

( ) ( ) ( ) ( )
2

2 22 2 2 2 2 2 2
2 21 , ,K vs x t c t s s s c t x

c
 

′ ′′∆ = ∆ ∆ = ∆ − ∆ = − = ∆ −∆ 
 

  (6.4) 

having implemented once more v x t= ∆ ∆ , whereas  

( )2 2
2

21
c vx
K c

 
∆ = − 

 



 

reads by dimensional reasons, whatever the value of K might be,  

( )22
2 2

2 2 , .
1

cxx x
Kv c

∆′ ′∆ = ∆ =
−



               (6.5) 

It is easy to recognize the Lorentz transformation of the intervals x′∆  and 
x∆  in two different inertial reference systems R and R′ , hence in (6.4) both 

( )2s∆  and x t∆ ∆  must be invariants, as found in particular in (3.62); indeed K 
is invariant itself if r of (6.1) is calculated via invariant forms of ε  and p, see 
Equations (3.64). 

Consider now 0K < . 
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The interval defined in (6.3) reads 2 2 2 0x c t∆ − ∆ > ; moreover (6.2) reads 
( )22 c p K∆ = ∆ − , whence (3.20) with an appropriate value of K. Also this result 

holds regardless of the local limit condition ∆ → ∂ ; so this is not a local prop-
erty, but a feature of the whole space time. It is significant the fact that these re-
sults have been obtained with the help of the quantum uncertainty relationships 
(3.1). 

6.2. The Gravity Force 

Consider again the Equation (4.9), now once more under test after its early vali-
dation via the Equations (4.6), (4.7) and (4.13) to (4.18). Implementing the Equ-
ations (3.1) and the initial definition (2.2) of v one finds  

2 3

2 2 2

v x p x pt
c c t

δ δ δ δ
δε δεδ

∆ = =  

that yields, after multiplying and dividing the right hand side by an arbitrary 
mass m,  

3
2

2

1, , ;m p t F xmc
m t

δ δ
δε δε δ
∆

= = = =
 

              (6.6) 

by dimensional reasons   is an arbitrary length. The function   consists in 
general of a constant term G plus a correction term  ; indeed   can be ex-
panded in series around arbitrary reference ranges 0xδ , 0tδ  and 0m  defining 
G, i.e.  

3 33
0 0

2 2 2
10 0 0 0

, , , ,j
j

j

x xxG G a u u
m t m t m t
δ δδ
δ δ δ

∞

=

= + = = = −∑        (6.7) 

being ja  appropriate coefficients of the power series expansion and   the 
sum of the higher order terms of the series. This means calculating   around 
an arbitrary value 0 G≡ . So (6.6) reads  

( )2 ,mc G= +


                       (6.8) 

It is evident that the general relativity appears in this result: the Newtonian 
potential Gm   recognizable in this equation is the approximate particular case 
of a more general equation involving   too. It is known for example that the 
simple addition of a further term to the Newtonian potential is enough to calcu-
late correctly the perihelion precession even without implementing the basic as-
sumptions and tensor calculus of general relativity [14]. Unfortunately the 
Newton physics does not justify itself this additional term. Nonetheless the mere 
series expansion of the last (6.6) around an arbitrary space time constant term G 
legitimates the chance of generalization without introducing “ad hoc” hypothes-
es. In this respect some further considerations exposed below regard in particu-
lar the additional non-Newtonian terms due to the series (6.7), still in the con-
ceptual frame introduced by (1.11) and (1.12) as done throughout this paper. In 
effect, some papers among which [15] show that the quantum uncertainty allows 
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to infer the most relevant results of general relativity in a unique frame that in-
cludes of course the quantum physics. The presence of 2c  at the left hand side 
of (6.8) suggests the chance of multiplying both sides by a further arbitrary mass 

m′± ; one finds then  

2 ,G
m m m mm c G
′ ′

′± = = ±

 

              (6.9) 

which defines two important quantities  

2, , .G G
G G

mG m mF G G
m

δ
φ

δ
′

= = ± = − ≈ ±
′



  

 
       (6.10) 

At the left hand side of (6.9) appears the rest energy 2m c′±  of m′  plus a 
correction term resulting from the series expansion of G, at the right hand side 
the related potential energy G  to which correspond the pproximate gravita-
tional potential Gφ  and force GF  of (6.10) via the constant zero order term 
  only. Note that the Equations (2.35) and (3.64) have introduced the concept 
of states of negative energy; hence the left hand sides of (6.9) and (6.10) have 
physical meaning even regarding m′±  as unique mass m±  with positive and 
negative energy states 2 2m c m c±′± = . So the Equations (4.9) and (3.1) prospect a 
possible chance for positive sign of m′ , i.e. a repulsive gravity force as already 
found in [16] [17] [18], whereas (6.9) yields  

*
* *

2, .G
G G

mG m mF G
δ

φ
δ

′
= = − ≈
  


               (6.11) 

Consider here the negative value m′−  and suppose G ; (6.9) and (6.10) 
yield  

2, .G G
mG m mF Gφ

′
= − ≈ −

 

                (6.12) 

The Equations (6.12) and (6.11) will be further explained just below, see the 
next Equation (8.6), after having first validated the results achieved in this sub-
section. 

1) The Equation (6.8) reads also  

2 ,G mG
G c
+

=
  

which in the particular case G=  implies a specific value of 


 given by  

2

2 .bh
mG
c

=
                        (6.13) 

To understand the physical meaning of this result, rewrite identically (6.8) 
multiplying both sides by an arbitrary factor 1σ ≤ ; then  

( )2 2 2, 1 , .e o o ev Gm G v cσ σ= = + =    

For 2oR = , in particular, one recognizes the well known escape velocity ev  
of an arbitrary mass m′  at a distance 


 from the gravitational center of mass 

of m, also inferable via (6.12) under the condition of null total energy (potential 
plus kinetic) of m′  at infinity. As 2oR =  is compatible with 1σ =  simply 
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putting G=  in (6.8), this limit condition for the chance of m′  at distance 


 of escaping from the gravity field of m holds also for c. This velocity can be 
nothing else but that of a photon, so (6.13) shows that at any bh′ ≤   even light 
cannot escape from the gravity field of m. Trivial manipulations of the early Eq-
uations (4.8) and (4.9) yield therefore the black hole limit condition between 
mass m and distance 


. 

2) The present way to introduce the gravity force explains why any test mass 
m′  behaves in the same way in the field of a source mass m: the masses m of 
(6.6) and m′  of (6.9) have been introduced subsequently and independently 
each other. Note the conceptual difference between the present reasoning and 
that of the Newtonian approach: Newton has contextually introduced two 
masses to define their mutual interaction law, here the masses have been conse-
quentially introduced starting from (6.6) because 2c  requires the concept of 
mass to introduce that of gravitational energy. It is not surprising that once 
having decided either mass as a field source, the behavior of the other is uniquely 
fixed: as both masses are independent and arbitrary, once having fixed m the 
behavior of m′  is uniquely determined. In other words there is no reason to 
expect that any other mass m′′  behaves in a different way from m′  in the gra-
vitational field of m because the law governing its dynamics has already been 
independently fixed. 

3) Here m and m′  are regarded in fact as gravitational and inertial masses; 
the first one defines the gravitational potential Gφ , the second one defines their 
mutual interaction force GF . As they are interchangeable, their gravitational 
and inertial role is physically equivalent and indistinguishable. Thus gravitation-
al and inertial masses must be equal. 

4) Consider that (6.9) and (6.12) yield  

2 2 22 , 2 .bh G bh bh G

c c
φ δφ

δ δ = − = − = − 
 

  



  

          (6.14) 

Identify now the distance   with one wavelength of a light beam propagat-
ing in the vacuum; thus  

2

2 2 2 2, , .c c c
cc

δ δν ν δνδ δν
ν ν ν

= = − = − = −


 



 

Hence, given a light wave propagating at distance bh>  , one finds  

2 22 ;bh G
bh cc

δφ δνδ− = − = −


 



 

then  
3

2

2, , ,G
r r

r bh

c c
mGc

δφ δν ν δν ν ν
ν

= = = = −


          (6.15) 

being rν  a reference frequency of the wave. The first equation defines the 
famous red shift ( )r rν ν ν−  of a light wave due to the gravitational potential 
field change Gδφ . 

5) It is instructive to consider now two photons freely moving in the vacuum 
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on the diametric plane of two concentric hyperspheres: the inner photon just at 
radial distance bh  from the gravity center of m, given by (6.13), the outer 
photon at any radial distance bh>   from m. The previous result shows that 
the inner photon cannot escape from the gravity field of m, so it can move on 
the surface of the inner hypersphere only, whereas any photon moving at very 
large distance bh    from m is free to travel unperturbed as a limit case from 
minus infinity to infinity or vice-versa. Is reasonable the idea that the outer 
photon moving at the closest approach distance bh>   should follow an in-
termediate behavior, i.e. a curved space time path bent by m. This preliminary 
consideration justifies why the problem of light beam bending is tackled here 
with reference to the previous Equation (6.13). The standard way to approach 
the problem considers the curved trajectory traveled by the photon that follows 
the space time curvature along an arc sδ  around m at distance 


; the position 

of the photon before and after its closest approach to m defines the characteristic 
deflection angle ( ),mϕ ϕ=   equal to that formed by the tangents to the oscu-
lating circumference at boundaries of sδ . From a quantum point of view, 
however, the concepts of position and trajectory are missing, rather the ap-
proach must be similar to that followed to infer (4.16). Just for this reason the 
present reasoning is instructive to highlight how the quantum requirements are 
plugged into and provide information on this typical relativistic context. 

Regard the arc sδ  of osculating circumference of radius 


 defined by 
sδ ϕ=   conceptually according to of (3.1), i.e. as an uncertainty range where 

the photon is delocalized. Accordingly sδ  is actually given by two half angles 
2cwsδ ϕ=   and 2ccwsδ ϕ= −  traveled by the photon along clockwise and 

counterclockwise paths around the middle point 2sδ ; indeed the photon dis-
placements implied by cwsδ  and ccwsδ  are physically indistinguishable, be-
cause nothing is known about the motion features of any particle within an un-
certainty range. This point of view skips the idea of a photon entering in sδ  
through one boundary and exiting from the other boundary, which in fact would 
define sδ  as an element of trajectory. So ( )cw ccws s sδ δ δ ϕ= − − =   waives the 
whole ϕ , which would imply discriminating the events where the photon tra-
vels through sδ  coming from −∞  towards ∞  or from ∞  towards −∞ ; 
actually these events are indistinguishable likewise the boundaries of sδ  
themselves. So, with respect to gravity center of m, the angle of physical interest 
is 2ϕ  and not ϕ  to account for the sought total sδ . In other words the 
Equations (3.1) compel merging two half-paths into a unique travel path without 
discriminating either of them. 

Consider then an angle 2ϕ  on a circumference of radius 


 and its related 
length ( )2sδ   to describe the uncertainty range sδ  where is delocalized the 
photon. Rewrite the second (6.14) as follows  

2 2

2 , ;bh bh bh

o o

s mG c mG c sδ δ δ
 

− = − = − − − = 
 

  



     

 

here the uncertainty ranges ( )bhδ    and ( )2
G cδ φ  have been simply re-
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written with the usual notation of any oy y yδ = −  by definition, whatever the 
concerned y might actually be. In this specific case 


 and o  are two different 

distances of the photon from the gravity center of m. It is clear that it is conve-
nient to put here o →∞  because, as previously stated, we are interested to 
describe the situations where one photon initially unperturbed passes at a finite 
distance 


 from m. Hence the last equation reads  

2

2 .bh s mG cδ
= − = −



  

 

If, for the aforesaid quantum reasons 2sδ ϕ=  on the osculating circle, 
one finds immediately  

22 .
2

bhl mG
c

ϕ
= =
 

 

These simple considerations emphasize the actual quantum character of one 
of the most representative relativistic predictions, the gravitational lensing; the 
famous factor 4 defining ϕ  at the right hand side appears to be actually the 
fingerprint of the quantum uncertainty. 

