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Abstract 
 
This research presents a problem relevant to production scheduling for mixed models—production schedules 
that contain several unique items, but each unique item may have multiple units that require processing. The 
presented research details a variant of this problem where, over multiple processes, re-sequencing is permit- 
ted to a small degree so as to exploit efficiencies with the intent of optimizing the objectives of required set- 
ups and parts usage rate via an efficient frontier. The problem is combinatorial in nature. Enumeration is 
used on a variety of test problems from the literature, and a search heuristic is used to compare optimal solu- 
tions with heuristic based solutions. Experimentation shows that the heuristic solutions approach optimality, 
but with opportunities for improvement. 
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1. Introduction 
 
Sequencing has been a popular topic in production re- 
search for as long as production research has been in 
existence. Typically, sequencing is done such that some 
objective associated with operational performance is 
optimized. Typically, these objectives involve entities 
such as labor use, in-process inventories, and flexibility.  
 
1.1. Setups and Usage Rate 
 
Of interest here are two objectives: one objective is con- 
cerned with minimization of setups, the other is con- 
cerned with stability of materials usage. The first object- 
tive is easily understood, while the second is less under- 
stood. The stability of materials usage is a matter of 
concern to those involved with lean manufacturing sys- 
tems involving multiple quantities of each unique item 
requiring processing. Scenarios where items require 
processing when there are multiple units of each unique 
item are frequently referred to as mixed models. Manu- 
facturing systems such as this desire some progression of 
each item’s processing in proportion to the demand of 
the item of interest. A metric associated with the stability 
of materials usage was contributed by the seminal work 
of Miltenburg [1]. Miltenburg also contributed algo-
rithms concerned with obtaining production sequences to 

minimize the material usage rate. To illustrate the princi- 
ple of mixed model sequencing, consider a simple exam- 
ple where it is required to process four units of item A, 
two units of item B and one unit of item C. One possible 
sequence is as follows:  

AAAABBC               (S1) 

The sequence above does not accomplish the objective 
of stabilizing material usage. All of the As are process, 
followed by the Bs, finishing with the Cs. The Milten- 
burg metric is optimized when the items are scrambled 
such that the presence of each item’s sequence positions 
is proportional to its demand.  The following sequence 
is more desirable with the material usage rate is consid-
ered: 

ABACABA               (S2) 

In layman’s terms, one may better understand the need 
for stabilizing the material usage rate with a variant to 
this example.  Imagine a scenario where demand is am- 
plified by a factor of 1000 and that units A, B and C are 
needed by a customer for assembly (1000 assemblies 
required). Each single assembly requires four of A, two 
of B and one of C. One option is to employ a form of S1 
above—producing 4000 of A, then 2000 of B and fi- 
nally 1000 of C—a production sequence of 7000 mem- 
bers. Now imagine a disaster (a power outage, for exam- 
ple) halfway through the sequence—only 3500 units of 
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A were produced. This disaster leaves the customer un- 
able to assemble any of the 1000 demanded units—a 
death blow to the intentions of JIT/lean systems. On the 
other hand, consider employing S2 1000 times and the 
same disaster occurs halfway through the sequence. 
When S2 is employed, the customer is still able to com- 
plete 3500 assemblies, which are 3500 assemblies more 
than when the S1 approach is employed. 

While S2 has its advantages over S1 in terms of stabil- 
ity of material usage, it also has a major drawback—it 
results in many setups, frequently changing over from 
one unique item to another. S1 is superior to S2 in terms 
of setups. In fact, the two objectives of concern here are 
in conflict with each other—they are inversely correlated 
[2,3]. This is a common affliction for those interested in 
multiple-objective optimization [4]. Given the tradeoff 
between the number of setups and the stability of mate- 
rial usage, there is motivation to find sequences that pro- 
vide desirability in terms of both objectives. In fact, 
multi-objective optimization problems are rife with con- 
flicting objectives [5]. 
 
