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Abstract 
This paper deals with an extension of the one-period model in non-life in-
surance markets (cf. [1]) by using a transition probability matrix depending 
on some economic factors. We introduce a multi-period model and in each 
period the solvency constraints will be updated. Moreover, the model has the 
inactive state including some uninsured population. Similar results on the ex-
istence of premium equilibrium and sensitivity analysis for this model are 
presented and illustrated by numerical results.  
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1. Introduction 

We consider I insurers competing in a market of n policyholders or insureds. 
Assume that the policyholders can decide either to renew the policy with the 
present insurer or switch to one of the competitors. 

According to Dutang et al. in [1], there are two non-cooperative game theory 
models in insurance markets: the Bertrand oligopoly, where insurers set premiums 
and Cournot oligopoly, where insurers choose optimal values of insurance 
coverage. Some extensions of these models have been investigated by various 
authors (see [1] and references therein). The game theoretic approach has 
received a great deal of attention by many authors, who contributed in various 
ways (see [2] [3] [4] and references therein). 

By considering a lapse and an aggregate loss models for policyholders, the 
Bertrand model of Rees et al. (cf. [5]) has been extended in [1]. They showed the 
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suitability of non-cooperative game theory for insurance market modelling. 
Moreover, they introduced the solvency constraints first time. As usual, “game” 
for insurers means to set premium for which policies are offered to the 
policyholders. 

It would be interesting to investigate a model from the perspective of insureds’ 
behavior how they can react on current economic situation. If the economy is 
getting better, then insureds including individuals and companies are interested 
in having insurance contracts, contrariwise they might be uninsured. On the 
other hand, the success and achievements of insurers in the coverage period can 
attract customers to keep insurance contracts. Otherwise, they have a risk to lose 
customers. Therefore, attracting insureds could depend on economic factors 
such as macroeconomic variables and financial data of insurance companies. 

This paper aims to extend the one-period model in non-life insurance markets 
(see [1]) by using a transition probability matrix depending on some economic 
factors. We consider a model with a multi-period and assume that the solvency 
constraints will be updated in each period. Moreover, our model has the inactive 
state which means some insureds are uninsured. 

The rest of the paper is structured as follows. In Section 2, we give a short 
summary of the one-period model. Section 3 deals with an extension of the 
one-period model and some assertions related to the existence of premium 
equilibrium and sensitivity analysis are presented. In conclusion, in Section 4, 
some numerical results are given.  

2. The One-Period Model 

In this section, we provide a short overview of the one-period model investigated 
in [1]. Let ( )1, , I

Ix x ∈�   be a price vector, where jx  represents the premium 
of insurer j. Once the premium is set by all insurers, the insureds choose to 
renew or to lapse from their current insurer. Then, insurers pay claims, according 
to their portfolio size, during the coverage year. 

Let iY  be the aggregate loss of policy i during the coverage period. We 
assume that { }, 1, ,iY i n∈ �  are independent and identically distributed (i.i.d.)  

random variables. The aggregate claim amount is ( )
( )

1

jN x

j i
i

S x Y
=

= ∑ , where  

( )jN x  is the portfolio size of insurer j given the price vector x. 

Let jn  be the initial portfolio size of insurer j, i.e., 
1

I

j
j

n n
=

=∑ . We assume 

that insurer j maximizes the expected profit of renewing policies defined as  

( ) ( ) ( )1 1 ,j j
j j j j

j

n x
O x x

n m x
β π

  
 = − − −     

 

where jπ  is the break-even premium j expressed as  

( ),0 01j j j jw a w mπ = + −  

and ( )jm x  is a market premium proxy which is the mean price of the other 
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competitors  

( ) 1 .
1j k

k j
m x x

I ≠

=
− ∑  

By ,0ja  and 0m , we denote the actuarial premium based on the past loss 
experience of insurer j and the market premium, respectively. [ ]0,1jw ∈  is the 
credibility factor of insurer j and 0jβ >  is the elasticity parameter. 