6) Consider the physical dimensions of the gravity constant inferred from 
(6.6): according to (6.7), space and time range sizes 0xδ  and 0tδ  concur to its 
macroscopic value together with the arbitrary mass 0m . From a quantum point 
of view, (6.7) does not exclude the chance of mass fluctuation, i.e. according to 
(4.6)  

3 3
0 0

02 2 2
00 0 0

2

0 0 0 0 2

1 ,

1 1 .

x x
G m

mm t t

vm m m m
c

δ δ
δ δ δ

δ δ

δ

 
= − +  

 
 

′  = − = − −
 
 

              (6.16) 

Even considering preliminarily the fluctuation of 0m  only, and thus energy 
fluctuation * 2

0c mδ δ=  only, the constancy of G is expressible as  
3 3
0 0

0 02 2
0 0 0

0,
x x

G m m
m t t
δ δ

δ δ δ
δ δ

 
= =  

 
 

i.e. *δ  implies the change of 3 2
0 0x tδ δ  as well. Note that 0xδ  and 0tδ  

are not usual dynamical variables characterizing physical laws, rather they define 
the structure of G itself. In effect, this quantum standpoint implies that transient 
fluctuations of values of G are in principle possible, being compatible with cor-
responding space time energy quantum fluctuations *δ . Making explicit the 
right hand side of this last equation, trivial algebraic steps yield  

2 3 3
0 0 0

0 0 02 3 2 2
0 0 0 0 0 0

2
0 0 0 0 0

2
0 0 0 00 0

3 2

3 2 0

x x x
G x t m

m t m t m t

x x x t x m
t x m xm t

δ δ δ δ

δ δ δ
δ δ

= − −

 
= − − = 

 

 

so that 1G const=  simply if  
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0 0 0 0 0 0
1 2 1

0 0 0 0 0 0 2

1, , , 2 3;
x x m m m m
t t x x t t

δ δ δ
σ σ σ

δ δ δ σ
= = = + =  

otherwise, e.g. a different correspondence between 1σ  and 2σ  whatever their 
values might be, the quantum definition of G admits 0Gδ ≠ . All this has clear-
ly to do with the existence of inflationary era of the early Universe: an appropri-
ate fluctuation 0Gδ ≠  of G can contribute in principle to the sudden increase 
of expansion rate of the early Universe. Among the implications of these asser-
tions, one deserves particular attention: the possible fluctuations of G affect the 
black hole length bh  of (6.13) of a given m. Unfortunately further discussion 
on this crucial point is outside the aims of the present paper. 

7) Returning now to the Equations (5.25), the maximum value of momentum 
wavelength zpλ  has been related to a suitable space range r∆  defined as the 
radius of a hypersphere within which is delocalized an arbitrary amount of mass. 
As the steady wavelength appropriate to calculate the zero point energy min

zp  
defining minT  corresponds to the maximum delocalization extent physically 
conceivable in our Universe, is reasonable to relate zpλ  to the diametric size 
2 ur∆  of the Universe, regarded here as a hypersphere with diameter 2 ur∆ . So 
think the mass ideally bouncing within one diametric distance, whose maximum 
space extent corresponds to one half wavelength; this wave has thus steady nodes 
at the diametric boundaries of the Universe, regarded in effect as a hypersphere. 
Replacing r∆  of the Equation (5.25) with ur∆  and putting v c→  asymptot-
ically, one finds  

min min
min

min

2 π, , .
4 4

zp zp
zp u

u u u

hc hc cT
r k k r r

ω= = = = =
∆ ∆ ∆

 
       (6.17) 

The current estimate 284.35 10 cmur∆ = ×  [19] yields the numerical values  
min 45 30 18 1

min1.2 10 erg, 8.3 10 K, 2.2 10 szp uT ω− − − −= × = × = ×     (6.18) 

In addition to the preliminary remarks about the Equation (5.25) previously 
emphasized, these numerical results suggest further implications: 
− Finite Universe means identically min 0zp ≠ . 
− The limit min 0T →  would hold in an infinite universe only. 
− To guess the physical meaning of the small value of zp , note that 

171 4.6 10 sω = ×  fits surprisingly well the estimated age of the universe 
174.35 10 s×  reported in [19]. 

− The fact that the energy corresponding to zpλ  agrees reasonably with the 
estimated order of magnitude of the age of the universe, suggests that min

zp  
with which has been calculated minT  could be a possible vacuum energy 
fluctuation, still in progress, of the whole Universe. 

− It is interesting that uω  that determines minT  agrees surprisingly well with 
the Hubble constant. 

8) It is possible to implement these results to calculate another important 
property of the Universe, i.e. the vacuum energy density uη . In general, the 
energy density corresponds from the dimensional point of view to 
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2mass frequency length× . Consider now that according to (6.13) nothing, even 
the light, can escape from a range size bh  enclosing the mass m; hence, the 
Equation (6.13) represents a significant opportunity to describe how to trap in-
side a volume of space time energy that cannot be irradiated nor lost outside it. 
After having inferred that an energy uω  pervades all Universe, whose zero 
point value 2uω  determines the zero point energy defining minT , is attract-
ing the idea that uη  can be calculated just with the value of uω  controlling 

minT . This idea links the vacuum energy density to the zero point energy (5.22) 
related to minkT . If so, then calculating 2 2m c G=  according to (6.13) and 
implementing uω  just calculated,  

2
2 8 3 9 33.3 10 erg cm 3.3 10 J m .

2u u
c
G

η ω − −= = × = ×         (6.19) 

The sensible value of vacuum energy density further supports the way to cal-
culate the values (6.18). This means that the concept of vacuum does not imply 
that of “nothing”: rather the vacuum must consist of virtual particles whose 
energy, i.e. mass, governs the residual vacuum energy density in agreement with 
the third law of thermodynamics. 

9) But there is more. Implement the mass uM  of the part of visible Universe 
[16] estimated counting the stars only to calculate  

55 27
2

2
3 10 g, 4.5 10 cm.u

u
M G

M
c

= × = ×             (6.20) 

On the one hand one expects that uM  is estimated by defect, without taking 
into account that other forms of energy distributed in the Universe could in 
principle increase this value; whatever this additional energy ∗  might be, it 
concurs with uM  by 2c∗  to the total mass of the Universe. On the other 
hand are visible only the stars whose distance does not overcome the observation 
limit posed by the light speed; assuming that the distribution of galaxies and 
thus stars is uniform in the Universe, the actual mass due the total number of 
stars should be  

3
* 55 573 10 1.1 10 g.u

u

r
M

c t
 ∆

≈ × = × ∆ 
 

This value still estimates the total visible matter of the Universe as if the light 
speed would be infinite; as such, however, it does not tell anything about other 
possible contributions inherently “dark”, i.e. non-luminous, for example the va-
cuum energy/c2 or the zero point energy/c2. Compare thus just this value *M  
with the total mass related to the whole vacuum energy density uη  calculated 
above. It is  

3 58
2

4 π 1.3 10 g
3

u
ur c
η

∆ = ×  

The total vacuum energy of the Universe is still about 12 times higher than 
that of all visible objects. Make at this point a hypothesis: 

The energy density of vacuum and that of matter are equal, i.e. regard matter 
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and vacuum as two different thermodynamic systems at global equilibrium. 
So *M  must be incremented just by this factor to make equal the respective 

densities. Write thus the total mass balance as a function of the true visible mass as  
* *2 12p totM M M M Mε+ + = =               (6.21) 

the factor 2 accounts for the antimatter, wherever it might be in the Universe, 
whereas pM  and Mε  are the missing masses also concurring to the factor 12 
assumed true. The notations account for the fact that the concept of mass can be 
defined in general via p v  and 2vε . Rewrite now these positions with the 
help of (2.36)  

2, ,p
p

hh vM M
v v

ε
ε ε

ε

ν
ν

λ λ
= = =                (6.22) 

where pλ  and εν  are the pertinent momentum wavelength and energy fre-
quency. Thus  

2

2, .o o
p

p o o

v vh hvM M
v v v vε

ελ λ
 = =  
 

              (6.23) 

being ov  arbitrary velocity. Moreover rewrite identically (6.21) as  
* * * * *

* *
2

2 12 , ,

, ,

p p p

p o o

M q M q M M M q M

h hvM q M M
v v

ε

ε ε
ελ λ

+ + = =

= = =
         (6.24) 

where pq  and qε  are appropriate coefficients able to express numerically 

pM  and Mε  via *M . Actually the physical meaning of these positions is to 
establish a relationship between visible mass and the other contributions to 

totM . The last position, in particular, is possible because pλ  and ελ  are arbi-
trary. One equation to determine these coefficients is obviously  

( ) ( )10, , , , .p p pq q q q x t q q x tε ε ε+ = = =           (6.25) 

Moreover, as (6.23) reads  
2

2, , ,o o o
p p

p

v v vvq q q
v v ε

ελ λ
 = = = = 
 

            (6.26) 

(6.24) yields  

( )* * 2 * 2, 10,p p p p pq M q M q q M q qε+ = + + =          (6.27) 

and thus 2.7pq =  and 7.3qε = . Being the third position (6.26) certainly ful-
filled via the arbitrary ov , which however does not appear in (6.27), (6.24) and 
(6.21) become  

* * * * * *2 2.7 7.3 12 , 2.7 , 7.3 ,pM M M M M M M Mε+ + = = =  

which are expressed more significantly in relative % : 

( ) *8.3 8.3 % , 22.5% , 60.8% .pM M Mε+            (6.28) 

The papers [10] propose a possible explanation, here omitted for brevity, 
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about why matter and antimatter are separated. It is more important to note that 
there is no “ad hoc” hypothesis in this reasoning, rather a further implication of 
the fundamental concept of uncertainty repeatedly invoked throughout all this 
paper and again exploited here through the assumption of vacuum/matter equi-
librium. In effect the mass densities calculable via the terms pM  and Mε  ad-
ditional to *M  in (6.21) correspond to the respective energy densities and thus 
to pressure terms inside the Universe. The next Equations (8.28) to (8.34) eluci-
date this point. 

10) Multiply (6.6) by the mass am  introduced in (3.20) and (3.21); recalling 
the second (3.26) it is possible to write  

2
2 2

2
,a a

a
m m

m c G
n nεσ

−= =
′ + 


                  (6.29) 

which links via 2c  the Newtonian gravity and quantum energy at the left hand 
side. Whatever εσ  might be, the arbitrary distance   is repalced by arbitrary 
quantum numbers n and n′ . In this sense (3.20) is reasonably defined in [6] as 
equation of quantum gravity. 

It is true that actually G should be replaced by   to plug all considerations 
carried out in the subsection 6.2 into the relativistic realm via (6.7); but it is also 
true that actually am  has been defined in order to make εσ  and pσ  of Equ-
ation (3.15) consistent with the harmonic oscillator form (3.25) consequent 
(3.24). Modifying the definitions (3.23) in order to define non-harmonic oscilla-
tions would mean adding additional correction terms corresponding to the 
higher order terms of the series (6.7). It is possible to say shortly that the Newton 
gravitational energy corresponds to quantum harmonic oscillators at the left 
hand side of (3.25), the relativistic gravity is described by non-harmonic oscilla-
tor terms replacing the mere n hν′  of (3.25). 

