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Abstract 
 
By using the penalty function method with objective parameters, the paper presents an interactive algorithm 
to solve the inequality constrained multi-objective programming (MP). The MP is transformed into a single 
objective optimal problem (SOOP) with inequality constrains; and it is proved that, under some conditions, 
an optimal solution to SOOP is a Pareto efficient solution to MP. Then, an interactive algorithm of MP is 
designed accordingly. Numerical examples show that the algorithm can find a satisfactory solution to MP 
with objective weight value adjusted by decision maker. 
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1. Introduction 
 
The interactive algorithm is very efficient in solving 
multi-objective optimization problems of many fields, 
while the penalty function is a very important method in 
solving optimization problems with constraints. Hence, 
based on objective penalty function, we propose an in-
teractive algorithm which provides a versatile tool in 
finding solutions to multi-objective optimization prob-
lems with constraints. In solving multi-objective optimi-
zation problems, the interactive algorithm provides a 
way to adjust objective weight value between the deci-
sion maker and computer, so that solution space is read-
ily understood, which also makes it easier in use and 
more convenient in operation.  

In this paper the following inequality constrained 
multi-objective programming is considered: 
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j J  m

It is good to find out a satisfactory solution to (MP) 
such that all objective values are optimal, but this is ob-
viously difficult in general. Hence, lots of efforts have 
been devoted to this area to find an efficient method, and 

up until now many algorithms are presented [1-11]. 
In 1971, Benayoun et al. firstly presented an interac-

tive algorithm STEM for linear multiobjective program-
ming [1]. Its idea is the first in finding out a solution of 
an ideal value to every objective, obtaining better solu-
tion by improving unsatisfactory objectives value, and 
keeping within concession value of satisfactory objec-
tives. With man-machine conversation, interactive algo-
rithms provide a method to solve MP. There are many 
interactive approaches, as it is not possible for a decision 
maker to know all the objective values of MP. Then 
through interactive algorithms, he may gradually learn 
objective value changes and thus in the interactive pro-
cedure may determine his preferences to objectives. As 
to the dissatisfactory objectives, he may get satisfactory 
solution by modifying some parameters he gives, e.g. the 
ideal objective values and the weights of objectives. 

For example, Geoffrion, Dyer and Feinberg (1972) 
gave an interactive approach to multi-criterion optimiza-
tion, where they defined a non-explicitly criterion func-
tions to show the DM’s overall preference [2]. Zionts 
and Wallenius (1976) also presented a man-machine in-
teractive mathematical programming method, where the 
overall utility function is assumed to be implicitly a lin-
ear function and more generally a concave function of 
the objective functions [3]. Furthermore, Rosinger (1981) 
studied the algorithm which is a modification of the 
steepest ascent method, giving at each iteration a signifi-  
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cant freedom and ease for the decision-maker’s self-ex- 
pression, and requiring a minimal information on his 
local estimate of the steepest-ascent direction [4]. Zionts 
and Wallenius (1983) developed a method for interactive 
multiple objective linear programming by assuming an 
unknown pseudo concave utility function satisfying cer-
tain general properties [5]. Sadagopan and Ravinderan 
(1986) developed several interactive procedures for 
solving multiple criteria nonlinear programming prob-
lems based on the generalized reduced gradient method 
for solving single objective nonlinear programming prob-
lems [6]. Siegfried (1990) presented an interactive algo-
rithm for nonlinear vector optimization problems, after 
solving only two optimization problems [7]. Kassem 
(1995) dealt with an interactive stability of multiobjec-
tive nonlinear programming problems with fuzzy pa-
rameters in the constraints [8]. Aghezzaf and Ouaderh-
man (2001) proposed an interactive interior point method 
for finding the best compromise solution to a multiple 
objective linear programming problem [9]. Abo-Sinna 
and Abou-El-Enien (2006) extended the technique of 
order preference by similarity ideal solution (TOPSIS) 
for solving large scale multiple objective programming 
problems involving fuzzy parameters [10]. Luque, Ruiz 
and Steuer pointed out that many interactive algorithms 
have two main features: 1) they help a decision maker 
(DM) learn about a problem while solving it, and 2) they 
put to work iteratively any new insights gained during 
the solution process to help the DM navigate to a final 
solution [11]. 