In addition to maximizing a certain objective function, insurers must satisfy a 
solvency constraint imposed by the regulator. A simplification is to approximate 
a q-quantile ( ),Q n q  of aggregate claim amount of n i.i.d. risks by a bilinear 
function of n and n   

( ) ( ) ( ), ,qQ n q E Y n k Y nσ= +  

where the solvency coefficient qk  has to be determined and Y is the generic 
individual claim severity variable. ( )E ⋅  and ( )σ ⋅  are a mean and standard 
deviation of a randon variable. Using the approximation the solvency capital 
requirement SCR is deduced as  

( ) .q qSCR k Y nσ≈  

Then the solvency constraint function can be defined as follows  

( ) ( )( )
( )

1
1,j j j j j

j j
q

K n x e
g x

k Y n

π

σ

+ − −
= ≥  

where je  is the expense rate as a percentage of gross written premium. 
The one-period Nash equilibrium model in non-life insurance markets be- 

comes  

( )max , 1, , ,
j j

jx X
O x j I

∈
= �  

where  

[ ] ( ){ }
[ ] ( )( ) ( ){ }

: , | 0

, | 1 ,

j j j j

j j j j j j q

X x x x g x

x x x K n x e k Y nπ σ

= ∈ ≥

= ∈ + − − ≥
 

and , x x  are the minimum and the maximum premium, respectively.  

3. Extension of the One-Period Model 

This section deals with an extension of the one-period model considered from 
the perspective economic factors. Let m be number of periods. To consider a 
possible extension of the model with m -period, we assume that policyholders 
will react on the current economic situation i.e., if the economy is getting better, 
then they have interests to be insured. As before, we assume that the market has 
I insurers and n insureds. Let ( ) qz k ∈  be economic factor in kth period and 

( ) q
ij kγ ∈  be a vector of economic weights in kth period with respect to the 

movement from insurer i to j. We introduce a transition matrix (see [6]) 
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describing insureds’ movement to insurers.  

( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1,1 1,2 1, 1, 1

2,1 2,2 2, 2, 1

,1 ,2 , , 1

1,1 1,2 1, 1, 1

,

I I

I I

I I I I I I

I I I I I I

p k p k p k p k
p k p k p k p k

P k
p k p k p k p k

p k p k p k p k

+

+

+

+ + + + +

 
 
 
 =
 
 
 
 

�
�

� � � � �
�
�

 

where ( ),i jp k  denotes the probability for customers to switch from insurer i to 
j in kth period. ( )1I + th column corresponds to uninsured ones whose state can 
be called inactive. According to [7] (see, also [1]), the transition probability can 
be modelled as  

( )
( ) ( )( )

( ) ( )( )
( ) ( )( )

1

,

1

1 if 1
1 exp ,

exp ,
if 1,

1 exp ,

I

il
l

i j
ij

I

il
l

j I
k z k

p k
k z k

j I
k z k

γ

γ

γ

=

=

 = +
 +
= 
 ≠ +
 +


∑

∑

 

where ,⋅ ⋅  is the Euclidean inner product. If the economy is deteriorate in kth 
period, some insureds don’t want to keep insurance contracts, therefore  

( ), , 1, ,i jp k j I= �  will decrease and , 1i Ip +  will increase. In kth period, the 
portfolio size ( )jN k  of insurer j for the next period is determined by the sum 
of renewed policies and businesses coming from other insurers. Hence  

( ) ( ) ( ) ( ) ( )

( ) ( )

1

, ,
1,

1

,
1

1 1

1 ,

I

j j j j i i j
i i j

I

i i j
i

N k N k p k N k p k

N k p k

+

= ≠

+

=

= − + −

= −

∑

∑
 

where ( )0j jN n= . Let fr  be a risk free rate and 1
1 f

v
r

=
+

 be a discount  

factor. Based on [1], the insurer j maximizes the present value of expected profit 
of renewing policies defined as  