1.2. Sequencing and Limited Re-Sequencing 
 
When multiple processes are required for a production 
problem, one can conceivably consider the situation an 
opportunity for improving the schedule from process to 
process. This “improving” the schedule can come in the 
form of re-sequencing. In this context, re-sequencing 
suggests making adjustments to the sequence prior to 
each process. In reality, these adjustments would typi- 
cally be minor in nature, as physical limitations would 
prevent any re-sequencing to a large degree. As such, the 
re-sequencing associated with this research effort is con- 
sidered limited re-sequencing. The work of Lahmar and 
Benjaafar [6] describes how physical buffers dictate the 
degree of re-sequencing that is feasible. Their work pre- 
sents techniques to find desirable sequences, and is ap- 
plied to automotive industry applications.  

As stated by Lahmar and Benjaafar [6], physical space 
availability dictates buffering ability, and subsequently 
the degree of re-sequencing that is feasible. For this re- 
search effort, it will be assumed that there is buffer space 
available to permit re-sequencing of only one item in the 
sequence. This means that one item is permitted to be 
taken out of the sequence and reinserted into a later part 
of the sequence. Figure 1 provides a numerical example 
of a feasible re-sequencing: 

Here, item A, the first item in the sequence, is taken  
 

AABB|CC (Initial Sequence) 
ABBACC (New Sequence) 

Figure 1. A feasible re-sequencing. 

out of sequence, and later re-inserted. It is pushed back 
in the sequence. Meanwhile, the intervening items in the 
sequence move forward one position because of item A 
being pushed back. Figure 2 shows another type of fea- 
sible sequence: 

Here, item A is pushed back, as is item B. Despite 
multiple pushbacks, this scenario is still feasible, as the 
buffer space of one unit is never exceeded. Furthermore, 
notice that none of the items have moved up more than 
one position in the sequence. Figure 3 shows an illustra- 
tion of an infeasible re-sequencing:  

This particular sequence is not permitted. The reason 
for this is because the buffer capacity of one unit would 
be exceeded. The first two items in the sequence would 
be held in buffer at the same time, which is not permitted. 
Another indication as to the infeasibility of this sequence 
is that the first item C would have move forward two 
positions in the sequence, which is not permitted, given it 
exceeds the buffer size of one. 
 
1.3. Multiple Processes and Combinatorial  

Difficulties 
 
For some number of processes, limited re-sequencing 
can be performed. For three processes, for example, there 
are three opportunities for re-sequencing. For each proc- 
ess, there is some number of re-sequencing possibilities. 
This number of re-sequencing possibilities is equal to the 
number of feasible re-sequencing possibilities associated 
with the original sequence. In this context, the original 
sequence is referred to as the parent sequence, and the 
re-sequenced sequence is referred to as the child se- 
quence. For example, consider a scenario where two 
units of A are demanded, one unit of both B and C are 
demanded. From this demand pattern, the trivial se- 
quence of AABC is constructed. AABC is considered the 
parent sequence for this example. This parent sequence 
has 4P2,1,1 = twelve feasible permutations, or sequences. 
Of these twelve permutations, there are only four which 
are considered feasible in terms of the limited re-se- 
quencing with a buffer size of one unit. These sequences 
are AABC, AACB, ABAC, and ABCA. In the context of 
the description above, these can be considered child se- 
quences. Note that the AABC sequence is essentially a 
direct mapping of its parent sequence. For the next  
 

AAB|BC|C (Initial Sequence) 
ABACBC (New Sequence) 

Figure 2. A feasible re-sequencing with two pushbacks. 

ABC|AAB|BC (Initial Sequence) 
CAABBC (New Sequence) 

Figure 3. An infeasible re-sequencing. 
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process, the four child sequences of AABC, AACB, 
ABAC and ABCA can be thought of a parent sequences, 
and their child sequences could be generated. Figure 4 
shows a tree diagram of limited re-sequencing through 
two processes for the initial sequence of AABC.  
(www. joydivisionman.com/AJOR1/Figure4.html).  