It is difficult to define an appropriate utility function 
for MP in the interactive algorithms. By using objective 
penalty functions as utility functions for MP, the paper 
obtains a satisfactory solution, when the decision maker 
is allowed, in the interactive algorithm, to choose another 
weight of objectives for some dissatisfactory objectives 
time and again. So our interactive algorithm has two ad-
vantages: 1) it is able to find out an efficient solution to 
each new MP with better convergence, 2) it can control 
the change of objectives such that a more satisfactory 
solution is obtained. What needs to focus on for the deci-
sion maker is the objective changes. Numerical examples 
show that the proposed interactive algorithm has faster 
convergence effect in Section 3. 

The remainder of this paper is organized as follows. In 
Section 2, we provide results of the penalty problem of 
MP with penalty parameters. In Section 3, we present an 
interactive algorithm to solve the MP. Numerical exam-
ples show that the proposed algorithm has good conver-
gence and can control objective changes by changing 
objective weights. 

2. An Objective Penalty Function 
 
In this section, an objective penalty function of (MP) is 
introduced. 

For (MP), let    max ,0i ig x g x    for i I  and 
define a function  as follows:  1 1:Q R R

2
,0t  maxQ t 

t
. Then Q  is increasing and dif-

ferentiable at any 1R . 
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Theorem 2.1 If x  is an optimal solution to the fol-
lowing problem: 

 0min    s.t. 0f x x X ,          (Pλ) 

and for all j J ,  jM f x , then x  is a Pareto 
efficient solution to (MP). 

Proof. Suppose that x  is not a Pareto efficient solu-
tion to (MP), then there is an 0x X  such that 
   f x f x   and    f x f x  . It follows from the 

assumption that 

   f x M f x M    , , j J 

and there is at least such a  that  j J
   f x M f x M    . Hence, we have  
   0 0f x f x  , which results in a contradiction.  
From Theorem 2.1, we learn that a Pareto efficient 

solution to (MP) can be found out by solving the single 
objective problem (Pλ). Furthermore, the problem (Pλ) 
can be transformed into an unconstrained optimization 
by using nonlinear penalty function, which is defined as: 
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where 0M  . Consider the following nonlinear penalty 
optimization problem: 

  0min , ,    s.t. F x M x X  .       Pλ(M) 

Theorem 2.2 Suppose that M is constant, *
Mx  is an 

optimal solution to Pλ(M), and for all ,  j J
 *

j MM f x . If *
Mx  is a feasible solution to (MP), then 

*
Mx  is a Pareto efficient solution to (MP). 
Proof. Let *x  be an optimal solution to Pλ(M). From 

the given conditions, we have 
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       * * *
0 , , , ,M M

*
0f x F x M F x M f x    . 

Since *
Mx  is a feasible solution to (MP) and *x  is 

an optimal solution to Pλ(M), 0 0M  * *f x f x . So, 
*
Mx  is an optimal solution to Pλ(M). From Theorem 2.1, 
*
Mx  is a Pareto efficient solution to (MP).  
Theorem 2.1 and Theorem 2.2 give a good way to 

solve (MP). The objective parameter M required in 
Theorem 2.2 may exist, as shown in the following exam-
ple. 

Example 2.1 Consider the MP problem: 

   2 2
1 2 1 2

1 2

min , ,

s.t. 0, 0.

f x x x x

x x



   
        (P2.1) 

It is clear that  is a Pareto efficient 
solution to (P2.1) and the objective value is (0, 0). Let’s 
take M < 0, λ1 > 0 and λ2 > 0. Define the penalty func-
tion: 

  * *
1 2, 0,  x x  0
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22
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                     max 0, max 0, .
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x x

     

   
 

It is clear that (x1, x2) = (0, 0) is an optimal solution to 
Pλ(M) [with M < 0].  

It is proved in [13] that the stability of constrained 
penalty function can ensure exactness. So in this paper 
we define the stability of objective penalty function to 
ensure equivalence between Pλ(M) and (Pλ). 

Let a perturbed problem of (Pλ) defined as 

 
 
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s.t.   , , 1, 2, ,i i

f x

x X g x s i m   
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where  1 2, , , Ms s s s  . 
Definition 2.1 For ns R , let x* be an optimal solu-

tion to (Pλ) and *
sx  be an optimal solution to Pλ(s). If 
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

  ,  1 2, , , M s s s s  , then problem (Pλ)  

is called stable for M. 
Theorem 2.3 Let x* be an optimal solution to (Pλ). 

Then, problem (Pλ) is stable for M if and only if x* is an 
optimal solution to Pλ(M). 