( ) ( ) ( ) ( ) ( )( )
1

1 1 ,
k km

j jj k
m j j jk

k j

v N k x
O x k x k

n m x
β π

=

  
  = − − −
  

  
∑      (1) 

where ( )TT T
1 , , Ix x x= � , ( )T1 , , m

j j jx x x= �  for 1, ,j I= � , and  

( ) 1
1

k k
j i

i j
m x x

I ≠

=
− ∑ . The solvency constraints for insurer j can be redefined as  

( )
( ) ( )( ) ( )( )

( ) ( )

1

1

1
1,   for 1,2, , .

k k
j j j j j

j k
j

k
q j

k

K v N k x k e k
g x m

k Y v N k

π

σ

=

=

+ − −
= − =

∑

∑

�

� �
� �  

Then, the strategy set of each player { }, 1, ,j j I∈ �  is  
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[ ] ( ){ }
[ ] ( ) ( )( ) ( )( )

( ) ( )

1

1

: , | 0, 1, ,

, | 1

, 1,

mj j
m j j

m k k
j j j j j j

k

k
q j

k

X x x x g x m

x x x K v N k x k e k

k Y v N k m

π

σ

=

=

= ∈ ≥ =

= ∈ + − −


≥ = 


∑

∑

�

�

�

� �

�

     (2) 

Now we give some similar results for m-period model. 
Proposition 1. The m-period insurance game with I players whose objective 

functions and solvency constraints are defined by (1) and (2), respectively, 
admits a unique Nash premium equilibrium.  

Proof: In a similar way as in [1] and by Theorem 1 in [8], we can verify the 
existence of a Nash equilibrium. On the other hand, since for any  

( )1 1 1, , , , , ;m
j j j j jx x x x x− +

−
� �� � , the function ( )j

mO x  is strictly concave and dif- 
ferentiable with respect to jx� , for , Imx y∀ ∈  it hold  

( ) ( ) ( ), ,
j

j j j
x m j j m mO x y x O y O x∇ − > −  

and  

( ) ( ) ( ), .
j

j j j
x m j j m mO y x y O x O y∇ − > −  

Adding both inequalities, we have  

( ) ( )

( ) ( ) ( ) ( )

, ,

0.
j j

j j
x m j j x m j j

j j j j
m m m m

O x y x O y x y

O y O x O x O y

∇ − + ∇ −

> − + − =
 

Denoting by ( )T1, ,1 Ir = ∈�   and taking the sum by , 1, ,j j I= � , we 
obtain that  

( ) ( )
1 1

, , 0, ,
j j

I I
j j mI

j x m j j j x m j j
j j

r O x y x r O y x y x y
= =

∇ − + ∇ − > ∀ ∈∑ ∑ �  

which guarantees the uniqueness of the equilibrium (cf. Theorem 2 in [8]).   
Proposition 2. Let *x  be the premium equilibrium of the m-period insu- 

rance game with I players. 
1) If all solvency constraints are either active or inactive, then for each player j 

and period k, the corresponding equilibrium ] [* ,k
jx x x∈  depends on the 

parameters in the following way:  
a) It increases with break-even premiums ( )j kπ , solvency coefficient qk , 

loss volatility ( )Yσ , expense rate ( )je k , and risk free rate fr  for 2k ≥  and  
b) Decreases with sensitivity parameter ( )j kβ , capital jK  for 1k = , and, 

portfolio size ( ) , 1, ,jN k=� � �  for 2k ≥ .  
2) If all constraint functions are inactive, then the premium equilibrium is a 

solution of the linear system of equations  
* ,M x vβ =  

where 
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1

2

0 0 0
0 0 0

,

0 0 0 m

A
A

M

A

β

 
 
 =
 
 
 

�
�

� � � � �
�

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )T
1 1 1 11 1 , , 1 1 , , , , ,I I I Iv m m m mβ π β π β π β π= � � �  

and  

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 1
1

2 2
2

1 1
2

1 1
1 1

2 , 1, , .1 1

1 1
2

1 1

k

I I
I

k k
k

I I
k k

kA k mI I

k k
k

I I

β β
β

β β
β

β β
β

 + + 
− − 

− − 
 + +
− − = =− − 
 
 

+ + − − 
 − − 

�

� �
� � � �

�

 

