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Abstract 
In this note, for any pair of natural numbers ( ),n k , 3n ≥ , 1k ≥ , and 
2k n< , we construct an infinite family of irreducible polynomials of degree 
n, with integer coefficients, that has exactly 2n k−  complex non-real roots if 
n is even and has exactly 2 1n k− −  complex non-real roots if n is odd. Our 
work generalizes a technical result of R. Bauer, presented in the classical mo-
nograph “Basic Algebra” of N. Jacobson. It is used there to construct poly-
nomials with Galois groups, the symmetric group. Bauer’s result covers the 
case 1k =  and n odd prime. 
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1. Introduction 
1.1. Here We Recall a Couple of Basic Facts and State Our Main  

Result 

Let ℤ denote the set of integers and let ℤ[X] denote the ring of polynomials with 
integer coefficients. A polynomial f over a field or a ring is called irreducible if it 
cannot be factored as a product of two non-constant polynomials with coeffi-
cients in that field. A criterion to check irreducibility over the rational numbers 
is Eisenstein irreducibility criterion [Exercise 2, page 127] [1], which states that, 
given f ∊ ℤ[X], if there exists a prime p that divides all coefficients of f except the 
leading coefficient and if p2 does not divide the free term, then f is irreducible 
over the rationales. It is also irreducible over the integers, unless all its coeffi-
cients have a nontrivial factor in common.  
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1.2. Our Main Result Is the Following Theorem 

Theorem 1. For any pair of natural numbers ( ),n k , 3n ≥ , 1k ≥ , and 
2k n< , there exists an infinite parametric family of irreducible polynomials in 
ℤ[X] of degree n, which have exactly 2n k−  complex non-real roots if n is even 
and exactly 2 1n k− −  complex non-real roots if n is odd.  

Remark 1. The case 0k =  can also be easily covered. If n is even, consider 
( ) , 1nP x xλ λ λ= + >  prime, which is irreducible due to Eisenstein criterion and 

has no real roots. If n is odd, consider ( ) , 1nP x xλ λ λ= + >  prime, which is ir-
reducible due to Eisenstein criterion and has exactly one real root. 

Our result generalizes a technical result of the American mathematician R. 
Bauer which is presented in the classical monograph “Basic Algebra” of N. Ja-
cobson [see the proof of Theorem 8, page 107] [1]. The result of Bauer is used to 
construct polynomials with prescribed Galois groups, more precisely the sym-
metric group. Bauer’s result covers the case where 1k =  and n is an odd prime 
from Theorem 1. 

2. The Basic Construction 

Observe that if 3, 1n k= = , the polynomial 3 2f x= +  is irreducible and has 
exactly two non-real roots. Therefore in what follows we can assume that 4n ≥ . 

From now on n, k are integers such that 4, 1, 2n k k n≥ ≥ < . In order to sim-
plify the notation, we introduce the variable 2m n k= −  if n is even and 

2 1m n k= − −  if n is odd. In both cases m is even.  
We define 

( ) ( )1 2 2 12 , 2 1 , 2 2 , , 4, 2k k ka k a k a k a a− −= = − = − = = . 

If n is even define 

( ) ( )( ) ( )( ) ( )( )1 1 1 1k k k kg x x a x a x a x a x a x a− −= − − − + + +   

and if n is odd define  

( ) ( )( ) ( ) ( ) ( )( )1 1 1 1k k k kg x x a x a x a x x a x a x a− −= − − − + + +  .  

In both cases define  

( ) ( ) ( )mf x x g xλ λ= +  

where 1λ >  is an odd positive integer of size to be determined later. 
The polynomial ( )g x  has exactly n m−  real roots. It follows from Rolle’s 

Theorem that ( )g x  has 1n m− −  points of local extrema: 

1 2 1n me e e − +< < < , 

( ) ( ) ( )1 1 2 2 1 1, , , n m n mE g e E g e E g e− − − −= = = . 

The points of local extrema alternate between local maxima and local minima. 
On all intervals 

( ) ( ) ( )1 1 1, , , , ,1, 1,n m i ie e e e i n m− − +−∞ +∞ ≤ ≤ − −             (1) 

the polynomial ( )g x  is strictly monotonic and the derivative ( )g x′  has con-

https://doi.org/10.4236/ojdm.2019.91001


C. Nitica, V. Nitica 
 

 

DOI: 10.4236/ojdm.2019.91001 3 Open Journal of Discrete Mathematics 
 

stant sign. Otherwise, ( )g x′  would have other zeroes besides ka± , so overall 
more then 1n m− − , in contradiction with the fact that it is a polynomial of de-
gree 1n m− − . 