One will notice from Figure 4 that even for a small 
sequence, there are many feasible re-sequences as the 
number of processes increase. For this particular exam- 
ple, there is one sequence at the 0th level, four at the first 
level, and twenty-one at the second level. These twenty- 
one sequences at the second level suggest that there are 
twenty-one unique re-sequencing opportunities from the 
original sequence through two processes. Also included 
in Figure 4 is the number of cumulative setups (S) and 
usage rate (U) through the appropriate number of proc- 
esses. Calculation of the setups (S) and usage rates (U) is 
detailed in the next section.  

Problems of this type, in the language of data struc- 
tures, can be thought of as tree traversal problems. Each 
feasible re-sequence can be thought of as a node, and 
each of the individual required processes can be thought 
of as levels. Also similar to tree traversal problems in 
data structures, the problem presented here can be 
thought of as intractable from a combinatorial perspec- 
tive.  
 
1.4. Multiple Objectives and Efficient Frontier 
 
As mentioned in Section 1.1, there are two objectives of 
interest here, minimization of setups and minimization of 
the material usage rate. It was also mentioned that these 
two objectives are inversely related to each other. As 
such, to obtain sequences which are desirable in terms of 
both objectives, some sacrifices must be made. One 
could employ composite objective functions where each 
individual objective is weighted according at the re- 
searcher’s discretion. This weighting scheme, however, 
is not desired for this research. Here, it is desired to 
avoid weighting schema and exploit an efficient frontier. 
Exploitation via an efficient frontier is well-suited for 
this type of problem because one of the objectives (set- 
ups) displays a variation of a discrete nature. The other 
objective (usage rate) displays a variation of a continu- 
ous nature. Given these circumstances, one can be moti- 
vated to find sequences that minimize the usage rate for 
each feasible number of associated setups [7]. Figure 5 
shows an efficient frontier through nine processes for the 
example problem. The line represents the minimum us- 
age rate for each associated number of setups. For this 
example problem, there were 6,651,536 nodes traversed 
through the nine levels. 5,542,861 of these nodes were 
on the ninth level. Of these 5,542,861 nodes, there are  

 

Figure 5. Efficient frontier through nine processes for ex-
ample problem. 

ten unique numbers of setups. For each of these numbers 
of setups, the minimum usage rate is plotted. 

The usage rates associated with the numbers of setups 
that are not minima are not shown here—the sequences 
with these usage rates are considered inferior to those 
that are on the efficient frontier. It is, of course, desired 
to capture the sequences that comprise the efficient fron- 
tier. 
 
1.5. Presented Research and Its Contributions 
 

The research presented here is an extension of Lahmar 
and Benjaafar’s earlier work [6]. While their work con- 
centrates on minimization of changeover cost, the re- 
search presented here treats re-sequencing in a more 
generalized format, and recognizes the issues which are 
critical to the success of JIT/lean implementations, nota- 
bly the number of setups required for each sequence and 
its material usage rate [1]. Obtaining the efficient frontier 
is the chosen approach to this multiple objective problem. 
Unfortunately, obtaining an efficient frontier for prob- 
lems of any realistic size is difficult—Figure 4 illustrates 
this unpleasant reality for a very small problem. Even 
with the high-speed computing resources that are avail- 
able today, obtaining these efficient frontiers is prohibi- 
tive from both a CPU and memory standpoint. As such, 
obtaining optimal solutions for large-scale problems is 
not practical, and therefore desirable solutions must be 
obtained via search heuristics. 