7. Klein Gordon, Proca and Maxwell Equations 

Implement now the Equations (3.30) introducing a function of ( )0ψ  defined as 
follows  

( ) ( ) ( ) ( ) ( )0 0 0exp , , ,Q x tψ σψ ψ ψ ′= =                 (7.1) 

where σ  and Q are arbitrary constants. So the first Equation (3.30) yields  

( )

( )
( )

202 2 2

2 2 20

1 1 ;
tt t t

δ ψ δ ψ δψ δ ψσ σ σ σ
δδ δ δψ

  = + = ±     
          (7.2) 

proceeding in analogous way with the help of (3.31), the second Equation (3.30) 
yields  

( )

( )
( )

02 2

2 20

1 1 .
x x

δ ψ δ ψσ σ
δ δψ

= ±
′ ′

                    (7.3) 

Hence, replacing (7.3) and (7.2) in the right hand side of (3.32), the result is 
an equation expressed as a function of the functional ( )0ψ  of ψ   
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( )
( ) ( )

( )
2 0 02 2

0
2 2 , 1 ;m c m m

t x
δ ψ δ ψψ σ σ
δ δ

′  ′= − + = ±  ′ 

         (7.4) 

as m appears at the left hand side only of (3.32), it has been included in m′  to-
gether with the factor ( )1σ σ±  without loss of generality. Taking the limit 
δ → ∂ , which by consequence implies ( )0

KGψ ψ→  as well, this one dimen-
sional result is actually the well known Klein Gordon equation  

2 22 2

2 2

2 2

2 2

0,

.

KG KG
KG KG KG

i

m c m c
t x

t x

ψ δ ψ
ψ ψ ψ

′ ′∂   = − + → + =   ′∂ ∂   
∂ ∂

= −
∂ ∂

 





 

On the one hand it confirms the validity of the positions (3.30) and thus of 
(3.39) too; on the other hand this result shows that the Klein Gordon equation is 
inferred from the local functional (7.1) of the space time function (3.39). The 
latter equation simply rewrites the former according to the usual 4D d’Alabertian. 

This result can be further generalized taking advantage that the last equation 
is actually expressed as a function of m′  and not of the initial m. The fact that 
m′  can take two values depending on either sign in (7.3) suggests that in fact 
two equations are tacitly implied by the unique Equation (7.1); for example one 
scalar equation and one vector equation should be compatible with (7.3). This is 
very easily proven showing that the scalar and vector fields of the Proca equa-
tions can be combined into one resulting Klein Gordon-like equation. The most 
straightforward way to demonstrate this assertion starts just from the Proca eq-
uations  

2

2

2

2

1 ,

1 ,

mc
t tc

mc
tc

φφ φ

φ

∂ ∂   − +∇ ⋅ = −   ∂ ∂   

∂   +∇ +∇ ⋅ = −   ∂   

A

A A A









 

which actually, owing to the definition of the operator 


, read respectively  

( ) ( )2 22
2

2 2 2

1 1, ;mc mc
t tc t c

φ
φ φ

∂ ∇ ⋅ ∂ ∇∂   ∇ + = + = −   ∂ ∂∂   

A A A
 

    (7.5) 

thus φ  and A  are the sought scalar and vector fields linking the two equa-
tions. Multiply the former equation by an arbitrary function ( ), , ,f f x y z t=  
and the latter by an arbitrary velocity vector ( ), , ,o o x y z t=v v , i.e.  

( )

( )

2
2

22

2 2 2

,

1 1 .o o o

mcf f f
t

mc
tc t c

φ φ

φ

∂ ∇ ⋅  ∇ + =  ∂  
∂ ∇∂  ⋅ + ⋅ = − ⋅ ∂∂  

A

Av v v A





 

Subtracting side by side these equations, 

( ) ( )2 22
2

2 2 2

1 1 ,o
mc mcf

t tc t c
φ

φ φ
   ∂ ∇ ⋅ ∂ ∇∂   ∇ + − = ⋅ + +         ∂ ∂∂      

A Av A
 

  (7.6) 
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trivial algebraic steps yield the following scalar equation  

( ) ( ) ( )
22

2
2 2 2

1 1 .o o o
mcf f f

t tc t c
φ

φ φ
∂ ∇ ⋅ ∂ ∇∂  ∇ + − ⋅ − ⋅ = + ⋅ ∂ ∂∂  

A Av v v A


  (7.7) 

As f is an arbitrary function, it can be defined in order that  

( ) ( ) 2 2

2 2 2 2 2

1 1 1 ;o of f
t tc c t c t

φ φ∂ ∇ ⋅ ∂ ∇ ∂ ∂
− ⋅ − ⋅ = −

∂ ∂ ∂ ∂

A Av v          (7.8) 

hence  

( )
22

2
2 2

1 .o
mcf f f

c t
φφ φ∂  ∇ − = + ⋅ ∂  

v A


               (7.9) 

Eventually it is possible to infer from this equation  

( )
22

2
2 2

1 1 , , 0;o
mcf f q f qf q

c t
φφ φ φ∂  ∇ − = + ⋅ = ∂  

v A


     (7.10) 

both f and ov  are arbitrary, thus the last position just introduced is in fact 
possible. Actually the first (7.10) does not depend on f and has still the form of a 
Klein Gordon-like equation for the previous scalar function φ , where appears 
however the factor 1 q+  at the right hand side corresponding to the previous 
( )1σ σ±  of (7.3). Just this factor is the key to split this double valued equation: 

indeed 0q =  is one scalar equation, whereas the additional chance 0q ≠  al-
lows inferring the couple of Proca equations via the position o qfφ⋅ =v A  that 
introduces the vector field A . It is enough to revert the steps from (7.10) to (7.5) 
still via the key position (7.8). The profound physical meaning of this position, 
here purposely introduced to obtain (7.9), is shortly outlined below, to show that 
it is not merely a useful algebraic step. 

The Equation (7.8) reads  

( ) ( )2 2

2 2 2 2

1 = of
t tc t c t

φφ∂ ∇ ⋅ ∂ ∇   ∂ ∂
+ ⋅ +   

∂ ∂∂ ∂   

A v A          (7.11) 

i.e.  

2 2

1 .of
t t t tc c

φ φ∂ ∂ ∂ ∂   ∇ ⋅ + = ⋅ ∇ +   ∂ ∂ ∂ ∂   

v AA            (7.12) 

In this equation it is possible to put formally  

2 2

1 0, , 0ov
t t tc c
φ φ∂ ∂ ∂

∇ ⋅ + = ∇ + = − ⋅ =
∂ ∂ ∂

A EA E         (7.13) 

the first position is the Lorentz condition, the second equation is the definition 
of the new quantity E , the third equation is obtained replacing E  at the right 
hand side of (7.11) and simply means that ov  is orthogonal to t∂ ∂E  to get 
0 0=  at both sides. Now give A  physical meaning introducing the following 
positions  

1, 0,
c t
∂

= ∇× ∇ ⋅ = ∇× = −
∂
HH A H E             (7.14) 
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the first position is simply the definition of a new quantity H , whence follows 
the second equation by consequence; the third equation is obtained taking ∇×  
of both sides of the second (7.13). Note now that the first and second (7.13) yield  

2
2 2

2 2

1
t t c t

φφ φ φ ρ∂ ∂∇ ⋅ ∂   −∇ ⋅ ∇ + = − ∇ + = −∇ = ∇ ⋅ =   ∂ ∂ ∂   

A A E    (7.15) 

Eventually it is possible to infer a fourth equation considering the continuity 
condition 0gδ =  of an arbitrary function ( ),g g x t= , which reads 

( ) ( ) 0g g t t g x xδ δ δ= ∂ ∂ + ∂ ∂ = ; thus the one dimensional expression 
( ) 0g t g x v∂ ∂ + ∂ ∂ = , where v must be intended of course as xv x tδ δ= , reads 

in general g g t⋅∇ = −∂ ∂v . Hence ( )g g g⋅∇ = ∇ ⋅ − ∇ ⋅v v v  yields  

( )0 .gg g
t

∂
∇ ⋅ = = +∇ ⋅

∂
v v  

Since g has not yet been defined, it is possible to rewrite this equation imple-
menting the scalars already inferred, to obtain a self-contained set of equations. 
Put  

1 , ,g g
c

ρ ρ= ∇ ⋅ = = =E v v J  

which yields therefore  

10 ;
c t
∂∇ ⋅

∇ ⋅∇× = = +∇ ⋅
∂

EX J  

It is convenient to utilize the vector property ( ) 0∇⋅∇× =  in agreement 
with 0∇⋅ =v  of solenoidal flux of ρ  to simplify this last equation whatever 
the arbitrary field X  might be. Thus one obtains  

1 , .
c t

ρ∂
∇× = + =

∂
EX J J v                  (7.16) 

Despite the lack of specific information to identify the actual nature of X , it 
is reasonable to put ∝X H  with H  magnetic field to be introduced just in 
the next section: this position is in fact possible without introducing a new field, 
hardly justifiable in the present context. Hence the position (7.8) is valuable as it 
implies four relevant equations, whose importance appears by answering ques-
tions like: flux of what? what kind of fields are E  and H ? The next section 
clarifies these points that clearly allow to obtain the Maxwell equations (7.14), 
(7.15) and (7.16). 

These fields allow modifying appropriately the functional (7.1), in order to 
describe one particle even via a possible interaction potential; of course such a 
calculation is omitted here for brevity, being clearly beyond the purposes of the 
present paper. 

8. The Fundamental Interactions of Nature: Force Laws 

Some considerations about the gravity force in the subsection 6.2 were inferred 
starting from the Equation (4.9). Now the concept of force is reexamined start-
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ing from the more general Equations (3.1) and (3.69). This section consists of 
three subsections. 

8.1. Preliminary Considerations 

The Equations (3.1) provide several chances of defining the general concept of 
force, directly related to (3.69) and (3.70)  

p F
t x

δ δε
δ δ

= =                       (8.1) 

whence, implementing once more p xδ δ=  , one infers in general  

2 , , .x pp x x p
t tx

δ δδ δ δ δ
δ δδ

= − = =


                 (8.2) 

To understand intuitively the correlation between F and xδ  , think that the 
effect of any force is to modify the state of motion of matter on which it acts. 
Consider a body of mass m under the action of a force F. If m is actually a sys-
tem of particles, then F perturbs the dynamics of all particles of m: for example 
they move faster. According to (3.1), modifying the kinetic energy of a system of 
particles implies changing in principle their delocalization extent and thus the 
range size xδ  able to include each one of them. The greater the force altering 
the status of a system, the greater must be the size change rate xδ   to account 
for the altered delocalization extent of matter in xδ . This is the intuitive way to 
justify in general the quantum link between F and the related xδ  . More specif-
ically (8.1) also imply  

, ;xv x cδ δε δ δε= ≤ 


                    (8.3) 

the inequality is direct consequence of the first equation with 1tδ −  replaced by 
δε  . Again, the position δ → ∂  yields the usual definition of generalized local 
force F p=  . These equations are directly referable to long range interactions, 
because xδ  is defined even at infinity in lack of specific constrains; being di-
rectly inferred from the general Equations (3.1), F is expected to hold for 
charged and neutral particles. In effect the Newton and Coulomb forces 
represent an important class of forces that vanish at infinity as 2xδ − , justifiable 
simply assuming x constδ = ; is evident the analogy of (8.2) with GF  of (6.10). 

Beside (8.2), particularly interesting are further dimensional considerations 
about characteristic space and time ranges related some specific forces. Write for 
example  

( )22 2

2 ,
c xF F

mV V t x tmc V
δ
δ δ δ

= = = =


                 (8.4) 

the first definition follows from 2 2 3p m x m xδ δ δ=  . The Equations (8.4) and 
(8.3) prospect the chance of introducing the concept of short range force as that 
related to characteristic lengths, times and possibly volume consistently with the 
Equations (3.1). An example in this respect is the zero point energy resulting 
from the confinement of matter in a finite volume of space time, already intro-
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duced in (5.23); another example is the Casimir force, shortly sketched below. 
The ranges δε  and xδ  of (8.4) help to fix the energy scale or the distance 

scale characteristic of specific interactions. Are useful in this respect the values 
(3.12) of length ranges; the Equations (8.4) are implementable with these scale 
lengths of prospective interest to estimate the strength of short range forces. 

