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Abstract 
 
This paper presents a new method of detecting multi-periodicities in a seasonal time series. Conventional 
methods such as the average power spectrum or the autocorrelation function plot have been used in detecting 
multiple periodicities. However, there are numerous cases where those methods either fail, or lead to incor-
rectly detected periods. This, in turn in applications, produces improper models and results in larger fore-
casting errors. There is a strong need for a new approach to detecting multi-periodicities. This paper tends to 
fill this gap by proposing a new method which relies on a mathematical instrument, called the Average 
Power Function of Noise (APFN) of a time series. APFN has a prominent property that it has a strict local 
minimum at each period of the time series. This characteristic helps one in detecting periods in time series. 
Unlike the power spectrum method where it is assumed that the time series is composed of sinusoidal func-
tions of different frequencies, in APFN it is assumed that the time series is periodic, the unique and a much 
weaker assumption. Therefore, this new instrument is expected to be more powerful in multi-periodicity de-
tection than both the autocorrelation function plot and the average power spectrum. Properties of APFN and 
applications of the new method in periodicity detection and in forecasting are presented. 
 
Keywords: Seasonal Time Series, Forecasting, Seasonality Detection, Average Power Function of Noise, 

Average Power Spectrum, Autocorrelation Functions 

1. Introduction 
 
Recently, modeling and forecasting seasonal time series 
with multiple periodicities has regained attentions from 
researchers [1-8]. There is an abundance of literature on 
modeling and forecasting time series with a single period 
[9,10]. However, with multiple periodicities existing in a 
seasonal time series, modeling and forecasting such a 
time series becomes quite complicated. An important 
task in modeling such time series is the determination of 
the cycle length of each period. In the literature of mod-
eling and forecasting seasonal time series with multi- 
periodicities, the lengths of periods are determined by 
human beings, based on either their experience or their 
specific domain knowledge of the time series under 
study. For example, in determining the cycle lengths of 
periods in modeling and forecasting daily electricity load 
[7] two distinct periods are determined manually based 
on power spectrum and autocorrelation plots, one being 
the intraday period which corresponds to 24 hours, and 

the other being the intraweek period which corresponds 
to 168 hours. When the plurality of time series to work 
with is small, it may not be a significant problem for 
human beings to determine the length of each period. 
Nevertheless, it will become a forbidding task if the 
number of time series is in the range of tens of thousands, 
not to mention the possibility that the periodicities may 
change over time. In this case, one has to resort to auto-
mated algorithms to detect the periodicities in a time 
series.  

Traditionally, the average power spectrum and the 
autocorrelation functions have been used in detecting 
multiple periods [9-11]. Usually, if the number of peri-
ods M in a seasonal time series is pre-determined, then 
the periods corresponding to the largest N peaks of the 
average power spectrum will be the periods in the time 
series [11, p. 161]. With ACF plot, one looks at the re-
peating peaks and decides proper periods [9, p. 342]. 
However, there is a certain degree of subjectivity with 
those two approaches. This is reflected in applications 
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where not all the M largest peaks of the average power 
spectrum are used in estimating the periods and not all 
the repeating peaks on the ACF plot are used as the pe-
riods [5], and there could be conflicting outcomes from 
those two approaches. For instance in [5], two periods, 
224 and 32, are determined for the five Central Teleph-
ony series. Period 224 corresponds to the largest peak on 
the power spectrum plot while the peak at lag 224 on the 
ACF plot is even not significant at the confidence level 
of 0.95. Period 32 corresponds to a very small and even 
ignorable peak on the power spectrum; however, it con-
curs with a significant peak (at the confidence level 0.95) 
at lag 32 on the ACF plot (see Figure 4 and Figure 5 of 
[5] for details). It couldn’t be an easy job to manually 
choose 224 and 32 as the periods before actually running 
the forecast. This apparent contradiction lies in the sub-
jectivity in detecting periods using the average power 
spectrum and the ACF plots, and for this reason it re-
quires human intervention, modeling experience, and 
even domain knowledge.  