Proof: The KKT conditions for the premium equilibrium *
jx  of insurer j has 

the following form: 

( ) ( )

( )
( )

( ) ( ) ( )

* * * * *
1 2 3

1
T* * * * * * *

1 2 3 1 2 3

* *

* * * * *
1 2 3

0,

, , 0, , , ,

0, 0, 0, 1, , ,

0, 0, 0, 1, , .

j j

m
j j j j

x j x j

j j j j j m j m j m

j k k
k j j j

j j j k j k
k k j k j k j

O x g x

g x x x x x k m

g x x x x x k m

λ λ λ

λ λ λ λ λ λ λ

λ λ λ

=

∇ + ∇ + − =

 = ≥ ∈ ∈ ∈

 ≥ − ≥ − ≥ =
 = − = − = =

∑ � �
�

� � �

�

�

 

k-th component from the first equation of the system becomes  

( ) ( )* * * * *
1 2 3

1
0.

m
j j j j j

m j k kk k
j j

O x g x
x x

λ λ λ
=

∂ ∂
+ + − =

∂ ∂∑ � �
�

           (3) 

1) Let ] [* ,k
jx x x∈ . Then * *

2 3 0j j
k kλ λ= = . We consider two cases.  

a) Let us assume that the solvency constraints are all inactive, i.e.,  

( )* 0, 1, ,j
jg x m> =� � � . Then, insurer j’s premium equilibrium verifies  

( )* 0j
mk

j

O x
x
∂

=
∂

, i.e.,  

( ) ( ) ( ) ( ) ( ) ( )
( )

*

* *
1 2 0.

k k
j j j

j j jk k
j j

v N k x k
k k k

n m x m x

π
β β β

 
 − + + =
 
 

     (4) 

Let ( ) ( )T1 1 1: , , , , , , ;k k k m
j j j j j jx y x x y x x x− +

−= � � . In order to investigate the 
sensitivity depending on parameter z, let us define the function ,k j

xF  as  

( ) ( )( ), , : , ,k j j k
x m jk

j

F z y O x y z
x
∂

=
∂

 

and consider the equation of the form ( ), , 0k j
xF z y = . Under assumptions that 

partial derivatives of ,k j
xF  exist and are continuous at ( )0 0,z y , and also  

( )
,

0 0, 0
k j

xF
z y

y
∂

≠
∂

, by the implicit function theorem, there exists a function ϕ   
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defined in a neighbourhood of ( )0 0,z y  such that ( )( ), , 0k j
xF z zϕ =  and  

( )0 0z yϕ = . The derivative of ϕ  is given by  

( )

( )

,

, .

k j
x

k j
x

y z

F
zz

F
y ϕ

φ

=

∂
∂′ = −

∂
∂

 

In our case, we have  

( ) ( ) ( )
( )

, 2

2, 2 0.
kk j j

jx m
jk k

j j

v N kF O
z y k

y x n m x
β

∂ ∂
= = − <

∂ ∂ ⋅
 

As a consequence, it holds  

( )( ) ( )( )
,

sign sign , .
k j

xF
z z z

z
φ φ

 ∂′ =  
∂ 

 

i) Let ( ): jz kπ= . Then  

( ) ( ) ( )
( )

,

, 0.
kk j

j jx
k

j

v N k kF
z y

z n m x

β∂
= >

∂ ⋅
 

In other words, the function ( ) ( )( )*k
j j jk x kπ π→  is increasing.  

ii) Let z be the sensitivity coefficient ( )j kβ . Then, we have  

( ) ( )
( )

( )
( )

,

, 2 1 .
kk j

j jx
k k

j j

v N k kF yz y
z n m x m x

π ∂  = − + +
 ∂  

 

By using (4), we obtain that  

( )( ) ( ), 1, 0.
kk j

jx v N kF
z z

z n z
φ

∂ −
= ⋅ <

∂
 

Therefore, the function ( ) ( )( )*k
j j jk x kβ β→  is decreasing.  

b) If the solvency constraints are all active, then the premium equilibrium 
satisfies ( )* 0j

jg x =� , for 1, , m=� �  and consequently, one get  

( )
( ) ( )
( ) ( )( )