It is also important to emphasize the value of re-se- 
quencing in general. One can make the argument that 
any permutation of demand could be used for all proc- 
esses. This is true, but there are disadvantages to this. 
Consider the example above. The associated permute- 
tions permit either three or four setups. If either of these 
options is employed for the nine processes in the exam- 
ple, there would be either (27) or (36) setups in total—no 
intervening number of setups would be possible. With re- 
sequencing, however, all numbers of sequences between 
(27) and (36) are possible, greatly adding flexibility to 
those concerned with finding schedules satisfactory with 
respect to multiple objectives. This point is considered a 
major contribution of this effort. 

Copyright © 2011 SciRes.                                                                                AJOR 
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For this research, problem sets from the literature, 
along with some new problem sets, are used to perform 
limited re-sequencing with respect to the objectives of 
setups and usage rate through multiple processes. Opti- 
mal solutions via complete enumeration are obtained. 
These solutions are used as benchmarks for comparison 
to solutions obtained via the search heuristic of simulated 
annealing. General conclusions and observations are 
provided as well. 
 
2. Methodology 
 
Prior to presentation of the methodological details, as- 
sumptions of the problem in general are detailed: 
 Changeover times between differing items are con- 

sidered non-negligible. This assumption is common 
for past research efforts considering both setups and 
usage rates [2]. 

 The effort required to place a unit in buffer for later 
insertion into the sequence is considered negligible. 

For a detailed presentation of the mathematical pro- 
gramming model the following variables, parameters and 
definitions are provided: 
 
Item Description 

Decision Variable 

xijq 
1 if item j is present in the ith position of the sequence, for the qth 
process; 0 otherwise 

Endogenous Variable 

yijq 
total units of item j placed in sequence through i sequence posi-
tions, for the qth process 

Parameters 

n number of items to be sequenced 

m number of unique items to be sequenced 

p number of processes required 

dj demand of item j 

Indices 

i Index for n ( 1, ) 2, ,i n 

j Index for m ( 1 ) , 2, ,j m 

q Index for p ( 1 ) , 2, ,q p 

 
2.1. Minimal Sequences for Associated Number 

of Setups 
 
Miltenburg’s seminal effort quantified what is now re- 
ferred to as the material usage rate. This metric is essen- 
tially an aggregated difference between has been se- 
quenced and what should have been sequenced through 
all n sequence positions. For this research effort, the 
metric is modified to consider multiple processes and the 

number of setups associated with the sequence of inter- 
est: 

Min 

  2

1 1 1

p n m

ijq i
q i j Setups

Usage y i d n
  

 
  

 
  ,   (1) 

where  

1,
1 2 1

1 1
p n m

ijq i jq
q i j

setups x x 
  

   
         
    ,    (2) 

and  

 1,
1

i

ijq kjq k jq
k

y x x 


   ,j q,         (3) 

Subject to:  

0 0jqx  ,               (4) ,j q

1

n

ijq j
i

x d


 ,             (5) ,j q

1

1
m

ijq
j

x


 ,              (6) ,i q

Equation (1) seeks to minimize the usage rate associ- 
ated with the number of setups from the resultant se- 
quence. The number of setups from the associated se- 
quence is determined via (2). Both of these metrics are 
summed through all p processes. Equation (3) relates the 
endogenous variable yijq to the decision variable xijq. The 
first constraint in (4) initializes the decision variables to 
zero for the 0th position in the sequence. The constraint in 
(5) forces the decision variables to yield sequences con- 
sistent with the pre-determined item demand. The con- 
straint in (6) guarantees that each sequence position con- 
tain exactly one item. 
 
2.2. Problems with Objective Function 
 
There are some features associated the above model that 
prevent one from obtaining optimal solutions via mathe- 
matical programming approaches. First, both Equations 
(1) and (2) are nonlinear and discontinuous in nature, 
which complicate the success of a mathematical pro- 
gramming approach [8]. Second, there are two objective 
functions (setups and usage) which further complicate 
finding an optimal solution.  
 