The few remarks exposed here highlight how to proceed in various cases. First 
of all, it is necessary to examine how long range and short range forces are in-
cluded in the general definition (8.1) of F: the key point is the deformation rate 

xδ   of the space time range xδ . 
Let two interacting partners be xδ  apart and expand in series 

( )1x x xδ δ δ −=  : this position ensures that F vanishes at xδ → ∞ . Write thus in 
general 

0 2

Ac Bcx x
x x

δ δ
δ δ

= + + + 
                    (8.5) 

where A and B are the constant coefficients of the series expansions. So (8.2) 
splits into the sum of various terms  

( ) ( )

( )

2
0 1 2 30

0 1 22 3 4

2
0 1 2 3

, , ,

, ,

c cx
F F F

x x x
A B

δ
δ δ δ

+ +
= ± = ± = ±

+ = + =


     

   

 

Here 0x constδ =  by definition, with signs of 0F  dependent on whether xδ   
swells or shrinks during tδ . The Equation (8.5) is more general than (6.7): the 
latter concerns specifically   and thus the gravity, i.e. 0F  corresponds to GF , 
whereas (8.5) instead concerns more in general xδ  ; the higher order terms ex-
pressing xδ   include   of (6.7). Just to show this point the coefficients A 
and B have been split introducing constants lengths i  that characterize vari-
ous kinds of forces in fact included in (8.2) and made explicit by the respective 
terms of the series expansion of F. Examine thus one by one the forces resulting 
from the first three terms of (8.5) to show that in effect this approach is inter-
pretable in a sensible way. The first force identifiable is  

2
0 1 2

2 3 4 ,NC

x c cF
x x x
δ
δ δ δ

= ± + + +




   

                (8.6) 

where the subscript NC stands for Newton Coulomb. The second and third 
forces easily identifiable are  

2
0

03 , ,
2 2zp

zp

c
F

mV mcxδ
= = ± =


 

  

having inferred 0  by comparison with (5.23), and  

32
4

2 3 2

, 2.Ca
F cP

x
σ σ

δ
= = ± = +




  

 

One finds again the zero point force controlled by the Compton length 0  of 
the mass m. Moreover one recognizes the Casimir force per unit surface 2 3   
given by c  times the pertinent numerical factor σ  whose value is controlled 
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by 3  whatever the value of 2  contributing to GF  might be. In this way 
neither 0  nor 1  and 2  result fixed; so the second and third terms of (8.6) 
are the higher order terms of the zero order approximation 0F  in principle de-
finable by these lengths independently of the coefficients characterizing zpF  
and force per unit surface CaP . The zero point energy has been already con-
cerned; a detailed discussion of the Casimir term is clearly outside the purposes 
of the present paper. It is really crucial the fact that various kinds of forces are 
nested in the general uncertainty Equation (8.2), in turn direct consequence of 
(2.10). Owing to the importance of (8.6), the following consideration will be fo-
cused on this equation for sake of brevity only; this allows to complete the in-
formation in Section 6.2. 

8.2. Long Range Gravity Force 

To verify how (8.6) implies more specifically the space time curvature, examine 
both sides of the general Equation (8.2). The Equations (3.1) imply the following 
chain of equations implementing the left hand side of (8.2)  

1 1 1
c

p x x p r x
t t x t x x t x x x x t

δ δ δ δ δ
δ δ δ δ δ δ δ δ δ δ δ δ

′ ′ ′  ′= = = + = ′ ′ ′+  

        (8.7) 

1 1, ,cp r
x x x x

δ
δ δ δ δ

′ = = +
′ ′+



 

being cr  the Laplace average curvature radius of an ideal surface such that 
0F →  for xδ → ∞  and xδ ′ → ∞ . 

Note that cr  is formally similar to 1 21 1LK r r= + , where the addends are 
defined on two orthogonal planes called curvature sections; it refers to flat space 
time. According to its classical derivation, the local value of LK  is calculable as 
both radii 1r  and 2r  are assumed in principle exactly knowable. Here, instead, 
the quantum derivation of cr  does not allow any information about size and 
even mutual orientation of xδ  and xδ ′ , the only indication available being 
that it is conceptually defined by two curvature sections in a 4D space time; so 

cr  is not calculable in practice, it is compatible with all combination of values 
included within xδ  and xδ ′ . The relativistic curvature EK  is instead 
self-defined in a Gauss curvilinear coordinates in a covariant way regardless of 
the reference system. According to (3.2), however, even cr  defined by two un-
certainty ranges actually waives the link to a specific reference system; hence the 
impossibility of calculating uniquely cr  prevents comparing it to EK , whose 
local value is instead in principle calculable. Hence is meaningless to enquiry 
whether or not the Equation (8.7) fits the standard definition of general relativity 
or not. In other words EK  must be necessarily covariant to have physical 
meaning, because effectively it can be calculable locally; cr  instead fulfills the 
quantum concept of covariance required by (3.2) and cannot take any determi-
nistic value. Hence, in lack of numerical assessment, the quantum reasoning im-
plied by (8.7) allows conceptual comparison only: the quantum definition of 
space time curvature, although symbolic, is still related to its relationship with F, 
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i.e. 0F ≠  for xδ  and xδ ′  both finite. The non trivial implication of this 
reasoning is that in this way the relativity becomes a corollary of (3.1) and (8.2) 
via the series expansion (8.5) that generalizes the mere Newtonian term. This is 
not surprising because the Section 1 has evidenced the 4D holistic character of 
the present model; the purpose of the next considerations is to clarify further 
this idea. 

Recalling (2.36) p h λ= , the right hand side of (8.2) yields, owing to (4.24) 
and (2.36),  

2 ;x ph
x x t
δ δλ δ

δ δ δδλ
− = − =






                    (8.8) 

so, merging (8.7) and (8.8), one finds  

2 , , .c c
h p xr x r v p v

t t
δλ δ δδ δε δε δ

δ δδλ
′ ′

′ ′ ′ ′ ′ ′− = = = =


         (8.9) 

No apparent reference to the mass is explicitly evident in this formula: the 
force cr δε ′  and its approximation 0F  are due to the mere deformation rate of 
the range 0xδ  . 

On the one hand (8.2) results consistent with this equation that links force 
pδ   and energy δε ′  via the curvature radius cr  of space time: as expected the 

momentum, and thus its time change as well, can be expressed via corpuscle 
formalism, see e.g. (3.64), and via wave formalism inferred in (2.36). According-
ly F p=   waives the concept of mass if just (2.36) is implemented to calculate 

2p hδλ δλ= − 

 . The analogy with (8.6) and (8.5) appears because also now it is 
possible to write  

0
j

j
j

kδλ δλ δλ−= ± +∑                     (8.10) 

this is the meaning of the Equations (8.7) to (8.9), where the mass is mere di-
mensional property of h. 

On the other hand, the connection of (8.6) with (6.12) implied by (6.7) re-
quires writing  

1 2
0 0 1 22 ,

m m GF G x m m
x

δ
δ

= ± =


              (8.11) 

the curvature cr  is linked to one mass, that defining ε ′  and pδ   of (8.9), the 
zero order deformation rate 0xδ   of xδ  is given by the constant G   times 
the product 1 2m m , i.e. 0xδ   is proportional to 1 2m m  that in turn is directly 
proportional to the force. The Equations (8.6) and (8.11) are the space 
time/matter formulations of the gravity force analogous to the wave/corpuscle 
formulations of the energy and momentum in quantum mechanics; in effect 
(3.70) has shown that in general the force is proportional to pδεδ . 

It turns out therefore from the previous considerations with the help of (2.36)  

1 2
2 2 ,c

Ein New

m mp p hF r G
t t x

δ δ δλδε
δ δ δλ δ

′= = ↔ = =


      (8.12) 
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whence the correlations  

force field deformation rate of space time ranges acceleration→ →    (8.13) 

Comparing the left and right hand sides of both (8.12), is evident why Einstein 
has successfully replaced the concept of force with that of space time curvature, 
while skipping the more intuitive Newtonian correspondence between mass and 
force: thus, in His intuition, the mass appears directly related to the space time 
curvature. So the first correlation (8.13) is understandable. The second correla-
tion deserves attention, as the concept of acceleration has been not yet intro-
duced; it will be concerned in the next subsection in particular to explain what 
have to do xδ   or λ  with the acceleration implied by F. It will be shown that 
just the ranges, which link the concept of force to the quantum uncertainty, 
also plug the Newton and Coulomb forces into the realm of quantum mechan-
ics. 

8.3. The Equivalence Principle 

Implement the Equations (8.11) and (8.8) to understand why the mass appears 
in the former and not in the latter. Also this topic, shortly sketched here for 
completeness, has been concerned in [10]. 

Position and size of any ox x xδ = −  in an arbitrary R are respectively defina-
ble considering the distance of either range boundary, say ox , from the origin O 
and the distance of x from ox ; of course the opposite choice would be identi-
cally admissible. Being both boundaries arbitrary, in general it is possible to re-
gard ( )x x t=  and ( )o ox x t= . A force F arises inside xδ  because in general 

ox x≠  , i.e. when the range size of xδ  shrinks or stretches as a function of time 
during ot t tδ = −  with respect to its initial size at the time ot . To simplify the 
reasoning it is enough to examine the cases where: 1) ox const=  and ( )x x t=  
only or 2) x const=  and ( )o ox x t=  only; as anyway the size of xδ  changes, 
for example because of energy fluctuation of a particle inside xδ , both cases 
imply in general 0F ≠  and the following considerations about inertial and 
accelerated reference systems. 

Imagine an observer sitting on ox  and assume for simplicity that one par-
ticle only is delocalized in xδ ; the rising of any F is detected observing the dy-
namical behavior of this test particle.  

In the case (1) the observer is by definition at rest in R with respect to O; yet 
he acknowledges a force ( )2F x xδ δ= − 

  acting on the particle, actually due 
to 0x ≠ . To justify in principle why the motion of the particle is perturbed, the 
observer reasonably thinks to the presence of an external force, e.g. a gravita-
tional mass outside xδ . 

In the case (2) the observer no longer at rest in R necessarily accelerates with 
respect to O, whereas the force ( )2

o o oF x xδ δ= 
  again appears in xδ  ac-

cording to 0ox ≠ ; now oF  governs the dynamics of the particle delocalized in 
xδ . The observer concludes that its own acceleration is due to oF . 
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Of course the analytical forms of F and oF  are in principle analogous, al-
though their strengths are in general different if ox x≠  ; indeed the forces only 
differ by the time dependence of either boundary coordinate of xδ  with which 
is calculated the overall xδ  . However, despite the boundaries of xδ  are in 
general arbitrary and independent each other, nothing hinders to assume in par-
ticular 2 2

o ox x x x= −  : i.e. stretching of xδ  occurs via forwards displacement 
of x only or backwards displacement of ox  only with respect to O. So locally 

oF F= − . The acceleration experienced by the observer and the presumed force 
F arising outside xδ  perturb in the same way the test mass because they have 
actually a unique background, the deformation rate (8.5) of the space time range 

xδ  itself that in effect implies (8.6): in (2) this deformation rate is perceptible 
by the observer as force oF  whereas in (1) it does not, although in both cases 
the observer can anyway record the same change of local dynamics of the par-
ticle inside xδ . Clearly the observer reference system oR  with origin on ox  
is at rest or inertial in (1) but non-inertial in (2) with respect to R, in agreement 
with the aforesaid correlation. 

One key point of the reasoning is that these conclusions hold exchanging the 
role of x and ox , because both range boundaries are arbitrary and physically 
equivalent; no physical property characterizes specifically either space time 
boundary displacement. As (1) and (2) are physically indistinguishable, the 
unique information available is the overall deformation rate xδ   and its related 
F; this means that the concept of acceleration implied by oF  holds identically 
for F as well. Another key point is that the acceleration does not necessarily 
imply the concept of mass, but that of force in turn due to inertial and 
non-inertial reference systems. 

One could also say that the concept of force is redundant, what in fact exists is 
the stretching/shrinking rate of xδ  which in turn implies space time curvature 
according to (8.7). But now this statement has quantum foundation only. 