1*
1

1 ,
1 1 1

q j j
j j

j j

k Y vN K
x

vN e

σ
π

−
= +

−
 

( ) ( )

( ) ( ) ( )( )
*

1

1 1

,  2, , .
1

q
j j

k k
j j j

k k

k Y
x m

v N k v N k e

σ
π

−

= =

= + =
 

+ −  
 
∑ ∑

�

� �
� � �

�

   (5) 

From (5), we can verify directly that *k
jx  is an increasing function of ( )j kπ , 

qk , ( )je k  and fr  for 2k ≥ . Moreover, it is a decreasing function of jK  for 
1k =  and ( ) , 1, ,jN k=� � �  for 2k ≥ .  

2) If all constraints are inactive at a Nash equilibrium *x , then taking into 
account ( ) 1

1
k k

j i
i j

m x x
I ≠

=
− ∑  and from (4) follows that  

( ) ( )( ) ( ) ( )* *12 1 , , .
1

k k
j j j i j j

i j
k x k x k k j k

I
β β β π

≠

− + = ∀
− ∑  
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This system can be rewritten in matrix form as M x vβ = . As in [1] mentioned, 
we can see that the matrix M β  is strictly diagonally dominant if the conditions 

( ) 1, 1, , 1,j k j I k mβ > = =  are fulfilled. Under this condition M β  is invertible 
and therefore * 1x M vβ

−= .  
  

Remark 1. If *k
jx x=  or x , then the premium equilibrium is independent 

of those parameters.  
Remark 2. For a game with one leader and 1I −  followers with payoff 

functions j
mO  and the strategy set j

mX , a Stackelberg equilibrium is the 
problem that consists in finding a vector ( )T T

1 , , Ix x x= � , ( )1, , m
j j jx x x= �  

such that 1x  solves the problem  

( )
1

1 2sup ; , , ,
m

I
y X

O y x x
∈

�  

where ( )2 , , Ix x�  is a Nash equilibrium for the game with the 1I −  followers 
and given strategy 1x  for insurer 1 which is assumed to be a leader. In this case, 
it is not difficult to show the existence of Stackelberg equilibrium (cf. [1]).  

4. Numerical Experiments 

In this section we show some numerical results dealing with sensitivity analysis 
presented in Proposition 2 in Section 3. Let us notice that the Nash equilibrium 
model can be reduced to the variational inequality problem which consists in 
finding 1 2: I

m m mx X X X∈Ω = × × ×�  such that  

( ) ( ) , 0, ,VI F x y x y− ≥ ∀ ∈Ω  

where ( ) ( )( )
1j

I
j

x m
j

F x O x
=

= ∇ . In order solve the problem (VI), we apply the 
hyperplane projection algorithm (see [9] and [10]). We consider three player’s 
game and let 3m = .  

1) Base case: 
Table 1 shows that if we use the data from [1] in each period, then we get the 

same results. 
2) Scenario 1: 
Table 2 shows results for the case if elasticity parameter of first player 

increases up to 3.5 in three periods. 
3) Scenario 2: 
Table 3 presents results for the case if elasticity parameters of all players 

increase in Period 2. Then, premium equilibriums are changed only in Period 2. 
4) Scenario 3: 
In this case, we assume that break-even premium for player 1 in Period 1 and 

for player 3 in Period 3 are increasing and break-even premium for player 2 in 
Period 2 is decreasing. Then, premium equilibriums in Period 1 and Period 3 for 
players 1 and 3 are increasing, but premium equilibrium in Period 2 for player 2 
is decreasing as compared with “Base case” (see Table 4). 

5) Scenario 4: 
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Table 1. Basic case. 

Player I II III 

Period 1 2 3 1 2 3 1 2 3 

( )E Y  1 

qk  3 

fr  0.00 

( )Yσ  10.488 

jK  2807.190 2367.231 2006.917 

( )j kβ  3.0 3.0 3.0 3.8 3.8 3.8 4.6 4.6 4.6 

( )je k  0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 

( )j kπ  1.10 1.10 1.10 1.117 1.117 1.117 1.083 1.083 1.083 

( )jN k  4500 4500 4500 3200 3200 3200 2300 2300 2300 

equil/prem 1.544 1.544 1.544 1.511 1.511 1.511 1.471 1.471 1.471 

 
Table 2. Scenario 1. 

