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Abstract 
Impaired excitation-contraction coupling occurs in eccentric contraction 
(ECC)-induced damaged muscles. It has been suggested that sarcoplasmic re-
ticulum (SR) is susceptible to damage in the overstretched regions possibly 
marking the basis of excitation-contraction coupling damage. Recent studies 
have shown that dietary nitrate supplementation enhances SR function in 
fast-twitch muscles. In this study, we aimed to investigate whether dietary ni-
trate supplementation can alleviate a decline in muscle contractile properties 
and SR function following ECC. To this end, force production, Ca2+ uptake, 
Ca2+ release, and Ca2+-ATPase activity of the SR were examined in rat fast-twitch 
muscles immediately following ECC for 200 repetitions. In comparison with 
contralateral resting muscles, nitrate supplementation for up to 3 days re-
sulted in an obvious decline in force production. However, there were no dif-
ferences in terms of force production between 6-day nitrate-treated and con-
tralateral muscles. Similar to the observations regarding force production, the 
SR Ca2+ release rate changed from an obvious decrease following the 0- and 
3-day dietary nitrate supplementation to no difference following the 6-day 
nitrate supplementation. In contrast, ECC decreased the Ca2+-ATPase activity 
and Ca2+ uptake rate, irrespective of the period of dietary nitrate supplemen-
tation. Overall, these results indicate that dietary nitrate supplementation can 
alleviate ECC-related decreases in force production mediated through inhi-
bited reductions in the SR Ca2+ release function. 
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1. Introduction 

Fatigue-induced changes in force production can be analyzed in terms of a gen-
erally decreased ability of cross-bridges formation to generate force, decreased 
myofibrillar Ca2+ sensitivity, decreased sarcoplasmic reticulum (SR) Ca2+ release, 
or combination of these [1]. Previous studies that used skinned or intact fibers 
indicated superoxide-dependent protein modifications [2], glycogen depression 
[3] [4], and protein degradation [5] as the probable causes of decreased SR Ca2+ 
release [6]. 

Unaccustomed eccentric contraction (ECC) induces skeletal muscle damage 
characterized by a long-lasting decrease in muscle strength and delayed onset 
muscle soreness [7]. Muscles damaged by unaccustomed ECC are characterized 
by sarcolemmal disruption and myofibrillar disorganization during ECC [8] and 
crystallized structures within the Z disk and SR swelling immediately following 
ECC [9]; consequently, overstretched sarcomeres act as the origin of such mus-
cle damage [10]. Reportedly, impaired excitation-contraction coupling occurs in 
eccentrically damaged mammalian muscles [8]. It has been suggested that sar-
comeres within myofibrils, transverse tubules (t-tubules), and SR are susceptible 
to damage in the overstretched regions, possibly marking the basis of excita-
tion-contraction coupling damage [11]. 

Recently, the presence of nitrates within the diet and their potential as a 
source of nitric oxide (NO) has gained increasing attention. NO itself plays an 
important regulatory role in several physiological processes, such as vasodilata-
tion, blood pressure regulation, mitochondrial respiration, cell signaling, and 
mitochondrial biogenesis [12] [13] [14]. The classic mechanism for NO genera-
tion via the oxidation of L-arginine in a reaction catalyzed by nitric oxide syn-
thase (NOS) has been well-documented [15]. 

Dietary supplementation with inorganic nitrate an NO donor, enhances NO 
bioavailability, reduces oxygen cost of exercise, and increases exercise perfor-
mance in endurance exercise [16]. Further, supplemented nitrate enhances en-
durance performance [17] and reduces the PCr cost of force production [18]. 
Removal of dietary nitrate supplementation from the diet has been shown to re-
duce running distance and speed to the control level, despite the gain of im-
proved endurance during dietary nitrate supplementation [19]. Recent studies 
have shown that dietary nitrate supplementation enhances SR Ca2+ release in 
mouse fast-twitch muscles [20] and that NO, synthesized from L-arginine injec-
tion, increases Ca2+ regulatory protein concentrations [21]. 