Anyway the dualism wave/corpuscle of quantum mechanics has relativistic 
analogy in the “corpuscular” Equation (6.9) and “wave” Equation (8.9) proper-
ties of matter; the latter originates from the space time curvature, the former 
from the necessity of defining the change of delocalization extent of massless or 
massive particles both contextually implied by the probabilistic Equation (4.7). 
In this sense quantum and relativistic physics are perfectly symmetrical, which is 
not surprising because both are rooted on the quantum uncertainty. From this 
analogy follow the correspondences (8.12) along with the Equations (6.28) and 
the various forces implied by (8.5). 

Is evident the analogy of xδ  with the elevator of Einstein’s thought experi-
ment: the cases of inertial and non-inertial reference systems merge here into the 
unknown and unknowable behavior of the boundaries of a unique space time 
uncertainty range xδ  only. Implementing space time ranges rather than local 
space time coordinates plugs a typical relativistic reasoning about inertial and 
non-inertial reference systems into the quantum uncertainty (3.1). In this sense 
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the relativity is conceptually compatible with quantum requirements; any rea-
soning via local coordinates, e.g. the tensor calculus, wouldn’t. The present ap-
proach shows what the mere wave formalism to quantum mechanics cannot 
emphasize itself: quantum and relativistic theories are conceptually rooted in the 
unique concept of uncertainty, the operator formalism exposed in the subsection 
3.5 is instead less general being actually itself a corollary of the quantum uncer-
tainty. 

8.4. Long Range Electromagnetic Interactions 

Start from the Equation (4.8) 2nε δε∆ =  and the position (4.9) tε∆ = ∆ , 
which now are once more under test besides to the results (4.13), (4.14), (4.16) 
and (4.17) already obtained; the Equation (4.9) was also the starting point of the 
section 6.2. Recalling the definition (4.5) of refractive index n, elementary ma-
nipulations yield  

2

2 1, ,v c t
c

δε ε ε= = − = ∆






                (8.14) 

being of course   an arbitrary length. The second equality is the mere defini-
tion of energy range δε  with arbitrary boundary values 2ε  and 1ε . A possi-
ble way to split accordingly 2v c   too, is to rewrite (8.14) defining 1ε  and 

2ε  as follows 
2 2 2
1

1 2
2

, ,q v q
c

ε
δε ε ε

ε
= = =



  

               (8.15) 

to obtain next (8.14) rewritten as  
2 2

2 1
v q v
c

ε ε −
= − =

 

 

                  (8.16) 

the positions (8.15) convert thus the unique term at the left hand side of (8.14) 
into the difference of energies 2q   and v   defining δε . In general 

( )q q v= . Let   measure the distance between two interacting partners. The 
fact that   is defined by c means that the carriers of the force are massless par-
ticles, photons. Also, v that defines the energy range (8.14) characterizing this 
kind of interaction must be consistently identified by v c= ; as any v c<  could 
not be enough to travel through  , a coherent way to characterize the peculiar 
value of q consistent with   requires the boundary condition n 1=  in (8.16). 
Put thus the resulting value of q, now uniquely defined, proportional to a “new” 
quantity called e. So, calling 02α  the dimensionless proportionality constant 
linking 2q  and 2e , (8.16) yields  

2
2 20

0
2

, 2 , .
e cc q e v c

α
α

−
= = =




 

            (8.17) 

Multiplying both sides by c   one finds  
2

0
1 , e

c
α α

α
= =


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as a result we have obtained the definition of fine structure constant α  via 
three universal constants of the nature, whereas 0α  is to be regarded as a pure 
number corresponding to the numerical value of 1 α . 

Note in this respect that the electric charge e, so far not yet explicitly intro-
duced, appears in the model via α . This introductory reasoning outlines the 
next task to be concerned just now: to show how the Equation (4.9) implies the 
electromagnetic interaction too. This subsection links therefore the following 
considerations to the Section 7. Usually e is introduced by postulating the Cou-
lomb force; here instead e and thus the electromagnetic forces are introduced 
starting from α . By analogy with (8.6), the Equation (8.2) is rewritten as fol-
lows  

2
1

02 2 , ,C
c eF x c
x x

α δ
δ δ

−± = = ± =


               (8.18) 

i.e. the physical meaning of α  introduces itself also the long range Coulomb 
force component CF . 

Is evident the formal analogy between 0F  of (8.11), concerning the mass li-
near density m xδ , and CF  of (8.18), introducing the charge linear density 
e xδ : both regard in particular 0xδ ×   as constant characterizing the lowest 
order term (8.6) of the series expansion (6.7). This suggests that the first order 
approximations of Newton and Coulomb laws should be both deducible from 

0xδ ×   through a dimensional constant. In effect the connection between G 
and e via a dimensional proportionality constant is easily proven; indeed  

( )eGe Gξ α=  

yields numerically  

( )

10 10 3 2

3 22 3

4.80 10 ues, 4.88 10 cm s g ,

1.01 ues g cm g cm s.eG

e G

t

α

ξ

− − −= × = × ⋅

≈ × = ⋅
 

Of course the signs of the component CF  correspond to equal or opposite 
charges defining α . Implement first (8.18) for both charges at rest in R; so  

2

2 , 0,r
C

eF v
xδ

= =                       (8.19) 

where the subscript stands for “rest”; in this equation there is no explicit refer-
ence to v, which from now on denotes the relative motion of the charges. As 

xδ  is arbitrary, α  has been included in it, to simplify notations like 
*x xδ αδ= . 

The second way to implement (8.18) assumes constant the rate v with which 
moves either charge with respect to the other at rest in R; as according to (2.34) 

( ) 2p x v v cδ δ δε εδ= = + , (8.18) yields  

( )2

2 2

1 .
pce c v v
x c x xx x

δ δε εδ
δ δ δδ δ

 = = = + 
 

             (8.20) 

Thus  
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2

2 , ,me v v const
c xx
δε
δδ

= =                     (8.21) 

where the subscript stands for “mobile”, whence  
2 22

2

1
.m v ce

c t c tx
δεδε

δ δδ
−

= =
′

                  (8.22) 

The last equality has introduced the time range rtδ ′  defined in a reference 
system R′  of the mobile charge moving at rate v−  with respect to R; an ob-
server ideally sitting on the moving charge in R′  sees the other charge at rest, 
as the backwards motion of R′  in R balances exactly the forwards motion of 
the charge. So, in practice (8.22) can be regarded likewise (8.19); obviously (8.22) 
reduces anyway to (8.19) in particular for 0v = . Hence it is possible to write the 
second equality as  

2

2 2 2
, ;

1
em Lor

e eF F vH
c t cx v c

δε
δ δ

= = =
′ ′ −

           (8.23) 

the first equation emphasizes the link between 2 2e xδ  in R and R′ , the 
second equation also follows directly from (8.21) according to the following 
chain of elementary steps  

, , .v v F e FF e vH F H
c c e c x e

δε
δ

= = = =  

Regarding emF F=  one finds a “new” quantity called magnetic field already 
introduced as a final step (7.16) of the reasoning in the section 7. The one di-
mensional scalar approach followed throughout this paper hides the actual vec-
tor character of v  and thus of emF  and LorF . Simple considerations allow 
however to surrogate this missing information acknowledging that LorF  and 

emF  are two different corollaries of a unique information to describe the charge 
dynamics: both Equations (8.23) follow from different ways of rewriting the 
unique Equation (8.21), as in effect it is physically sensible. So, to avoid that the 
energy of a mobile test charge in both fields is counted twice summing separately 

emF  and LorF , it is necessary that the former only performs work on the mobile 
charge, likewise as in the particular case of charge at rest, whereas the latter 
doesn’t; the vector properties of these forces follow from these considerations, i.e. 
H  and v  must be such that Lor ∝ ×F H v . 

The third way to handle α  concerns the case where v is not constant; owing 
to (8.20), an additional force term Fω  is expected because of the addend 

/v c xεδ δ  previously omitted in (8.21). This additional term reads  
1, ,v t t vF a a a

c x t x x c tω
εδ δ εδ ε δ
δ δ δ δ δε δ

= = = =


 

where the acceleration a of the charge appears as a reciprocal frequency because 
of the factor 1c− . It is possible to extract from this chain of equation the fre-
quency ω  defined by the energy F xωδ , i.e.  

F x
aωδ δε ω

ε
= =



                     (8.24) 
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A fraction δε ε  of energy F xωδ  is thus converted into and appears as 
electromagnetic radiation, whose energy ω  increases of course with δε ε . 
The fact of having found ω  for 0vδ ≠  means that an accelerated charge im-
plies emission of e.m. radiation. Of course 0Fω =  and thus 0ω =  for 0v =  
or v const= , so even this contribution to the right hand side of (8.20) vanishes 
for charges at rest. In principle εω  prospects the chance of calculating the 
power irradiated by an accelerated charge regarding appropriately Fω  and δε  
of (8.24). This chance has been exemplified in section 7 in a more complete and 
rigorous way via the Maxwell equations. 

Is still proven useful here the initial idea of implementing uniquely the early 
Equations (1.11) and (1.12) without any further physical hint but simply includ-
ing α  among the fundamental constants of Nature. 

8.5. Quantum Charges 

Dividing both sides of the inequality (8.3) by 2e  and next by xδ  too, one 
finds  

2 2
2, 1,e

x
σδε σ
α δ

= ≤                      (8.25) 

being σ  an appropriate factor. According to (3.69) and (3.70) this yields also  
2

2

1 , ,e
eF e e

x x
δε σ
δ α δ′

′
′= = =                   (8.26) 

Now the question rises: does e′  have mere numerical meaning or it actually 
generalize the concept of usual charge e according to e e′ ≤  ? To answer this 
question consider first some implications of (8.26) based on (3.70). As eF PA′ = , 
where A is an arbitrary area and P pressure, one finds the dimensional relation-
ships  

2

2

1eF eP
A A xα δ
′ ′

= =                       (8.27) 

the Equations (8.26) imply the rising of a pressure P related to the energy density 
Vε  due to charged particles enclosed in the volume V. Start thus just from the 

dimensional identity between pressure and energy density and write  

3, ,EP V x A x
V

σ σ δ′ ′= = ∆ =                 (8.28) 

where σ ′  is a proportionality factor necessary to define in general the volume 
V as a function of A defining the pressure. Owing to the dimensional character 
of this equation, although P and E have been defined specifically by (8.27) and 
(8.28), the following reasoning holds in general for any E, i.e. also for atoms, 
ions, elementary charges and even photons. The second equation yields  

3 .V x
V x
δ δ∆

=
∆

                       (8.29) 

Consider now that if in V are contained photons or matter, e.g. gas particles, it 
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is possible to implement the wave properties of matter and write  
3 3

, , ,v c c c vV
vλ λ

λ λ

ν ν λ ν ν
ν ν λ ν
   = = = = = ≥   

  
      (8.30) 

the matter particles are assumed moving at average rate v with De Broglie mo-
mentum h λ  and thus frequency λν ; for calculation purposes, λν  has been 
rewritten as a function of ν  as indicated here to include also photons. The 
presence of steady waves in V requires  

3 3V E
V E
δ δν δ

ν
= − = −                    (8.31) 

the first equality is directly deducible from (8.30) that expresses the steadiness 
condition, i.e. the change of λ  requires that of x∆  as n xλ = ∆  with n in-
teger, the second equality expresses the proportionality between ν  and E. So 
the change of E inside V is related to that of ν  of the matter/light waves prop-
agating in V. Implement now the idea that (8.29) regards a number of corpuscles 
inside V, whose change of energy density is uniquely definable by Vδ  anyhow 
it might be obtained; instead (8.31) regards waves, whose energy changes are 
presumably related to how the early V is modified by a given Vδ  because of 
steadiness condition. Reasonably the steady propagation of waves is different 
depending on whether one side only or two sides or even three sides of V are 
modified. Consider thus the three possible ways to deform the initial V, whose 

V∆  remains however uniquely defined in all cases: V can be equivalently re-
written as 2

0x x∆ ∆  or 2
0x x∆ ∆  or 3x∆ . Being both x∆  and the constant 0x∆  

arbitrary, it is certainly possible to define them in order to fit a given value V of 
course arbitrary itself. Hence  

, 1, 2,3.V xn n
V xν ν
δ δ∆

= =
∆

 

To make consistent both ways of defining V Vδ  merge this result with (8.31) 
to obtain  

3 ,x En
x Eν

δ δ∆
−

∆
 

whence  
1 2, , ,1.