2.3. Enumerative and Heuristic Approaches 
 
With the complexities associated with the formulation 
above, other measures must be taken to capture the effi- 
cient frontier that is desired. Enumeration can be used, 

Copyright © 2011 SciRes.                                                                                AJOR 
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similar to that shown in Figure 4. Unfortunately, enu- 
meration is not computationally feasible for large prob- 
lems from both a CPU and memory standpoint—prob- 
lems of this type are rigorous from a combinatorial 
standpoint to a very large degree. For small problems, 
enumeration is effective in capturing the optimal effi- 
cient frontier. 

For larger problems, search heuristics can be used— 
algorithms used to obtain desirable, although not neces- 
sarily optimal solutions with a reasonable degree of 
computational effort. There are many search heuristics 
available to the research, but simulated annealing is used 
for this particular effort. 
 
2.4. Simulated Annealing Heuristic 
 
Simulated annealing [9,10] is the search heuristic used 
for this research. It is acknowledged that there are many 
search heuristics available for finding desirable solutions 
to combinatorial optimization problems with a reason- 
able computational effort. Genetic Algorithms [11], Tabu 
Search [12] and Ant Colony Optimization [13] are just a 
few. Choosing the “best” search heuristic for this type of 
problem is beyond the scope of the paper, and this point 
is emphasized later as an opportunity for subsequent re- 
search. The following subsections detail the steps associ- 
ated with the search heuristic for the problem of interest. 
 
2.4.1. Initialization (Step 0) 
The first step in the heuristic is to initialize all of the pa- 
rameters to appropriate values. The relevant parameters 
are shown below: 
 

Parameter Description 

T1 Initial temperature 

TF Final temperature 

T Current temperature 

Iter Iterations for each temperature level 

CR Cooling rate 

kB Boltzman constant 

 
Relevant variable values which are endogenous (de- 

termined by the search heuristic) are defined as follows: 
 

Variable Description 

UsageT[Setups] Usage for test solution with Setups 

UsageC[Setups] Usage for current solution with Setups 

UsageB[Setups] Usage for best solution with Setups 

 Relative inferiority of test solution 

PA Probability of accepting inferior solution 

 
An initial sequence is chosen. For this research, the 

“trivial” sequence is always used for initialization. The 
“trivial” sequence assumes that all item A units will be 
placed at the beginning of the sequence, all item B units 
are next, etc. The value of the q index is set to zero. Us- 
ageC[Setups] and UsageB[Setups] are initialized to very 
high values for all possible values of Setups. T is initial- 
ized to T1. 
 
2.4.2. Modification (Step 1) 
Modification is performed in a fashion identical to that 
shown in Figure 1. Single “pushbacks” are used for the 
presented heuristic. The targeted item and its new 
“pushback” location are both chosen randomly according 
to a uniform probability distribution. The resultant se- 
quence in process q is the parent sequence for process q 
+ 1. In the spirit of the example problem shown in Fig- 
ure 4, here’s an example of modification through four 
processes. 
 

Process: q = 0 q = 1 q = 2 q = 3 q = 4 

Seq. AABC ABAC ABCA BACA BAAC

 
Note how that for each subsequent process, an item 

never moves forward more than one position in the se- 
quence—this is the enforcement of the constraint re- 
stricting the buffer size to one. 
 
2.4.3. Objective Function (Step 2) 
After modification is performed for all p processes, the 
number of Setups and Usage rates are determined ac- 
cording to Equations (1) and (2). Continuing with the 
example above, Setups and Usage values through each of 
the four processes are as follows: 
 
Proc.(q): 0 1 2 3 4 

Seq: AABC ABAC ABCA BACA BAAC 

S/U: N/A 4/1.75 4/1.25 4/1.75 3/2.25 

S/U N/A 4/1.75 8/3.00 12/4.75 15/7.00 

 
The most important values associated with these p 

modifications are the cumulative Setups and Usage val- 
ues for the pth process. This is considered the objective 
function value. For this example, the four modifications 
resulted in a Usage rate of 15.00 for the (15) associated 
Setups. Again, it is desired to minimize the Usage rate 
for each associated number of Setups. This usage rate is 
referred to as UsageT[Setups]. 
 