Based on these findings, we designed a hypothesis that dietary nitrate supple-
mentation inhibits ECC-induced alterations in the SR function. The main objec-
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tive of the present study was to examine whether dietary nitrate supplementation 
prior to ECC would alleviate the decline in muscle contractile properties and SR 
Ca2+ handling in rat fast-twitch skeletal muscle immediately following ECC. 

2. Materials and Methods 
2.1. Animal Care and Nitrate Ingestion 

Thirty 9-wk-old male Wistar rats were housed in a thermally controlled room 
maintained between 20˚C and 24˚C under a 12-h light/dark cycle. Water and 
food were provided ad libitum. All study procedures were approved by the Ani-
mal Care Committee of Hiroshima University. The rats were randomly divided 
into three nitrate-treated groups (n = 10 for each group) and were administered 
dietary nitrate supplementation for 0 (non-treated), 3, and 6 days. The period of 
dietary nitrate supplementation used in this study is similar to that utilized in 
the study by Hernández et al. [20]. The rats were administered 1 mmol kg−1 
day−1 NaNO3 diluted with 4 mL tap water. We used the nitrate dose described by 
Ferguson et al. [22]. 

2.2. Exercise Procedures 

Throughout the experiment, the rats were deeply anesthetized with an intrape-
ritoneal injection of a mixture of medetomidine (0.4 mg kg body wt−1), midazo-
lam (2.0 mg kg body wt−1), and butorphanol (2.5 mg kg body wt−1). ECC was 
performed as described previously [11]. Briefly, an animal was placed in the su-
pine position on a supporting platform, with the left foot secured in a foot hold-
er attached to the rim of a servomotor. Further, the knee was secured using a 
strap such that the foot was positioned perpendicular to the lower leg. A pair of 
sterilized needle electrodes was inserted through aseptically prepared skin to 
stimulation of the peroneal nerve in the left leg that innervates the left extensor 
digitorum longus (EDL) and tibialis anterior (TA) muscles. The correct location 
of the needles was confirmed by the dorsiflexion of the ankle joints and exten-
sion of the toes in response to the electrical stimulation of the common peroneal 
nerve. Repetitive contractions of the EDL and TA muscles were induced by elec-
trical stimuli applied to the common peroneal nerve. In addition, muscle con-
tractions were elicited by stimulating the peroneal nerve using a 1000-ms train 
of 1-ms pulse at 50 Hz and supramaximal voltage. For the ECC protocol, the ex-
perimental leg was forcibly extended with the servomotor at an angular velocity 
of 150˚ s−1 from the ankle joint, from 30˚ to 180˚, in synchrony with the electric-
al stimulation of the nerve over a 1-s period. The ECC was repeated every 4 s for 
a total of 200 repetitions. 

Immediately following ECC, the experimental EDL and TA muscles (left hin-
dlimb) as well as contralateral resting muscles (right hindlimb) were quickly ex-
cised. The amount of EDL or TA muscle obtained was considered too small for 
physiological or biochemical analysis. Therefore, EDL and TA muscles were 
used to measure the force production and biochemical analyses, respectively. As 
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reported by Kanzaki et al. [23], EDL and TA muscles have almost the same 
composition of rat fast-twitch fibers and exhibit similar functional deficits fol-
lowing ECC. Some previous studies assumed that these muscles are similarly af-
fected by ECC [24]. At the end of the experiments, the rats were euthanized with 
pentobarbital sodium (200 mg kg body wt−1), followed by cervical dislocation. 