If n is odd, the minimum of the absolute value of the polynomial ( )g x  in 
the points of local extrema is larger then the minimum of the absolute value of 
( )g x  in the odd integers in the interval [ ]2 ,2k k− . If n is even, the minimum 

of the absolute value of the polynomial ( )g x  in the points of local extrema is 
larger then the minimum of the absolute value of ( )g x  in the odd integers in 
the interval [ ]2 ,2k k−  and in zero. In the first case the minimum is  
( ) ( )2 ! 2 ! 4 2k k ≥ >  and in the second case the minimum is  
( ) ( )2 1 ! 2 1 ! 6 2k k+ − ≥ > . If we denote ( ) ,1 1i iE f e i n m= ≤ ≤ − − , then 

3,1 1.iE i n m≥ ≤ ≤ − −  

Lemma 1. If ( )g x′  has constant sign, strictly positive or strictly negative, on 
an interval ( ),a b  from (1), then for any 0δ >  such that ( ) ( ), ,a b a bδ δ+ − ⊂ , 
there exists 0λ >  such that ( )f xλ′  has the same sign with ( )g x′  on the in-
terval ( ),a bδ δ+ − . 

Proof. We first considered the case when a and b are finite numbers and 
( ) ( )0, ,g x x a b′ > ∈ . Let 

[ ] ( ) [ ] ( ) { }1
1 2, ,max , min 0, max , .m

x a b x a bM mx g x M g x c a bδ δ
−

∈ ∈ + −
′= = > =  

One has ( ) ( ) ( ) ( ) ( )1
1 2

m m mf x mx g x x g x M M cλ λ λ−′ ′= + + ≥ − + − +  and for 

1

2

1 mM c
M

λ
+

> +  the right member of the last equation is greater than 1 for 

( ),?x a bδ δ∈ + − .  

Assume now that ( ) ( )0, ,g x x a b′ < ∈ . 
Let [ ] ( )1

1 ,max m
x a bM mx g x−
∈= , [ ] ( )2 ,min 0x a bM g xδ δ∈ + −

′= < ,  

{ }max ,c a b= . 

One has ( ) ( ) ( ) ( ) ( )1
1 2

m m mf x mx g x x g x M M cλ λ λ−′ ′= + + ≤ + + . Then for 

1

2

1 mM c
M

λ
− −

> −  the right member of the last equation is less than −1 when 

( ),x a bδ δ∈ + − .  

If ( ) ( ), ,a b b= −∞ , then 1b e< . In particular, 0b < . Also,  
( ) ( )0, ,g x x a b′ > ∈ , if n is odd and ( ) ( )0, ,g x x a b′ < ∈ , if n is even. Assume 

that n is odd. Then ( )1mmx g x−  is a polynomial of even degree that can be neg-
ative only on a finite interval ( ) ( ), ,c d b⊂ −∞ . On ( ) ( ), \ ,a b c d  one has 

( ) 0f xλ′ >  if 0λ > . We show that ( ) 0g x′ >  on [ ],c d . Define 

[ ]
( )

[ ]
( )1

1 2 ,,
max , min 0.m

x c dx c d
M mx g x M g x−

∈∈
′= = >  

One has the estimates:  

( ) ( ) ( ) ( ) ( )1
1 2

mm mf x mx g x x g x M b Mλ λ λ−′ ′= + + ≥ − + + . Then for  
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1

2

1 mM b
M

λ
+

> −  the right member of the last equation is greater than 1 when 

( ),x c d∈ .  

Assume now that n is even. Then ( )1mmx g x−  is an odd degree polynomial 
which can be positive only on a finite subinterval of ( ),b−∞ , say ( ),c d . So 

( ) ( ) ( ) ( ) ( )1 0, ,m mf x mx g x x g x x c dλ λ−′ ′= + + < ∈ . We show that  
( ) [ ]0, ,f x x c dλ′ < ∈ . Define  

[ ]
( )

[ ]
( )1?

1 2 ,,
max , min 0.m

x c dx c d
M mx g x M g x−

∈∈
′= = <  

One has the estimates ( ) ( ) ( ) ( ) ( )1
1 2

mm mf x mx g x x g x M b Mλ λ λ−′ ′= + + ≤ + + . 

Then for 1

2

1 mM b
M

λ
− −

> −  the right member of the last equation is greater 

than −1 when ( ),x c d ′∈ . 