Proof. First, if problem (Pλ) is stable for M, it is 
hereby proved that x* is an optimal solution to Pλ(M). 
Assume that x* is not an optimal solution to Pλ(M), then, 
there is some x′ such that  

    * *
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If x′ is a feasible solution to (Pλ), we will get a contra-
diction. Since x* be an optimal solution to (Pλ), we have 
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sx  be an 
optimal solution to Pλ(s′). So, it is clear to have  
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and 

   * * 2
0 sf x f x M s  . 

Hence, the problem (Pλ) is not stable for M. 
Next, let’s prove that the problem (Pλ) is stable for M, 

under the condition that if x* is an optimal solution to 
Pλ(M). Let x*

s be an optimal solution to (Pλ(s)). Since x* 
is an optimal solution to Pλ(M), we have 

    * * 2
0, , *

s i s
i I

F x M f x M g x 



   . 

That is 

   * * 2
0 0 s i

i I

f x f x M s


   . 

We have that problem (Pλ) is stable for M.  
Example 2.2 Consider the problem (P2.1) and its 

(P2.1)(s):  
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 *
1max 0,sx s  , max{0, –s2} is a Pareto efficient 

solution to (P2.1)(s). Let’s take M < 0. Define the penalty 
function: 
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We have that stable condition holds as follows: 
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Based on Theorem 2.2 and Theorem 2.3, we develop 
an algorithm to compute (MP). It solves the problem 
Pλ(M) sequentially and we name it Objective Penalty 
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Function Algorithm of Multiobjective Optimization 
Problem (OPFAMOP for short). 

OPFAMOP Algorithm: 
Step 1: Choose λ > 0, x1, M1 < 0, N > 1 and k = 1. 
Step 2: Take the violation xk as the starting point for 

solving the problem:  min , , k
x X

F x M


. Let xk+1 be an 
optimal solution. 

Step 3: If xk+1 is a feasible solution to (MP) and Mk < 
fj(x

k+1) for all , stop and xk+1 is a Pareto efficient 
solution to (MP). Otherwise, let Mk+1 = NMk, k: = k + 1 
and go to Step 2. 

j J

The convergence of the OPFAMOP algorithm is 
proved in the following theorem. Let 

    0 0, ,k kS L f x Lf x k 1, 2 , 

which is called an L-level set. We say that S(L, f0) is 
bounded if, for any given L > 0, S(L, f0) is bounded. 

Theorem 2.4 Suppose that fj( ) and gi( ij J I ) are 
continuous on Rn, and the L-level set S(L, f0) is bounded. 
Let {xk} be the sequence generated by the OPFAMOP 
algorithm. 

1) If {xk} ( 1,2, ,k   k ) is a finite sequence (i.e., the 
OPFAMOP algorithm stops at the k -th iteration), then 

kx  is a Pareto efficient to (MP). 
2) If {xk} is an infinite sequence and there is some k′ > 

1 such that fj(x
k+1) > Mk( ) for all k > k′, then {xk} 

is bounded and any limit point of it is a Pareto efficient 
to (MP). Otherwise, for some jJ,  as 

. 

j J 

 k
jf x 

k  
Proof. 1) If the OPFAMOP Algorithm terminates at 

the k  th iteration and the second situation of Step 3 
occurs, by Theorem 2.1 and Theorem 2.2, kx  is a 
Pareto efficient to (MP). 

2) Suppose that {xk} is an infinite sequence and there 
is some k′ > 1 such that fj(x

k+1) > Mk( ) for all k > 
k′. Let x' be a feasible solution to (MP). 

j J 

We first show that the sequence {xk} is bounded. Since 
xk is an optimal solution to  min , , k

x X
F x M




, 

    1 1
0 0, ,k k

kf x F x M f x    , . 1, 2,k  

Hence, the L-level set S(f0(x′), f0) is bounded, then the 
sequence {xk} is bounded. Without loss of generality, we 
assume kx x . And, for any 0x X , we have 

     1 2 1
0 00 k k

k i
i I

f x M g x f  



   x , k k   . 
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k
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It is clear that k  as . By letting 
 in the above equation, we obtain  

M   k  
k  

  0j
i I

g x

.f x f x f x f x M k k

 



 





  



  
  




 . Hence,  x  is a feasible solution of (MP)  

and    0 0f x f x . Therefore, x  is Pareto efficient to 
(MP). 
 
3. An Interactive Algorithm 
 
In this section, we propose an interactive algorithm by 
the objective penalty function. There are many ap-
proaches of the MP problem to be transformed into a 
single objective optimal problem, such as a non-explic- 
itly criterion function [2-4,9], nonlinear utility functions 
[5,6], weighting Tchebycheff function [8,9] and TOPSIS 
method [10]. So, our proposed approach is novel. 