2.3. Measurement of Isometric Force Production 

Isometric force production of the EDL muscles was recorded at 30˚C in a cham-
ber filled with a solution of the following composition (as previously described 
[24]): 115 mM NaCl, 5 mM KHCO3, 1 mM MgCl2, 20 mM NaHCO3, 2 mM CaCl2, 
5 mM N,N-bis(2-hydroxyethyl)-2-aminoethanesulfonic acid, 11 mM glucose, 0.3 
mM glutamic acid, and 0.38 mM glutamine. The solution was continuously 
bubbled with 95% O2/5% CO2, yielding a pH of 7.4. The EDL muscles were con-
nected to an isometric force transducer. The stimulation pulses were applied via 
two platinum plate electrodes placed on each side of the muscle. The muscles 
were allowed to equilibrate for 10 min, during which, the optimal length was de-
termined. Tetanic forces were elicited via direct stimulation at 20, 40, 60, and 80 
Hz using a supramaximal voltage, 1-ms pulses, and 1.5-s trains. Force was rec-
orded on a personal computer, analyzed using dedicated software (Lab Chart; 
ADInstruments, Nagoya, Japan), and normalized to the cross-sectional area, 
where the cross-sectional area was computed as the muscle wet weight divided 
by the product of the muscle length and density (1.07 g mL−1). 

2.4. Homogenate Preparation 

The TA muscle pieces were diluted in a ratio of 1:9 (mass vol−1) in ice-cold ho-
mogenizing buffer (pH 7.4) composed of 300 mM sucrose, 20 mM MOPS/KOH, 
0.0014 mM pepstatin, 0.83 mM benzamidine, 0.0022 mM leupeptin, and 0.2 mM 
phenylmethanesulfonyl fluoride [11]. They were mechanically homogenized thrice 
with a hand-held glass homogenizer (Asone, Osaka, Japan) at 5000 rpm for 30-s 
bursts separated by 30-s breaks. Then, the homogenate was centrifuged at 5000× g 
for 10 min. The obtained supernatant was quickly frozen in liquid nitrogen and 
stored at −80˚C. The measurements of SR Ca2+-ATPase activity and Ca2+-uptake 
and -release rate were performed using the supernatant. The protein concentra-
tions were determined using the method described by Bradford [25]. 

2.5. SR Ca2+-ATPase Activity 

The SR Ca2+-ATPase activity in the presence of 1 µg mL−1 Ca2+ ionophore 
A23187 (Sigma) was spectrophotometrically measured in muscle homogenates 
in triplicate at 37˚C as per the methods described by Simonides & van Hardeveld 
[26]. The assay mixture (pH 7.1) comprised 20 mM  
N-2-hydroxyethylpiperazine-N’-2-ethanesulfonic acid, 1 mM EGTA, 200 mM 
KCl, 15 mM MgCl2, 0.8 mM CaCl2, 10 mM sodium azide (NaN3), 0.4 mM 
NADH, 10 mM phosphoenolpyruvate, 12.1 U mL−1 pyruvate kinase, and 20.2 U 
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mL−1 lactate dehydrogenase. The reaction was initiated by adding Mg-ATP at a 
final concentration of 4 mM. Finally, the CaCl2 concentration was increased to 
20 mM to selectively inhibit SR Ca2+-ATPase activity. The remaining activity was 
considered as the background ATPase activity. The activity of SR Ca2+-ATPase was 
calculated as the difference between the total and background ATPase activities. 

2.6. SR Ca2+ Uptake and Release Rate 

SR Ca2+ uptake and release rates were measured at 37˚C in triplicate using the 
Ca2+ fluorescent dye indo-1, as previously described [24]. Aliquots of the homo-
genate were incubated for 3 min at 37˚C in an assay buffer (pH 7.0) composed of 
100 mM KCl, 20 mM N-2-hydroxyethylpiperazine-N''-2-ethanesulfonic acid, 10 
mM NaN3, 6.8 mM potassium oxalate, 0.5 mM MgCl2 and 0.001 mM indo-1. SR 
Ca2+ uptake was initiated by the addition of 1 mM Mg-ATP, which was contin-
ued until little or no change in the Ca2+ concentration ([Ca2+]) was observed. 
Then, Ca2+ release was initiated by adding 10 mM 4-chloro-m-cresol. [Ca2+] was 
monitored using a spectrofluorometer (FB-8300ST; Nihon-Bunko, Tokyo, Ja-
pan) and computed as per the ratiometric method [27]. 