If ( ) ( ), ,a b a= ∞ , then ( ) ( )1, ,, 0n ma b e a− − ∞⊂ > , and ( ) 0g x′ >  if 
( ),x a b∈ , independent of the parity of n. The polynomial ( )1mmx g x−  can be 

negative only on a finite subinterval ( ) ( ), ,a d a⊂ ∞ . If ( ) ( ), \ ,x a b c d∈ , then 
( ) ( ) ( ) ( )1 0m mf x mx g x x g xλ λ−′ ′= + + >  if 0λ > . 

We show that ( ) ( )0, ,f x x c dλ′ > ∈ . Let  

[ ]
( )

[ ]
( )1

1 2 ,,
max , min 0.m

x c dx c d
M mx g x M g x−

∈∈
′= = >  

One has the estimates:  

( ) ( ) ( ) ( ) ( )1
1 2

mm mf x mx g x x g x M d Mλ λ λ−′ ′= + + ≥ − + + . Then for  

1

2

1 mM d
M

λ
+

> −  the right member of the last equation is greater than 1 when 

( ),x c d′∈ .  

We are ready to prove the main result. Consider the polynomial 
( ) ( ) 2h x f xλ λ= + , which has the leading coefficient equal to 1, the free coeffi-

cient divisible by 2, but not by 4, and due to Viete’s formulas, all the other coef-
ficients are divisible by 4. It follows that the coefficients of ( )h xλ  have no non-
trivial common factor and it follows from Eisenstein criterion that ( )h xλ  is ir-
reducible. To finish the proof of the main result it is enough to show that for λ  
large enough ( )h xλ  has exactly n m−  real roots. 

Due to the continuity of ( )f xλ  there exists 0δ >  such that for any 
1 1i n m≤ ≤ − −  one has 

( ) ( ) 
1 , , .
4i i if x E x e eλ δ δ

∨

− < ∈ − +  

Because 3iE ≥ , it follows from above that for 1 1i n m≤ ≤ − −  one has 

( ) ( ) ( ) 
1 113 , , .
4 4i i i if x E f x E x e eλ λ δ δ≥ − − ≥ − = ∈ − +          (2) 

After choosing a smaller 0δ > , if needed, one can apply Lemma 1 and 
choose λ ∈  such that the sign of ( )f xλ′  is constant, strictly positive or 
strictly negative, on each of the following intervals: 
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( )1,e δ−∞ −  

( )1 2,e eδ δ+ −  

( )2 3,e eδ δ+ −  

  

( )3 2,n m n me eδ δ− − − −+ −  

( )2 1,n m n me eδ δ− − − −+ −  

( )1 ,n me δ− − + +∞  

For all the intervals above, due to (2) the image of ( )f xλ  contains the interval 

11 11,
4 4

 − 
 

. As ( )f xλ  is continuous it follows that the line 2y = −  intersects 

the graph of the polynomial ( )f xλ  over these intervals in exactly n m−  

points, with ( )f xλ′  in these points different from zero. Due to (2), outside the 

intervals above ( ) ( ) 2h x f xλ λ= +  cannot be zero. Therefore ( )h xλ  has 
n m−  real roots, all simple.  

3. Conclusions 
In this paper we construct infinite parametric families of irreducible polynomials 
in ℤ[X] with a prescribed number of complex, non-real, roots. Of some interest 
would be to find good estimates for the smallest good value of the parameter λ . 

The proof of Theorem 1 provides some rough estimates of order 
2

2

nnO
 
  


 

 




 

where n is the degree of the polynomial. Numerical experiments, nevertheless, 
show that many times ( )O n  is sufficient. The following examples illustrate this 
observation. 

Example 1. Let 

( ) ( )( )( )( ) ( )( )( )( )( )10 108 6 4 2 2 4 6 8 10 2P x x x x x x x x x x x= − − − − + + + + + +  

for 1019, 10 , 4n kλ= = = . ( )P x  has 10 complex non-real roots and 9 real 
roots. 

Example 2. Let 

( ) ( )( )( )( ) ( )( )( )( )( )108 6 4 2 2 4 6 8 10 2P x x x x x x x x x x x= − − − − + + + + + +  

for 19, 10, 4n kλ= = = . ( )P x  has 10 complex non-real roots and 9 real roots. 
Example 3. Let 

( ) ( )( )( )( )( )( )( )( )( )10 108 6 4 2 2 4 6 8 10 2P x x x x x x x x x x= − − − − + + + + + +  

for 1018, 10 , 4n kλ= = = . ( )P x  has 10 complex non-real roots and 8 real 
roots. 

Example 4. Let 

( ) ( )( )( )( )( )( )( )( )( )108 6 4 2 2 4 6 8 10 2P x x x x x x x x x x= − − − − + + + + + +  

for 18, 10, 4n kλ= = = . ( )P x  has 10 complex non-real roots and 8 real roots. 
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