2.4.4. Comparison (Step 3) 
The desirability of the objective function is compared to 
that of the current solution via their Usage rates associ- 
ated with their Setups. If the Usage rate for the test solu- 
tion is less than that of the current solution, the test solu- 
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tion replaces the current solution. If the Usage rate for 
the test solution is less than that of the best solution, the 
test solution replaces the best solution. 

Otherwise, the Metropolis criterion for replacing a 
current solution with one having relative inferiority is 
explored [8,9,14]. The relative inferiority of the test so- 
lution is computed via the following: 

   
 

T C

C

Usage Setups Usage Setups

Usage Setups



     (7) 

The probability of accepting this relatively inferior 
solution is determined as follows: 

expAP k  B T             (8) 

A random number on the (0, 1) interval is generated 
according to a uniform distribution. If this value is less 
than PA, the relatively inferior test solution replaces the 
current solution. Otherwise, the current solution remains 
current. 
 
2.4.5. Incrementation (Step 4) 
Steps 1 through 3 are repeated Iter times. After Iter times, 
the current temperature is adjusted according to the fol- 
lowing relation: 

T T CR                 (9) 

This pattern continues while T exceeds TF. 
 
2.4.6. Completion (Step 5) 
When the value of T no longer exceeds TF, the search 
heuristic stops, and the efficient frontier values (UsageB 
[Setups]) are reported. 
 
2.4.7. Pseudocode 
The steps below show the steps of this heuristic in pseu- 
docode: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3. Experimentation 
 
To measure the performance of the heuristic methodol- 

ogy presented, several test problems are used to compare 
optimal solutions via enumeration to those found via the 
heuristic. Some of these test problems are from the lit- 
erature [15]; some are new with this research. These 
problem sets are listed in the Appendix.   
 
3.1. Performance Measures 
 
The overall measure of performance is essentially two- 
fold. The first measure of performance is classified as 
relative inferiority—the degree to which the efficient 
frontier associated with the heuristic search is above, or 
inferior to, the efficient frontier obtained via enumeration. 
The second performance measure is the number of fron- 
tier voids—the frequency of the efficient frontier (ob- 
tained via the heuristic) not providing a specific solution 
yielding a number of setups yielded by the optimal solu-
tion (obtained via enumeration). It is, of course, desired 
that the relative inferiority and the number of frontier 
voids both be minimized. 

Figure 6, an extension of Figure 5, shows an example 
of the original efficient frontier, alongside a hypothetical 
efficient frontier obtained via the simulated annealing 
heuristic. 

From this illustration, one will note that the efficient 
frontier obtained via the heuristic can only equal, never 
surpass, the optimal heuristic obtained via enumeration. 
The relative inferiority of the efficient frontier obtained 
via the heuristic approach is the average degree to which 
it is above the optimal frontier. The value of this per- 
formance measure is straightforward when the following 
notation is used: 
 

Notation Definition 

UsageOptimal[Setups] Usage rate for optimal solution with Setups 

UsageSA[Setups] Usage rate for heursitc solution with Setups 

MinS Minimum number of setups 

MaxS Maximum number of setups Initialize(); 
while(T > TF){ 
  for(h = 1; h <= Iter; h++){ 
  modification(); 
  determineObjectiveFunction(); 
  if(UsageT[Setups] < UsageC[Setups]){ 
    replaceCurrent(); 
  if(UsageT[Setups] < UsageB[Setups]) 
    replaceBest();} 
  else testMetropolisCriterion();} 
T = T*CR;} 
reportEfficientFrontier(); 

 
The relative inferiority of the heuristic solution can 

then be determined via the following: 

 
   

 
max

min

1
. .

1 max min

                
S

SA Opt

i S Opt

Rel Inf
S S

Usage i Usage i

Usage i


 




   (10) 

For this example, the relative inferiority of the heuris- 
tic solution is 4.90%. 