According to the OPFAMOP Algorithm, we can select 
 to get an approximate Pareto effi-

cient solution to (MP). 
 1 2, , ,

T

M     

Definition 3.1 A vector x X   is ε-feasible if  

 ig x  , . i I 

Now, we present the following interactive algorithm 
IOPFAMOP based on the OPFAMOP. 

IOPFAMOP: 
Step 1: Choose λ1, x1, ε > 0, N > 1, K > 1 and s = 1. 
Step 2: By using the OPFAMOP Algorithm, compute 

problem Pλ
s(M). 

  Step 2.1: Let M1, k = 1. 
  Step 2.2: Solve the problem:  min , ,s

k
x X

F x M


,to 
get an ε-feasible solution xk. 

  Step 2.3: If k < K, modify the penalty objective 
values Mk+1 = NMk. 

Otherwise, k = K, let xs = xk and go to Step 3. 
  Step 2.4: Let k: = k + 1 and go to Step 2.1. 
Step 3: The decision maker analyzes the objective 

(      1 2, , ,s s
q

sf x f x f x ): if the solution xs is satis-
factory, then stop; otherwise, the decision maker will 
modify the weight values of objective, and go to Step 4. 

Step 4: Deal with all the unsatisfactory objectives fj(x
s) 

as per the following procedure repeatedly: if the decision 
maker wants to increase jth objective value, then a  

0s
j   should be given, then let 1 :s s s

j j     j , if the 
decision maker wants to decrease jth objective value, 
then a 0s

j   should be given, then let  

1 :s s s
j j j     . Finally, let s: = s + 1 and go to Step 2. 
Remark: By Theorem 2.4, we may get an approxi-

mate Pareto efficient solution to (MP) in Step 2. Hence, 
using the above interactive algorithm, we may, after 
many interactive steps, obtain satisfactory objective val-
ues by modifying weight λi, as shown in Examples 3.1 to 
3.3. 

It is well known that each interactive sub-problem 
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

need solve constrained optimization problem in the ex-
isted approach [1-11], but each interactive sub-problem 
in our approach only need solve unconstrained optimiza-
tion problem.  

We apply the above interactive algorithm IOPFAMOP 
to two examples programmed by Matlab6.5. The aim of 
numerical examples is to check the convergence of the 
interactive algorithm IOPFAMOP and control the 
changes of objective. 

Example 3.1 Consider the following linear program-
ming problem: 

  1 2 1 2 1 2

1 2

1 2

min , 2 , 4

s.t.   2 3 6

       0, 0

f x x x x x x

x x

x x

    

 
   

   (P4.1) 

We wish to find out a solution such that every objec-
tive function value is close to each other. 

Let penalty function 

   
  

   

1 2 1 1 2

2
2 1 2 1 2

2 2
1 2

, ; , 2

          4 max 2 3 6,0

          max ,0 max ,0 .

F x x M Q x x M

Q x x M M x x

M x M x

 



   

      

   

  

Let M1 = –10, N = 4, K = 3, error of an approximate 
solution (x1, x2): 

   *s
j s

i I

e x g x



  , 

then different approximate solutions (x1, x2) are obtained 
by selecting different (λ1, λ2) (as shown in Table 3.1). 

Remarks for Table 3.1 
Step 1: The decision maker (DM) first takes a weight 

value .    1 1
1 2, 0.5,0.5

T  
By the interactive algorithm, the DM obtains the ob-

jective function value  1 1
1 2, f x x  = (–4.068164,  

–5.414795) at approximate solution  1 1
1 2, x x  =  

(1.551123, 0.965918). Because the second objective 
value f2 is less than the first objective value f1, the DM 
will improve weight value λ1 in the Step 2. 

Step 2: Then, the DM takes a second weight value 
. By the interactive algorithm, the 

DM obtains the objective function value 
  2 2

1 2, 0.6,0.5
T   

 2 2
1 2,f x x  = 

(–4.570135, –4.787331) at approximate solution  
 2 2

1 2, x x  = (1.927601, 0.714933). In order to decrease 
the first objective value f1, the DM still need to improve  

Table 3.1. Numerical results for (P4.1). 

s  1 2,

weight value λ1 in the next step. 
Step 3: Then, the DM takes a third weight value  

  3 3
1 2, 0.7,0.5

T    . By the interactive algorithm, the 
DM obtains the objective function value  3 3

1 2,f x x  = 
(–4.935736, –4.330330) at approximate solution  
 3 3

1 2,x x = (2.201802, 0.532132). This time, the DM need 
to decrease weight value λ1 in the next step. 