3 3 3 3
n nE E

x x
ν νδ

δ
= − =

∆ ∆
                (8.32) 

Assume that the left hand side defines an average force such that 
E F xδ δ= ∆ ; dividing both sides by the surface 2x∆  one finds  

2 3 .
3

F n EP
x x

ν= = −
∆ ∆

                   (8.33) 

At the right hand side appears an energy density Eρ  defined by an amount 
of energy Eδ , arbitrary, in the volume 2x xδ∆ ∆ , arbitrary as well, and recall 
the initial position (8.28); then, as the dimensions of E x∆  and 2x∆  are force 
and surface, one finds eventually  
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1 2 3 3

1 2, , , .
3 3E E E E

EP P P
x

ρ ρ ρ ρ= = = =
∆

         (8.34) 

The minus sign in (8.33) and (8.34) has been omitted, it simply establishes 
whether an internal or external pressure expands or shrinks V. These results, 
which hold for photons or gases because no specific hypothesis has been made, 
are well known: 1P  holds for a light beam completely absorbed by the internal 
surface of V, whereas 2P  when waves or corpuscles bounce elastically; 3P  
yields the well known law 3P V Eδ δ= . As 3P  is due itself to elastic shocks of 
corpuscles against the internal walls of V, then 2 3E E′= ; i.e. E should be 2/3 of 
another energy E′  that yields ( )3 2PV E′= ; is evident the connection of this 
last conclusion with the elementary kinetic theory of gases, where E′  is easily 
demonstrable to be the average kinetic energy of molecules. 

Skipping further considerations on this well known topic, return now to the 
Equations (8.25) and (8.26) to specify the result (8.34) in order to explain σ  in 
the equation e eσ′ = . The comparison of (8.32) and (8.26) suggests the corres-
pondences  

, , ,E x x F xε δ δ δ ε→ ∆ → =                  (8.35) 

where the third position is the usual definition of force. So, owing to (8.26) and 
(8.18),  

2 2

2

1 1, , ;
3
nE e x E e x x

x x x x x x
νδ δε δ ε δ

δ δ α δ α δ
′

→ = = = ∆ =
∆ ∆ ∆ ∆

 

the third equation makes (8.33) compliant with (8.35). So the Equation (8.32) 
reads  

2 2

,
3
ne e

x x
ν

δ
′
=

∆
                       (8.36) 

whence, recalling the second (8.26), i.e.  

2 1, , .
3 3

e e e e e e′ ′ ′= ± = ± = ±                (8.37) 

The second and third charges are consistent with quark charges, all with both 
signs correspondingly to e± , in the nuclear volume V. It is amazing the fact 
that even the quark charges appear here as a consequence of the dual 
wave/corpuscle behavior of matter and light, whereas their fractional character is 
reminiscent of the radiation/matter wave pressure in the volume enclosing them. 

As a final remark, note that all charges can take both signs because e can be 
found in negative and positive energy states, as previously shown. 

Now let us return to (8.24), to exemplify in a simple case how it is in fact cal-
culable. 

Let ε  be the energy of a charged particle; (8.24) provides in principle the 
energy radiated per unit time with the help of (2.28)  

.
F

x F F v
p

ω
ω ω
δεεω δ δε
δ

= = =

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It is easy to find the total power radiated E tδ  by such an accelerated par-
ticle, knowing that its charge is e and the change rate of its momentum is pδ  . 
To solve this problem, however, more information is necessary about the link 
between radiation pressure and energy density. Once having found  

( )3

2 2 ,
3 3

P
V c
ε ε

ν
= =  

being 1 tν δ=  the wave frequency, the non relativistic result as a function of 
the acceleration a p mδ=   is obtained after having multiplied both sides by 

3x tδ δ  via the following chain of equations  

( )

( )

23 3 3 2 3 3 2

3 3 3 2

2 22 2 2 2

3 2 3 2 3

2 2 2
3 3 3

2 2 2 .
3 3 3

xx x e x eP
t t x tc c c t

p me v e e p
mc t c t c

νδδ ε ν δ ν δ
δ δ δ δ δ

δδ δ
δ δ

= = =

 = = =  
 



       (8.38) 

8.6. Short Range Nuclear Interactions 

The Equations (3.12) and (8.4) suggest specific orders of magnitude significant 
to introduce short range forces. Skipping all theoretical details outside the pur-
poses of the present paper, a few short comments are exposed below to highlight 
at least the essential features of these forces implementing only results so far ob-
tained. Consider thus the following chances introduced by the general Equation 
(8.1)  

( )pcp p vF v
t x c x

δδ δ
δ δ δ

= = =  

to infer, in agreement with (3.14) and the reasons therein explained,  

( ) ( )
,s w

pc v pc
F F

c t c x
δ δ
δ δ

= =                 (8.39) 

only in the first case xδ  has been replaced by v tδ . The question that rises 
now is whether these expressions are mere equivalent ways of rewriting the same 
Equation (8.19) or they represent actually different force laws. 

Preliminary inspection evidences that in both cases the force is defined via 
lengthδε  but in two different ways: wF  depends explicitly on v and xδ , 

whereas sF  on sx c tδ δ=  only. In the former case the interaction force is in-
versely proportional to xδ ; in the latter case the interaction energy s sF xδ  in-
creases with the distance sxδ , whatever this latter might be. This suggests the 
concept of “asymptotic freedom”. Moreover the messenger particles of wF  
carrying the interaction through wx v tδ δ=  should be massive, owing to v; the 
messenger particles of sF  should be massless, as the force carried through sxδ  
involves c only. Consequently, one expects that for assigned tδ  the characteris-
tic range measured by sxδ  is greater than wxδ . 

Taking according to (8.4) t x cδ δ  and c xδε δ , order of magnitude 
estimates of space ranges and time ranges that characterize sF  and wF  can be 
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calculated utilizing the values (3.12). Particularly interesting is in this respect the 
range  

( )2 1 .n e N Bx r r rδ α α= − = −  

1) Consider first sF  assuming preliminarily that the concerned interactions 
occur at the nuclear or sub-nuclear scale: i.e. reasonably nxδ  concerns the in-
teraction between different nucleons and in the nucleons themselves. Accor-
dingly define the length  

2.5 ,N e Br r r α=  

which is clearly an average value within nxδ , and introduce two complementary 
subranges 1sxδ  and 2sxδ  of the whole nxδ  as follows  

( ) ( )2.5 3 2 2.5
1 2, .s N e N B s e N e Bx r r r r x r r r rδ α α δ α α= − = − = − = −  (8.40) 

It yields  
14 142.4 10 cm, 2.1 10 cm;nucl

N e Cr r λ− −≈ × = ×  

moreover both subranges expressible through electron and nuclear range sizes 
yield  

( )
( )

2.5 3 14
1

2 2.5 13
2

2.2 10 cm,

2.6 10 cm.

s B

s B

x r

x r

δ α α

δ α α

−

−

= − ≈ ×

= − ≈ ×
             (8.41) 

Is relevant the fact that that 1sδ  is surprisingly close to the nucleon Compton 
lengths nucl

Cλ  of both proton and neutron, which have in effect a similar order 
of magnitude. Also N er r  does so, which means that the nucleon mass 
represents the boundary value discriminating the interaction lengths 1sxδ  and 

2sxδ  inside and outside the respective nucleon; this also explains the order of 
magnitude of the nucleon mass, indeed 24

1 1.6 10 gsc xδ −= ×  differs from the 
experimental nucleon mass by about 5.5% only. Here we take advantage of the 
fact that proton and neutron masses differ by less that 0.14% only. Hence the 
forces (8.4) defined by these ranges could concern both nucleons and their mu-
tual interactions at distances consistent with the inequality (8.3); indeed, as ex-
pected, 3

1 1.6 10 erg 1 GeVsc xδ δε −= = × =  is related just to the order of mag-
nitude of the nucleon mass, whereas 4

2 1.2 10 erg 0.08 GeVs Nc xδ δε −= = × =  is 
related to the binding energy between nucleons. In fact sF  is attractive, in 
agreement with the concept of “asymptotic freedom” already emphasized for 
quarks in nucleons less than 1sxδ  apart. The characteristic times are 

25
1 7 10 sτ −≈ ×  and 24

2 9 10 sτ −≈ × . At this point it is possible a rough estimate 
of the stability of the nucleus comparing this energy Nδε  with the Coulomb 
repulsion energy calculated via (8.23) approximately as 2

2rep se xε δ≈  between 
two protons 2sxδ  apart; 79 10 ergrepε −≈ ×  is negligible with respect to the at-
tractive field in Nδε . The fact that 1s Cxδ λ  suggests that sF  should concern 
sub-nuclear particles that form protons and neutrons, which therefore are not 
elementary particles themselves. Hence the whole charge of proton and the null 
charge of the neutron can be due to nothing else but appropriate combinations 
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of the e′  fractional charges (8.37). 
These considerations, well known and here shortly sketched only, are enough 

to conclude that sF  concerns the strong force. Further considerations are 
clearly outside the scopes of the present paper, merely aimed to show how to 
identify the fingerprints of the short range forces (8.39) in the conceptual frame 
hitherto outlined. Some more details are reported in [20]. 

2) Consider now wF , noting that with the help of (2.28) the second Equation 
(8.39) reads also  

( )
.w

v pc
F

c x x x t
δ δε
δ δ δ δ

= = =


                 (8.42) 

Being v c<  one expects wx c tδ δ< ; in other words, once having fixed tδ , a 
shorter interaction rang w sx xδ δ<  is to be expected for wxδ  of wF . Accord-
ing to (8.4), x cδ δε   implies information about wxδ  compatible with wδε  
in this case. To estimate v in the same reference system of (8.23), implement 
(8.23) supposing that an appropriate xδ  fulfills the condition  

2

2 2 2
.

1

eF
x t x v cδ δ δ

= ≈
−

                   (8.43) 

Elementary manipulations show that this position yields 2 2 21v v c e− =  
i.e. 2 21v c v c α− = , whence the solutions v c α  and 1v c  . Hence, 
taking the same value of tδ  of (8.41) by comparison purposes, one finds two 
possible corresponding ranges  

17 14 257.7 10 cm, 1 10 cm, 3.5 10 s.c wx x tαδ δ δ− − −× × ≈ ×      (8.44) 

In effect, extending the Equations (3.12) to the fourth power of α  one finds 
the further length 4 171.5 10 cmw Bx rδ α −= ≈ ×  necessary to include xαδ  in the 
whole range of wF . The first and second results are acceptable, as both yield 
space ranges shorter than that of both (8.41); the first value, in particular, yields 
according to the fourth (8.4)  

0.4 erg 255 GeVw
c
xα

δε
δ

≈ =
               (8.45) 

The existence of two range sizes (8.44) of xδ  compatible with (8.43) sug-
gests that wF  should imply two different kinds of massive force carriers, rea-
sonably with and without charges; if so, then the charges must have opposite 
signs. This kind of interaction needs thus three kinds of carriers. Assuming 
charged and neutral carriers of masses m±  and 0m , just a few considerations 
are enough to infer significant information on the masses of these messengers. 

Implementing this assumption to establish the energy balance governing the 
formation of the carriers, the results are in full agreement with the experimental 
data. 