To illustrate the concept of frontier voids, another 
variant of Figure 5 is presented via another hypothetical 
heuristic solution to the original problem shown in Fig- 
ure 7.  
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Figure 6. Efficient frontiers obtained via enumeration and search heuristic. 

 

Figure 7. Example of one frontier void. 

For this example, there is one frontier void—the heu- 
ristic did not find a solution associated with (34) setups. 
The relative inferiority associated with this solution is 
calculated the same way as described above, except that 
the frontier void statistics are omitted from the calcula- 
tion, resulting in a denominator decrease equal to the 
number of frontier voids—in this case (34) Setups and 
the Usage rate of 13.25, resulting in a relative inferiority 
of 4.82%. 

frontier so that a comparison can be made to optimal. 
The parameters used for the simulated annealing search 
are adjusted according to problem size, so that the search 
is proportional to the number of nodes encountered via 
enumeration. 
 
3.3. Computational Experience 
 
The capturing of the optimal efficient frontier via both 
enumeration and simulated annealing was done via pro- 
grams written with the Java Development Kit, version 
1.6.02 and executed on the Microsoft Vista operating 
system with an AMD Turion 64 × 2 processor. CPU 
times for the enumeration effort are reported in the re-
sults section. CPU times for the simulated annealing 
heuristic effort were not of consequence and are not re-
ported. The number of nodes associated with the enu-
merative search is reported in the results section, as this 
measure discloses how much memory is required for the 
traversal of the search tree.  

 
3.2. Problem Size 
 
As stated earlier, the problem sets used are detailed in the 
Appendix. For each unique problem, multiple processes 
are explored, from as few as p = 2 to as large as p = 10. 
From Figure 4, there were only p = 2 processes used. 
The more processes used, the more rigorous the search. 
Across all problem sets and ranges of processes, there 
are (90) total problems studied. Table 1 details the range 
of depth used for the various problem sets. 

For each of the (90) problems studied, the optimal ef- 
ficient frontier is captured via enumeration. The simu- 
lated annealing heuristic is then used to find the efficient  

It is also noted here that the simulated annealing heu- 
ristic parameters of iterations (Iter), cooling rate (CR) 
and the Boltzman constant (kB) were determined for each 
test problem in a manner proportional to the total number 
of nodes. Specifically, these three parameters were cho- 
sen so that the simulated annealing heuristic search space 
was 10% of the size of the total number of nodes. 

Table 1. Depth of re-sequencing problems. 

Problem Set Range of Processes (p) 

A0 p = 2, p = 10 

A1 p = 2, p = 4 

A2 p = 2, p = 4 

A3 p = 2, p = 4 

A4 p = 2, p = 6 

A5 p = 2, p = 9 

 
4. Experimental Results 
 
Tables 2(a)-(f) (http://www.joydivisionman.com/AJOR1/ 
Table2.html) show the performance results of the six 
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problem sets used for this research. Nodes is the number 
of sequences encountered in the enumerative search tree. 
CPU Time (in minutes) the length of time the CPU spent 
finding the optimal solution via enumeration. Inferiority 
is the degree to which the heuristic was inferior to the 
optimal solution. Voids depicts the number of times that 
the heuristic search failed to find a solution correspond- 
ing with the number of setups for the optimal solution.  
 
4.1. Results for Problem Sets 
 
Tables 2(a)-(f) are available on the internet via  
www.joy-divisionman.com/AJOR1/Table2.html. 
 
4.2. Interpretation of Results 
 
For the (90) problems studied, the simulated annealing 
heuristic provided a solution that was, on average, 3.74% 
above (or inferior to) the optimal solution obtained via 
enumeration. The sum of the frontier voids across all (90) 
problems as compared to the total number of unique set-
ups across all problems is 9.48%. 