Step 4: Then, the DM take a forth weight value  
  4 4

1 2, 0.63,0.5
T    . By the interactive algorithm, the 

DM obtains the objective function value  4 4
1 2,f x x  = 

(–4.692437, –4.634454) at approximate solution  
 4 4

1 2,x x  = (2.019328, 0.653781). Then, the DM is satis-
fied with the approximate solution, and wishes to stop. 

Example 3.2 Consider the problem: 

   1 2 1 2 1 2 1 2

4 3 2
2 1 1 1

4 3 2
2 1 1 1 1

1

2

min , 2 , 2 , ,

s.t.   2 8 8 2,

       4 32 88 96 36,

       0 3,

       0 4.

f x x x x x x x x

x x x x

x x x x x

x

x

     

   

    
 
 

 (P4.2) 

Let penalty function 

   
 
 
 
 
 

2

1 2 1 1 2

2

2 1 2

2

3 1 2

2 4 3 2
2 1 1 1

2 4 3 2
2 1 1 1 1

2 2
1

, ; , max 2 ,0

            max 2 2 ,0

            max ,0

            max 2 8 8 2,0

           max 4 32 88 96 36,0

            max ,0 m

F x x M x x M

x x M

x x M

M x x x x

M x x x x x

M x M

 





  

   

   

    

     

    
   

2

2 2
1 2

ax ,0

            max 3,0 max 4,0

x

M x M x



   

 

Let M1 = –1, N = 2, K = 3, error of an approximate so-
lution (x1, x2): 

   *s j s
i I

e x g x



  , 

then we get numerical results for s = 6 in Table 3.2. 
In Table 3.2, from s = 1 to s = 3, the second objective 

value 2
sf  improves from –2.109783 to –2.555347. Now, 

the DM wishes to find a solution such that three objec-
tives are as small as possible with the second objective 
less than –2.4, and the first objective less than –2.5. Then, 
when s = 4, 5, 6, the first objective value 1

sf  improves 
from –2.111084 to –2.549624. So, the summing of ob-
jective values from 1

sf  to 3
sf  improves from  

–9.585379 to –9.920799. And finally, the DM gets a sat-
isfactory solution  66

1 ,

s s   e(xs)  1 2,s sx x   1 2,s sf f  

1 (0.50, 0.50) 0.00 (1.551123, 0.965918) (–4.068164, –5.414795)

2 (0.60, 0.50) 0.00 (1.927601, 0.714933) (–4.570135, –4.787331)

3 (0.70, 0.50) 0.00 (2.201802, 0.532132) (–4.935736, –4.330330)

4 (0.63, 0.50) 0.00 (2.019328, 0.653781) (–4.692437, –4.634454)

2x x  = (2.457059, 2.503341) . 
Example 3.3 Consider the problem: (Illustrative ex-

mple in [11]) a           
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Table 3.2. Numerical results for (P3.2). 

s  1 2 3, ,s s s    e(xs)  1 2,s sx x   1 2 3, ,s s sf f f  

1 (0.50, 0.50, 0.50) 0.00 (2.417748, 2.725713) (–3.033678, –2.109783, –5.143461) 

2 (0.50, 0.60, 0.50) 0.00 (2.443024, 2.583925) (–2.724826, –2.302124, –5.026949) 

3 (0.50, 0.70, 0.50) 0.00 (2.475504, 2.395661) (–2.315818, –2.555347, –4.871165) 

4 (0.55, 0.70, 0.50) 0.00 (2.491432, 2.301258) (–2.111084, –2.681605, –4.792690) 

5 (0.60, 0.70, 0.50) 0.00 (2.475939, 2.393096) (–2.310252, –2.558783, –4.869035) 

6 (0.65, 0.70, 0.50) 0.00 (2.457059, 2.503341) (–2.549624, –2.410776, –4.960400) 

 

     
    

2 2 2 2
1 2 3

2 2 2
5 6 7

2 3 4 5

2 2
1 2

1 3

2 4

1 2 5 7 8

2 2
7 8

1 2 5 6

min 2 2 3 , 2 ,

                  2 5 1 ,3 ,

s.t.   2,

       5,

       0,

       0,

       2 0,

       8,

       , , , 0,

  

   
    
   

2 2 2 2
7 8 1

2 2 2
2 5

2 2
3 8

 max 8,0 max ,0

max ,0 max ,0 max ,0

 max 1 ,0 max 0.5 ,0 .