Is reasonable the idea of regarding the cluster of messengers as a system of 
particles interacting themselves in order that the gain of binding energy of the 
charges accounts not only for their own masses m+  and m−  but also for that 
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of 0m . Is interesting the energy balance of the charged carriers according to the 
electromagnetic Equation (8.43). Start with the energy of a Coulomb system with 
a nucleus of mass m±  formed by either charge, e.g. m+ , in the field of which 
interacts the other charge, e.g. m− , at average distance Br ; the subscript “B” 
stands for “bound”, whereas the simplest hypothesis on the masses is m m+ −= . 
Consider preliminarily that such a system can be described as shown in subsec-
tion 3.2: the reasoning introduced to describe the electron charge around the 
nuclear charge holds in principle also for integer spin charged particles. The 
early hydrogenlike atom was introduced before the concept of spin, which be-
came essential to account for the electron pile up in many electron atoms [7] 
according to the exclusion principle and for the possible presence of an external 
field. The success of Bohr’s idea was allowed by the fact that the spin-orbit and 
spin-spin interaction between electron and nucleus are both small with respect 
to the Coulomb interaction. Consider at this point uniquely (3.1) that has gener-
al validity and skips, as shown in section 3.3, the operator formalism imple-
menting wave functions along with all related implications: e.g. it is known that 
a 0 spin particle requires a 4 dimensional scalar wave function, whereas a spin 1 
particles requires a three component wave function. On the one hand (3.1) has 4 
dimensional character as it merges space and time coordinates through the re-
spective uncertainty ranges, to which are related energy and momentum ranges 
too. On the other hand the necessity of describing the particle in any reference 
system is in fact ensured by (3.1) according to (3.2). Implement thus the elec-
tromagnetic interaction only to describe via (3.1) even a system of spin 1 
charged bosons m+  and m−  trusting that the steps from (3.3) to (3.9) still hold 
at least approximately also now; the comparison with the experimental data will 
be the decisive benchmark to assess the validity of these considerations. So it is 
possible to write for the system of boson charges 4 2 22n re m nε =  , see Equa-
tion (3.7) with 1Z = , where rm  is the reduced mass of the concerned system. 
Accordingly (3.9) yields 

2 2
2

2 2

1 1 , , 2
2 2B r B r

B r

c n cm c r m m
rn m c

α αε
α ±= − = − = =

         (8.46) 

for charges of equal mass. Putting 1n =  and including α  into rm , this equa-
tion reads  

2 21 1 , , ;
2 2

B
B r r r B

B r

rcm c m m r
r m c

ε α
α

′ ′ ′= − = − = = =
′ ′
         (8.47) 

with these positions Bε  depends explicitly on Br′  and rm′  only, no longer on 

Br  and rm . Is of interest now an appropriate Br′  compliant with Bε  and such 
that  

( ) 2
0

1 π2 , 2π
2 B

B

c cm m c r n
r n

λ
λ± ′ ′+ = = =

′ ′
 

            (8.48) 

with n′  integer, the second equation is a well known condition of the wave 
mechanics already implemented in (3.8) with the same physical meaning. Let the 
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shortest wavelength λ  be the Compton length of either m± , as suggested by 
the Equation (3.6) and [7], i.e.  

;
m c

λ
±

=


 

then, replacing 2m c c λ± =   into (8.48) one finds  

( )2
0 π 2 .cm c n

n λ
′= −

′


 

In conclusion, comparing with (8.48) and putting 1n′ = , it is possible to 
write  

( ) ( )
2 2

0
2 2

0 0

π 2 1, .
π π2 2

m c m c
m m c m m c

±

± ±

−
= =

+ +
 

These results are verifiable by comparison with the experimental masses m±  
and 0m :  

( ) ( )

0
2 2

0
2 2

0 0

91.19 GeV, 80.39 GeV,

0.36, 0.32,
2 2

m m

m c m c
m m c m m c

±

±

± ±

= =

= =
+ +

 

which in effect compare well with ( )π 2 π 0.36− =  and 1 π 0.32=  respectively. 
Moreover note that (8.47) regards by definition Br′  as average distance be-

tween m+  and m− , whereas axδ  of (8.44) is by definition the total range of 

wF ; therefore one infers that reasonably 2B ar xδ′ = . Hence, according to (8.48), 

B ac xε δ= −  is the binding energy gain available to create the masses 
( ) 2

0 2m m c±+ . In effect one finds that the total energy wε  related to wF  is  

( ) 2
0255 GeV ,w B

c m m m c
xα

ε ε
δ + −= − = = = + +


          (8.49) 

in agreement with (8.45) and with the experimental masses. The Equations (8.47) 
and (8.46) differ in fact only formally; once having removed α  merely includ-
ing it in the reduced mass of the system as a numerical scale factor, someway 
analogous to (3.12), it appears that wF  is different from but closely related to 
the electromagnetic interaction constant via the linked energy scale factor. 

In effect, considering rm′  and Br′ , and not rm  and Br , one calculates expe-
rimental masses of the force carriers and reasonable estimate of the interaction 
range 177.3 10 cmxαδ −≈ ×  that agree with the total energy (8.45); these values 
support the idea that a hydrogenlike system bound by electromagnetic interac-
tion via photon carriers turns into a short range interaction system via massive 
carriers. There appears in this way the link between electromagnetic and weak 
interactions. 

At this point, something else about xαδ  can be still inferred to confirm that 

wF  corresponds to the weak interaction. Helps in this respect the first (8.4) 
2FV x tδ δ=   that reads  

3 ,w w
cV x

t xα
ε δ ε

δ δ
= =
 
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whence, with the help of the values (8.44),  

3 49 32 10 erg cm ;w
cV x
x α
α

ε δ
δ

−= = × ⋅


             (8.50) 

this is the Fermi constant characterizing the weak interactions. 
This result is more than mere fingerprint of weak interactions; interesting in-

formation can be inferred from it expressing appropriately energy and volume 
inherent this result. Write  

3 3
49 3 22 10 ,F F F F F F

F F

c m c
m c

ε λ ε ε ε
ε

−    
× = = = =   

   

         (8.51) 

the energy Fε  that defines the characteristic Fermi constant has been expressed 
via Compton length of the characteristic mass Fm  that in turn defines Fε  too. 
Hence  

( )3

49 0.397 erg 255 GeV.
2 10F

c
ε −= = =

×



             (8.52) 

It is not surprising that one finds once more the value of total energy of this 
kind of interaction. Implement now the idea that actually the energy (8.49) is 
degenerate: it consists of m−  moving in the field of m+  or, identically, from 
m+  moving in the field of m− . As both configurations can coexist consistently 
with the unique reduced mass rm  (8.46) that calculates Be  of (8.47), it is rea-
sonable to regard the value (8.49) as the sum of both allowed chances; this means 
that the total energy refers to the total volume calculated via (8.51), so that each 
configuration has energy  

1 0.2 erg 127 GeV.
2H Fε ε= = =                 (8.53) 

Note that this value is also consistent with that inferred through a characteris-
tic range similarly as done in (8.40) and (8.41)  

( )3.5 4 161.6 10 cm,

0.197 erg 123 GeV.

H B

H

x r

c
x

δ α α

δ

−= − = ×

= =


             (8.54) 

8.7. The Dirac and Lamb Equations 

This section generalizes the results of the Section 3.2 obtained implementing the 
non-relativistic equation 2 2 2 22rp p M r= + . The following considerations 
show how to describe a relativistic hydrogenlike system replacing the classical 
position (3.4) with the series expansion  

31 2
0 0 2 3p

r r r
σσ σ

ε δ σ= = + + + +
∆ ∆ ∆


                (8.55) 

expressing ( )1p p rδ δ −= ∆   as 
0

i
iip rδ σ −

=
= ∆∑  similarly as done in the Equ-

ations (8.5) or (8.6). In effect even the term 2 2rp m∆  of (3.4) can be written as 
2

1 rσ ′ ∆  with coefficient ( )2
1 2n mσ ′ =  ; so (3.4) is actually a particular case of 
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the series (8.55) truncated at the second order. Of course 0  is an arbitrary 
constant length that introduces the energy corresponding to force pδ  . Al-
though pδ   vanishes at the infinity, the arbitrary constant 2

0 mcσ =  accounts 
for the electron rest mass energy. Hence it is possible to write  

2 31 2
2 1 0 2 3

2 1 2 1

,

, ,r r r

p mc
r r r

r r r p p p

σσ σ
δε ε ε δ= − = − = + + +

∆ ∆ ∆
∆ = − ∆ = −


 

        (8.56) 

being rp∆  the radial momentum range conjugate to r∆ . All range boundaries 
are of course arbitrary. In this way we deliberately waive introducing explicitly 
radial and angular momenta exploited in section 3.2, but implement directly the 
fundamental Equation (3.1). Multiply both sides of (8.56) by 2mc  so that  

( ) ( )
( )

( )
( )

2 3
2 2 32 21

0 2 3 ,r rp c m p c m
p mc mc

r n n c

σ σσ
δ

∆ ∆ − − = + + ∆ 


 

 

 

The series truncated at the third order yields  

( ) ( )
( )

( ) ( )
( )

( )

2 3
22 32 2 2 2

2 1 2 3

2 2 2 1
0

,

.

r rp c m p c m
mc

n n c

mc p mc
r

σ σ
δ ε ε ε

σ
δ ε δ

∆ ∆
= − = + +

= −
∆

 




 

As the coefficient 2σ  has not yet been defined, it is convenient to turn this 
equation into  

( ) ( ) ( ) ( )
( )

( )3 2
22 32 2

23 , ;r
r

p c m n
p c mc

mn c

σ
δ ε σ

∆
= ∆ + + + =







 

then, dividing both sides by ( )22mc , one finds  

( )

( )
( )
( ) ( ) ( )

22
2

2 22

32 2
3 31 1

2 2 2 2 332 2 2

1 ,

.

r

r

p c
mcmc

p c m
mc rmc mc n c mc

ε

σ σε ε

∆ = + +Θ 
 

∆
Θ = + = +

∆


        (8.57) 

Next write  

( )
2

2 1 2
2 2 2 22

1, 1r r rp c p c p c si si
mc mc mc mc

ε ∆  = − = −Θ − = ±  
 

        (8.58) 

so that, subtracting 2
2 mcε  at both sides, one finds  

( )22 2 1 2
2 2 21 , ,r rp c pb si a a b a

mc mc mc
ε ε−

= + −Θ − − = =       (8.59) 

and then  

( )
( )

( )( )
22 2

2
2

2 2

1 .
r

mc
b si a a

p c ε

−

= + −Θ − −
−
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According to the first (8.57) ( )( ) ( )
2 22 2

2 1 rmc p cε − +Θ = ∆ ; thus the last equa-
tion reads  

( )( )
( )

( )( )
( )( )

22 2
22

2 2
2 2 2 2

1 .
1 1

r

r r

p c
b si a a

p c p c
ε

ε ε

−∆
− = + −Θ − −

+Θ − +Θ −
 (8.60) 

Put now  

2 2 .r rp c p cε− = ±∆                      (8.61) 

This position has two implications: the first replacing it in (8.57)  

( )( ) ( )
2 22 2

2 2 21 rmc p cε ε− +Θ = −                (8.62) 

and the second replacing in (8.60)  

( )( )
( )( )

2 2
22

2
2 2

11 .
11 r

b si a a
p c
ε

ε

−

= + −Θ − − +
+Θ+Θ −

    (8.63) 

Note that we have introduced four conditions: a and b in (8.59) plus (8.62) 
and (8.63); the unknowns in these equation are 1 2 2, , ,r rp p ε Θ . In principle the 
system appears solvable. 