2.7. Statistical Analysis 

Statistical analyses were conducted using the SigmaPlot statistical software (ver-
sion 14; Systat Software, San Jose, CA). All data are presented as mean ± stan-
dard error values of the mean (SE) values. Two-way ANOVA was used to investi-
gate the effects of the contractile protocol (ECC vs. Rest) and period of dietary ni-
trate supplementation. When significant differences were detected, Holm-Sidak 
post hoc test was performed. Statistical significance was set at P-value < 0.05. 

3. Results 
3.1. Isometric Force Production 

There were no significant differences among the measurement results of the 
three resting groups. ECC-induced force production by 80-Hz stimulation in the 
0-, 3-, and 6-day nitrate-treated muscles declined to 71.9%, 73.9%, and 83.5%, 
respectively, compared with that in the contralateral resting muscles (Figure 1). 
Regarding force production, compared with the contralateral resting muscles, 
the 0- and 3-day nitrate-treated muscles showed a significant decline (P = 0.005 
and P = 0.001, respectively), whereas the 6-day nitrate-treated muscles showed 
no significant difference (P = 0.125). 

3.2. SR Ca2+ Handling Function 

The Ca2+-ATPase activity following ECC in the 0-, 3-, and 6-day nitrate-treated 
muscles was 86.8%, 97.6%, and 96.5%, respectively, compared with that of in the 
contralateral resting muscles (Figure 2). Further, the rate of Ca2+ uptake was 
90.5%, 92.3%, and 93.2% in the 0-, 3-, and 6-day nitrate-treated muscles, respec-
tively, compared with that in the contralateral resting muscles (Figure 3).  
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Figure 1. Effect of dietary nitrate on force production immediately following eccentric 
contraction. The rats were orally administered nitrate (1 mmol kg−1 day−1) prior to the 
ECC protocol. ECC was repeated in the anterior muscles of the left hind−limb for a total 
of 200 cycles. The rested muscles of the contralateral (right) legs were used as controls. 
Immediately following ECC, the extensor digitorum longus muscles were excised and 
used to measure of isometric force production. Isometric forces were evoked via direct 
electrical stimulation at 80 Hz. The values represent mean ± standard error of mean val-
ues (SE) (n = 8 for each muscle). *P < 0.05, versus rested muscle within rats. ECC, eccen-
tric contraction. 

 

 
Figure 2. Effect of dietary nitrate on SR Ca2+-ATPase activity immediately following ec-
centric contraction. The rats were orally administered nitrate (1 mmol kg−1 day−1) prior to 
the ECC protocol. Immediately following ECC of a total of 200 cycles, the tibialis anterior 
muscles were excised. Activities were measured on muscle homogenates. The values 
represent mean ± standard error of mean values (SE) (n = 8 for each muscle). #P < 0.05, 
significant main effect for ECC (rest > ECC). ECC, eccentric contraction; SR, sarcoplas-
mic reticulum. 

 
Regarding Ca2+-ATPase activity and Ca2+ uptake, a main effect was observed 
between ECC and Rest (Rest > ECC: P = 0.047 and P = 0.036, respectively). 

Although the rate of ECC-induced Ca2+ release significantly declined to 78.6% 
and 77.6% in the 0- and 3-day nitrate-treated muscles, respectively, compared 
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with that in the contralateral resting muscles (Figure 4, P = 0.036 and P = 0.022, 
respectively), no significant difference in this regard was found between the 
6-day nitrate-treated and contralateral resting muscles (102.9%, P = 0.797). 

 

 
Figure 3. Effect of dietary nitrate on SR Ca2+-uptake rate immediately following eccentric 
contraction. The rats were orally administered nitrate (1 mmol kg−1 day−1) prior to the 
ECC protocol. Immediately following ECC of a total of 200, the tibialis anterior muscles 
were excised. SR Ca2+-uptake rate was measured on muscle homogenates. The values 
represent mean ± standard error of mean values (SE) (n = 8 for each muscle). #P < 0.05, 
significant main effect for ECC (rest > ECC). ECC, eccentric contraction; SR, sarcoplas-
mic reticulum. 