M x x M x

M x M x M x

M x M x

   

  

   

4

8

f x x x x x

x x x x

x x x x

x x

x x

x x

x x x x x

x x

x x x x

    

   

   

 
 

 
    

 


3 8     1, 0.5.x x 

 (P4.3) 

6  

Let M1 = –1, N = 4, K = 5, error of an approximate so-
lution x: 

   *s j s
i I

e x g x



  , 

then we get numerical results for s = 6 in Table 3.3. 

Let penalty function 

     
 
    

 
 
 
 

22 2

1 1 2

22 2
2 3 4

22 2

3 5 6

22
4 7 8

2
2 3 4 5

2
2 3 4 5

2 2 2 2
1 2 1

; , max 2 2 3 ,0

       max 2 ,0

       max 2 5 1 ,0

       max 3 ,0

       max 2,0

       max 2,0

       max 5,0 max

F x M x x M

x x M

x x M

x x M

M x x x x

M x x x x

M x x M x

 







    

  

    

  

    

     

     
 
 


3

2
2 4

2
1 2 5 7 8

2
1 2 5 7 8

,0

       max ,0

       max 2 ,0

       max 2 ,0

x

M x x

M x x x x x

M x x x x x

 

    

     



In Table 3.3, when s = 1, 2, the second objective value 

2
sf  and the fourth objective value 4

sf  improves from 

2
sf  = 9.808986 and 4

sf  = 8.310570 to 2
sf  =  

7.674058 and 4
sf  = 4.762737. From s = 3 to s = 4, the 

first objective value 1
sf  and the second objective value 

2
sf  improves from 1

sf  = 7.480056 and 2
sf  =  

6.965056 to 1
sf  = 6.844538 and 2

sf  = 6.563474. The 
DM wishes to keep the four objective values  
 2 1 3 4, , ,s s s sf f f f  less than (7, 7, 13, 5).  

For s = 6, the DM obtains the four objective values 
 2 1 3 4, , ,s s s sf f f f  = (6.292457, 6.723388, 12.731173,  
4.799065), with the summing of the four objective values 
being 30.546081. In the iteration 3 of Mariano [11], they 
obtained four groups   

 2 1 3 4, , ,s s s sf f f f : = {(7.06, 7.04, 12.75, 4.16);  

                (6.74, 7.26, 12.13, 4.43);  
                (6.72, 6.91, 13.12, 4.27);  

                 (6.61, 7.03, 12.76, 4.39)} 



with the sums of the four objective values being 31.01; 
30.56; 31.02; 30.79 respectively, and the DM chooses 
(7.06, 7.04, 12.75, 4.16). 

Table 3.3. Numerical results for (P3.3). 

s  1 2 3 4, , ,s s s s     e(xs)  1 2 3 4, , ,s s s sf f f f  1 2 3 4

s s s sf f f f    

1 (0.50, 0.50, 0.50, 0.50) 0.00 (4.110485, 9.808986, 5.093159, 8.310570) 27.323199 

2 (0.50, 1.00, 0.50, 1.00) 0.00 (7.215821, 7.674058, 9.779637, 4.762737) 29.432253 

3 (0.50, 1.50, 0.50, 1.00) 0.00 (7.480056, 6.965056, 11.862982, 4.244595) 30.552688 

4 (0.60, 1.50, 0.50, 1.00) 0.00 (6.844538, 6.563474, 13.309395, 4.335055) 31.052463 

5 (0.60, 1.50, 0.55, 1.00) 0.00 (6.774419, 7.179232, 11.202925, 4.755234) 29.911810 

6 (0.60, 1.60, 0.55, 1.00) 0.00 (6.292457, 6.723388, 12.731173, 4.799065) 30.546081     
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4. Conclusions 
 
In this paper, using the nonlinear penalty function method 
with objective parameters, we present an interactive al-
gorithm to solve the multi-objective programming with 
inequality constraints. With this algorithm, we can read-
ily find out a satisfactory solution. When objective pa-
rameter M is increased, we may obtain a stable solution, 
but unsatisfactory. Then, by adopting different weights in 
the algorithm, we can go on interacting with computer 
and get many approximate different solutions, among 
which we can choose a satisfactory one. By the objective 
penalty function, new algorithms for multiobjective pro-
gramming and bilevel multiobjective programming de- 
serve further study. 
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