The CPU time required to solve the problems to opti- 
mality illustrates a few forces at work. One force is the 
number of processes involved in the enumeration (p). As 
p increases, the number of nodes increases to an expo- 
nential degree. Another force at work is the number of 
permutations associated with each individual problem. 
As the number of permutations associated with the prob- 
lem increases, the number of potentially feasible child 
sequences also increases, and these must potentially fea- 
sible sequences must be examined for feasibility. The 
number of items in the sequence (n), and the number of 
unique items in the sequence (m) also dictate computa- 
tional resource needs. Of course, as n and m increase, so 
does the number of permutations that must be checked 
for feasibility.  
 
5. Research in Perspective 
 
This research was mainly dedicated to presenting a prob- 
lem and associated solution which can be used to en- 
hance the competitive positions of organizations con- 
cerned with multiple-objective sequencing over several 
processes. While the author considers an average inferi- 
ority of 3.74% to optimal reasonable, frontier voids of 
9.48% is considered a performance where improvement 
is desired. The following sections detail further research 
limitations, as well as suggestions for subsequent oppor-
tunities.  
 
5.1. Limitations of Research 
 
There are a few limitations to this research which should 

be itemized. First of all, as mentioned earlier in the paper, 
the buffer size is one unit throughout. This means that 
only one item can be withheld and later reinserted into 
the sequence, which ultimately means that when re-se- 
quencing for a single process, a unit can only move up 
one position in the sequence. A buffer size of one does 
limit the flexibility of the research.  

Another limitation of this research is an assumption 
that cannot be avoided in one form or other—the initial 
sequence used. For purposes of consistency, the initial 
sequence (the level 0 sequence) used for this effort was 
always one where the item A’s were sequenced first, 
followed by the item Bs, and so on. Re-sequencing was 
then performed. The result of this assumption was that 
the efficient frontiers were always well-represented on 
the low-setup end, but the high-setup end of the efficient 
frontier was frequently the source of inferiority and/or 
frontier voids. Nevertheless, this initial sequence as- 
sumption was made in the interest of consistency. Other 
assumptions could be considered for initial sequences, 
but this is left as a future research opportunity.  

Another limitation associated with this research is as- 
sociated with the problem size. Despite some of the 
enumerated solutions showing more than 20 million 
nodes, the problems used for experimentation could be 
considered, from a combinatorial sense, small. Of course, 
finding solutions via the simulated annealing heuristic 
has no real size limitations, but the optimal solutions 
obtained via enumeration provide a basis for comparison. 
Given this, simulated annealing was only done for prob- 
lems that could be solved via enumeration as well. The 
constraining factor for finding optimal solutions for this 
research had more to do with system memory than the 
CPU. This caveat is not uncommon for problems requir-
ing tree-traversal [16].  
 
5.2. Opportunities for Future Research 
 
Fortunately, some of the limitations associated with this 
effort also provide opportunities for new research efforts. 
One obvious opportunity is to improve the performance 
of the heuristic approach, especially regarding frontier 
voids. This could be explored via other search heuristics, 
such as tabu search, genetic algorithms, or natural agent 
systems such as ant-colony optimization.  

Another opportunity for further research relates to the 
number of buffers used. For this research, a buffer-size 
of one was used throughout. This restricts re-sequences 
to be limited to moving up no more than one unit. Larger 
buffer sizes would permit more flexibility in re-se- 
quencing in this regard. On the down side of this, how- 
ever, more computational recourses are needed for larger 
buffer sizes, in terms of both CPU and memory resources. 
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With computing resources in a state of perpetual growth, 
larger buffer-sizes are not unrealistic in the future.  

The size of the problems studied is also something that 
could be further explored as computing resources be- 
come more plentiful. At present, some of the smaller 
problem sets of earlier research were used [15]. Some 
larger problem sets from this research could be used as 
computing resources permit. The problem sets can be 
found via  
www.joydivisionman.com/AJOR1/Appendix. html.  
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