Player I II III 

Period 1 2 3 1 2 3 1 2 3 

( )E Y  1 

qk  3 

fr  0.05 

( )Yσ  10.488 

jK  2807.190 2367.231 2006.917 

( )j kβ  3.5 3.5 3.5 3.8 3.8 3.8 4.6 4.6 4.6 

( )je k  0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 

( )j kπ  1.10 1.10 1.10 1.117 1.117 1.117 1.083 1.083 1.083 

( )jN k  4500 4500 4500 3200 3200 3200 2300 2300 2300 

equil/prem 1.494 1.494 1.494 1.488 1.488 1.488 1.449 1.449 1.449 

 
Finally, we assume that ( ) 1, 1, , 4; 1, 2,3ij k j kγ = = =� . Let the economic 

factor be −3 (which means that the economy is deteriorated) in Period 1, 0 in 
Period 2 and 3 (which means that the economy is raised) in Period 3. If the 
economic factor is equal to −3, then the number of uninsured people (which 
corresponds to inactive state) increases up to ( )10000 1 3 8701jN− × = . If 
economic factor is equal to 3, then the number of uninsured people (which 
corresponds to inactive state) decreases down to ( )10000 3 3 163jN− × = . The 
results are presented in Table 5. 
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Table 3. Scenario 2. 

Player I II III 
Period 1 2 3 1 2 3 1 2 3 

( )E Y  1 

qk  3 

fr  0.05 

( )Yσ  10.488 

jK  2807.190 2367.231 2006.917 

( )j kβ  3.0 3.5 3.0 3.8 3.9 3.8 4.6 5.6 4.6 

( )je k  0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 

( )j kπ  1.10 1.10 1.10 1.117 1.117 1.117 1.083 1.083 1.083 

( )jN k  4500 4500 4500 3200 3200 3200 2300 2300 2300 

equil/prem 1.544 1.472 1.544 1.511 1.463 1.510 1.471 1.406 1.471 

 
Table 4. Scenario 3. 

Player I II III 
Period 1 2 3 1 2 3 1 2 3 

( )E Y  1 

qk  3 

fr  0.05 

( )Yσ  10.488 

jK  2807.190 2367.231 2006.917 

( )j kβ  3.0 3.0 3.0 3.8 3.8 3.8 4.6 4.6 4.6 

( )je k  0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 

( )j kπ  1.15 1.10 1.10 1.117 1.100 1.117 1.083 1.083 1.183 

( )jN k  4500 4500 4500 3200 3200 3200 2300 2300 2300 

equil/prem 1.580 1.538 1.579 1.527 1.499 1.544 1.487 1.466 1.542 

 
Table 5. Scenario 4. 

Player I II III 
Period 1 2 3 1 2 3 1 2 3 

( )E Y  1 

qk  6.0 

fr  0.05 

( )Yσ  10.488 

jK  2807.190 2367.231 2006.917 

( )j kβ  3.0 3.0 3.0 3.8 3.8 3.8 4.6 4.6 4.6 

( )je k  0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 

( )j kπ  1.10 1.10 1.10 1.117 1.117 1.117 1.083 1.083 1.083 

( )jN k  433 2500 3279 433 2500 3279 433 2500 3279 

equil/prem 1.676 1.633 1.676 1.619 1.590 1.638 1.685 1.660 1.741 
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5. Conclusion 

In this paper, we aim to investigate an extension of the one-period model in 
non-life insurance markets (cf. [1]) by introducing a transition probability 
matrix depending on some economic factors. In the future, we concentrate on 
alternative ways of the extension including generalized Nash equilibrium (see, 
for instance [11] and [12]) formulations. Moreover, it would be interesting to 
investigate in more detail about economic factors that influence in our model. 
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