Taking the reciprocal of both sides one finds 

( )( )
1 22

22

2

1 11 1 , 1.
11

rp csi b si a a si
ε

−−   ′ ′− = + −Θ − − + = ±   +Θ+Θ   
 (8.64) 

The notations si  and si′  have been introduced to allow that the upper and 
lower signs in (8.58) and (8.56) are independent each other. Then it is possible 
that  

( )( )
1 22

22

2

1 11 1, 1
11

rp c b si a a si
ε

−−  ′− = + −Θ − − + − = − +Θ+Θ  
 (8.65) 

or  

( )( )
1 22

22

2

1 11 1, 1
11

rp c b si a a si
ε

−−  ′= + −Θ − − + + = +Θ+Θ     
 (8.66) 

Subtracting (8.65) from (8.66) with the same sign si , one finds 
( ) ( )2 2 2 2 2r rp c p cε ε

+ −
− = : this suggests that the left hand side of these equa-

tions must have the form 2E mc , so that  
22 .E E mc+ −− =  

The minus sign at the left hand side of (8.65) represents binding energy of the 
electron to the nucleus in 2mc  units; the first addend at the right hand side 
represents the energy gain with respect to that of the free electron in either 
energy state. 

The previous algebraic steps aimed just to find an equation introducing the 
ratio 2 2rp c ε . In effect this ratio is significant because, according to (8.61), if 

2 2rp c ε→  then 0rp∆ →  and thus r∆ →∞  whereas rp  becomes constant; 
this is the limit case of free electron. Indeed 0rp∆ ≠  implies binding energy, 
since the electron takes random values of radial momentum between 1rp  and 
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2rp  depending on its finite random distance from the nucleus. 
Examine the result (8.65) putting first 0Θ = : in fact, according to the second 

(8.57), this occurs putting 3 0σ =  and in (8.55) and 1 0ε = , i.e. considering 
the energy 2ε  only instead of the energy range δε  (Heisenberg compliant 
quantum case). Now require that  

( )
1 22

2
2 1 1 1

E b si a a
mc

−−
−  = + − − + −  

            (8.67) 

must be compatible with the non-relativistic quantum Equations (3.5) and (3.9); 
in other words, in (8.67) must somehow appear not only Zα  but also n and 
( )1l l +  as well. To fulfill this boundary condition as a limit case for small values 

of Zα , put in (8.67))  

, ;o oa b
a b

Z Zα α
= =                   (8.68) 

in effect, replacing and expanding in series around 0Zα = , (8.67) becomes  

( )
( )

2

2 2
0

.
2Z o o o

ZE
mc b sia aα

α−

→

=
+ −

 

Considering in particular 1si = , the boundary condition requires ob n= . 
Once having identified ob , regard then oa  and 2

oa  in order to be compliant 
with l and ( )1l l +  of Equation (3.5), while also fulfilling (3.9) and (3.10). This 
suggests reasonably 1 2oa l s= + ± , being s the electron spin; in effect, depend-
ing on the sign, oa  becomes l or 1l + . In conclusion  

( ) ( ) ( )

1 22

2 2 2
1 1, , 0

1 2 1 2

E Z j l s
mc n j Z j

α

α

−

−

  
  = + − = ± Θ =   + + − − +   

(8.69) 

This is the Dirac equation, which however becomes in the present approach 
particular case of an even more general equation including Θ  as well. The Eq-
uation (8.65) reads indeed  

( ) ( )( ) ( )

1 22

2 2 2

1 1 1
11 1 2 1 1 2

E Z
mc n j Z j

α

α

−

−

  
  = + −   +Θ+Θ  + + − +Θ − +   

 

which removes the degeneracy of states with equal n and j of the Dirac equation 
and also suggests that a further physical effect related to Θ  not concerned in 
(8.69) is still hidden in this result. In effect the Dirac equation becomes in this 
approach the zero order approximation of a more complex energy function 
whose series expansion reads  

2
0

Dir
E EE

mc
− −

Θ=

∂
= + Θ+

∂Θ


                 (8.70) 

It is evident that (8.70) removes the degeneracy of the 1 22 p  and 1 22s  states: 
indeed, whatever the actual analytical form of Θ  might be, calculating the 
energy difference of these states one finds  
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1 2 1 2 1 2 1 2

2 2
2 2 0 02 2

0.
p s p s

E E E E
mc mc

− − − −

Θ= Θ=

   ∂ ∂
− = Θ − Θ ≠   ∂Θ ∂Θ   

 

Owing to the physical dimensions 3energy length×  of the coefficient 3σ  in 
the second (8.57), it is easy to guess the order of magnitude of the second ad-
dend of Θ  according to the following reasonable positions  

3
3 3

3 3 3, , ,bohr C
bohr C bohr

bohr

r r
r r
σ ε λ

σ ε λ≈ × ∆ ≈ ≈
∆

 

being Cλ  the electron Compton length. So it follows from the second (8.57) 
with the help of (3.4) and (3.8)  

( )
5 53 2

1
2 3 22

1 1, .
2 2

bohr C

bohr

Z Z
n nmc r mc

ε λ εα α   = − Θ ≈ −   
   

         (8.71) 

The second addend of Θ  in (8.71) is the signature of the radiative energy 
displacement due to the interaction of the electron with the quantum vacuum, 
known as electron driven vacuum polarization effect; the analytical form of the 
first addend represented by 1ε , not yet concerned explicitly, is at present still 
under investigation. So, even without detailed calculations in this respect, appear 
two relevant facts: 1) the first three terms of (8.55) are enough to infer the Dirac 
equation; 2) the cubic term and the implementation of the energy range δε  in-
stead of a unique energy term ε  are essential to infer contextually the Lamb 
energy shift too. 

9. Discussion 

The present model has concerned several topics of fundamental physics 
self-consistently inferred uniquely from the concept of evolution inherent the 
definitions (1.11) and (1.12). The concepts of mass, momentum, energy and 
electric charge, obviously missing in these equations, have been uniquely and 
self-consistently introduced through the fundamental constants of Nature. It 
appears also significant the chance of describing the Universe according to laws 
inferred from the change of a unique primordial function ψ , even regardless of 
a specific and detailed knowledge about the function that is changing itself: it is 
instead crucial how it changes. 

The fact of having introduced an initial function and its actual space time 
evolution, has been proven enough to infer contextually quantum uncertainty 
and relativistic results in a surprisingly straightforward way even regardless of 
any deterministic metric and without hypotheses “ad hoc”. 

On the one side the necessity of quantized physical laws is implied by the 
concept itself of uncertainty, Equations (3.1) and (3.2), on the other side special 
and general relativity are implied by the space time frame under the condition of 
its holistic evolution. The reverse reasoning is also true: the foundation of quan-
tum and relativistic theories are the fingerprint of an evolving Universe, whose 
evolution is governed by a few constants in which are nested the essential dy-
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namical variables of interest for the everyday experimental activity, mass, energy 
charges and so on. 

The modern physics is essentially wave physics. This is because the Bohr atom 
first opened the way to the hydrogenlike atoms and thus to the probabilistic in-
terpretation of the wave functions. Next Schrödinger further enhanced this con-
ceptual path including in the wave function the potential term and thus the elec-
tron correlation in many electron atoms and ions. Eventually a further step 
ahead was accomplished by Dirac: with its relativistic hydrogen atom, He has in 
fact introduced the quantum field theory. Yet all these physical models imple-
mented wave formalism. The present paper, instead, introduces and contextually 
exploits the corpuscle nature of the particles constituting the matter, appro-
priately integrated with their wave nature when necessary. The subsection 3.2 
has been reported just to clarify this point. In this way is irrelevant the theoreti-
cal problem raised by many physicists about why *Ψ Ψ , and not Ψ  itself, has 
physical meaning [21]; moreover the approach to the various equations of 
quantum and relativistic physics appears not only simpler but also the equations 
themselves are more interconnected. The Heisenberg principle has negative 
content; the statistical formulation of the space time uncertainty has instead a 
highly positive content as it shares both quantum and relativistic theories. Re-
garding a fundamental statement the uncertainty and following the approach 
shortly sketched in Section 3.2 the EPR paradox would be meaningless because 
the concept of distance is missing; the uncertainty ranges waive since the begin-
ning conceptually, and not as a sort of approximation useful to simplify calcula-
tions, the concepts of local space time coordinates necessary to define “superlu-
minal” distances.  

As concerns the quantum way of describing the reality, these basic concepts 
can be summarized as follows  

 

uncertainty range uncertainty range

operator operator

dynamical variables

, , ,

i x i t

p

p
x c G t

ε

ε
α

∂ ∂
−

∂ ∂

∆ ∆
∆ ∆

 

 

 



               (9.1) 

The upper part deals with differential equations that by definition describe the 
local properties of the solution of the pertinent wave equation; the lower part 
describes instead the system regardless of its local properties and thus without 
need of solving the pertinent differential equations. In principle both approaches 
are equivalent, although the operator formalism is a byproduct of the quantum 
uncertainty; in practice, however, the problem is to see which approach is more 
effective in describing the quantum properties of the Universe regardless of the 
local and deterministic tensor formalism. It is worth recalling that all papers 
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based only on the Equation (3.1) only, allowed to obtain the most significant re-
sults of both general relativity and quantum physics [20]; in the latter case, in 
particular, the usual positions (3.28) introducing the operator formalism of wave 
mechanics according to (3.66) and (3.67) are systematically replaced by the un-
certainty positions  

, , , ,x x p p t tδ δ δ ε δε→ → → →             (9.2) 

while obtaining results identical to that of the standard wave formalism, as 
shortly shown in subsection 3.2. 

The classical dynamical variables p and ε  are to be regarded equivalently as 
quantum differential operators or quantum uncertainty ranges: this implies that 
actually it is necessary neither to solve the Schrödinger equation of wave me-
chanics nor the tensor calculus of relativity. The form (3.2) expressing the 
quantum uncertainty, apparently weird, shows the quantum equivalent of the 
relativistic covariance: the Equations (3.1) could seem defined in some particular 
reference system, instead (3.2) show that whenever the dynamical variables are 
replaced by the respective uncertainty ranges about which nothing is known in 
the sense highlighted in the subsection 3.2, the dependence of any formula on a 
particular reference system, inertial or not, is lost. So the independence of for-
mulas on any particular R is ensured by (3.1), despite their different forms in R 
and R′ ; however holds the more substantial fact the any formula inferred from 
(3.1) has validity in any R′ : this is the profound reason why relativistic formu-
las can be inferred from (3.1). 

Yet, the rational foundation of everything is just the conceptual impossibility 
of knowing everything. 

10. Conclusions 

As stated in Section 1, part of this paper aimed to find known results as a test of 
validity of the present theoretical model. Besides well known results, explicitly 
quoted throughout the exposition, the model has also provided original results: 
− Evolutionary imprinting and derivation of physical laws. 
− Possible granular structure of the space time. 
− Possible quantization of the temperature. 
− Lnk between entropy, phase space and space time. 
− Link between Van der Waals equation and quantum zero point state of mat-

ter. 
− Link between relativity and quantum gravity. 
− Probabilistic link between corpuscle and wavelike behavior of matter. 
− Link between operator and uncertainty driven approach to quantum prob-

lems. 
− Generalization of Dirac equation to include the Lamb effect. 

Moreover: 
− The Equations (4.4) and (3.13) show that even a small mass 0m  can take 

large values of kinetic mass m for v c→ ; also, (4.6) shows that just m is the 
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classical mass. 
− The Equation (6.19) has shown the existence of finite vacuum energy density η , 

to which corresponds according to (8.34) a pressure 8 22.2 10 dyn cmvacP −= × . 
− The Equation (4.7) has shown that the corpuscle/wave behavior of matter has 

probabilistic character and that this probability involves the ratios 0m m  
and gv c . 

− The velocity dependence of mass shows that 0m m→  implies 0v → , 
whatever 0m  might itself be; contextually, increasing 0m  to m′  means 
decreasing gv  from c to a smaller value v′ . 

− Short notes, although necessarily incomplete, emphasize the essential finger-
prints of the strong and weak interactions, Equations (8.37), and contextually 
also the gravity force and Maxwell equations. 

− The model explains why un upper limit of velocity, c, must necessarily exist. 
These short remarks are enough to conclude that the present model fits the 

basic concepts of thermodynamics and fundamental forces of nature merging 
concept of quantum and relativistic physics. 
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