 

 
Figure 4. Effect of dietary nitrate on SR Ca2+-release rate immediately following eccentric 
contraction. The rats were orally administered nitrate (1 mmol kg−1 day−1) prior to the 
ECC protocol. Immediately following ECC of a total of 200, the tibialis anterior muscles 
were excised. SR Ca2+-release rate was measured on muscle homogenates. The values 
represent mean ± standard error of mean values (SE). *P < 0.05, versus rested muscle 
within rats. ECC, eccentric contraction; SR, sarcoplasmic reticulum. 
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4. Discussion 

Dietary nitrate supplementation has been shown to exert a variety of effects on 
physiological function, with recent evidence that short-term supplementation 
lowers the resting blood pressure [28] [29] [30], reduces the energetic cost of ex-
ercise [28] [30] [31], activates muscle contraction [20] [32] [33], and enhances 
endurance [17] [34] and intense intermittent exercise performance [35]. How-
ever, to the best of our knowledge, there is no sufficient evidence regarding the 
effects of nitrate ingestion before ECC on muscle contractile properties. The fol-
lowing remarkable results were noted in this study. First, 6-day dietary nitrate 
supplementation, but not 3-day supplementation, mitigated ECC induced de-
creases in force production, demonstrating that 6-day dietary nitrate supple-
mentation prior to the ECC protocol markedly improved force production in rat 
fast-twitch muscles following ECC. 

ECC results in an inability to produce the desired force characterized by triad 
deformation [36], sarcomere inhomogeneity [37], increased membrane permea-
bility [38], inflammation [39], and proteolysis [21] [40]. It has been well docu-
mented that modified intracellular Ca2+ handling induced by dietary nitrate sup-
plementation may enhance muscle performance [31] [41]. Recently, an en-
hancement in SR Ca2+ handling function by dietary nitrate supplementation in 
mouse fast-twitch muscle was reported [20]. Second, 6-day nitrate supplementa-
tion prior to the ECC protocol inhibited ECC-induced decreases in the SR Ca2+ 
release rate in rat fast-twitch muscles. We noted that loss of ECC-induced con-
tractile activity can be attributed to a failure of SR Ca2+ release [11]. Nitrate in-
gestion enhanced SR Ca2+ release and tetanic force production via modifica-
tions of the cellular Ca2+ handling components in mouse fast-twitch muscle 
[20]. NO is primarily synthesized from L-arginine by neuronal NOS and can 
enhance Ca2+ regulatory proteins concentration [15] [21]. In the skeletal mus-
cles, L-arginine-driven NO is moderately generated in the resting state, and its 
production markedly increases with contractile activity [15]. Considering these 
observations, it can be hypothesized that enhanced SR Ca2+ release following di-
etary nitrate supplementation can alleviate ECC-induced loss of contractile 
function. 

Ca2+-regulated cysteine proteases (calpains) comprise a proteolytic system in 
the skeletal muscles. Previous in vitro studies on the effect of NO on calpains 
demonstrated that the use of NO donors can inhibit the activation of calpains 
mediated via S-nitrosylation [42]. In a recent study, it was demonstrated that 
treatment with a calpain inhibitor could attenuate ECC-elicited force deficits, 
proteolysis of proteins regulated Ca2+ release from SR in fast-twitch muscles of 
rats [43], and L-arginine ingestion can attenuate ECC-induced proteolysis of 
Ca2+ regulatory proteins by decreasing calpain activation via S-nitrosylation [21]. 
Considering these findings, it was suggested that the attenuation of the ECC in-
duced decline of SR Ca2+ release in this study is attributable to the decreased 
calpain activation via S-nitrosylation induced by the 6-day ingestion of nitrate, 
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an NO donor, although calpain was not analyzed in this study. Thus effects die-
tary nitrate supplementation on contractile function and calpain activity follow-
ing ECC should be explored in future investigations. 

5. Conclusion 

In conclusion, the present results indicated that nitrate ingestion is capable of 
alleviating ECC-related decreases in muscle force production. These findings 
suggest that a supplemental ingestion of nitrate exerts beneficial effects, such as 
muscle performance restoration following physical activity. 
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