For the past decades, the average power spectrum has 
been utilized as a powerful apparatus in analyzing the 
distribution of the energy of a signal over different fre-
quencies. It helps detect frequency components in a sig-
nal. Undoubtedly, this tool is extremely helpful in signal 
analysis, communications, circuitry design, and many 
other areas. Nevertheless, the average power spectrum 
may not be as effective as one would expect in deter-
mining periods in seasonal time series and forecasting 
simply because the frequencies or the periods with the 
strongest energy may not be the right periods needed in 
forecasting. Figure 11 in this paper presents a time series 
of the daily sales at a retail store for over one year period 
of time. This time series exhibits 3 major different peri-
ods: 7, 28 and 364 due to the operational business cycles. 
On the sample ACF plot in Figure 12, there are signifi-
cant peaks at lag 7 and at lag 28, and both are significant 
at the significance level of 0.95. However, the peak at lag 
364 is not significant at the significance level of 0.95. At 
lag 28, the ACF plot has the largest peak. At lag 7, the 
ACF plot has the second largest peak. On the sample 
power spectrum in Figure 13, period 7 has the largest 
peak, and period 31 has the second largest peak. Now, let 
us suppose we need to determine the periods of this time 
series, and we pick the highest peaks on either the ACF 
plot or the power spectrum which is common practice in 
the literature. Here is the dilemma with the power spec-
trum and the ACF methods: If only two periods are cho-
sen, those two methods would generate different results.  

Seasonal time series repeats itself after a certain time 
lag [9], in spite that due to the noise in the time series the 
degree to which the time series repeats varies. The right 
period should be the one at which the time series repeats 

itself with the smallest discrepancy, not necessarily the 
one repeating the most frequently but with a larger dis-
crepancy. The largest peak on the power spectrum is the 
period in which the time series repeats the most fre-
quently. For example, in the illustrative time series in 
Figure 11, the sample power spectrum has the largest 
peak at period 7. This is because the business activity of 
the store repeats week after week, and this pattern re-
peats the most frequently. However, the state of the 
business of the store in different weeks of the same 
month could be quite different due to different patterns 
of customer spending behaviors. Thus, it is hard to say 
that the business repeats itself very well week after week. 
Looking at the time series plot, it seems that the business 
of the store repeats much better month after month than 
week after week. However, the sample power spectrum 
does not have the largest peak at period of 28. Instead, it 
has a peak at period 31. The sample ACF plot of this 
time series has the largest peak at lag 28; but, this is not 
consistent with the sample power spectrum. A deadlock 
has been encountered here in selecting a period for this 
seasonal time series based on the ACF plot and the 
power spectrum plot. Therefore, it is necessary to search 
for a new and different apparatus that does not depend on 
the frequencies in the time series, but depends on the 
degree to which the time series repeats itself. The goal of 
this paper is to present the construction and properties of 
such an instrument, namely, Average Power Function of 
Noise. 

This paper is organized as follows. In Section 2, the 
definition and properties of Average Power Function of 
Noise are presented. Distribution of the local minimum 
of the sample APFN is discussed in Section 3, followed 
by a discussion of measure of seasonality in Section 4. 
Three illustration examples are presented in Section 5, 
and conclusions and discussions are given in Section 6. 
 
2. The Average Power Function of Noise and 

Its Properties 
 
In general, a seasonal time series exhibits periodic be-
havior with period p, or a seasonal time series repeats 
itself after p basic time units [9, p. 327]. However, due to 
the noise in the time series, a seasonal time series rarely 
repeats itself in a perfect fashion. There is always dis-
crepancy when comparing the observations of a seasonal 
time series at two different times over exactly p time unit 
span. Mathematically, a seasonal time series can be de-
scribed as      x t p x t t    where  t  is the 
discrepancy and p is the period. Here, p should be under-
stood as the minimum integer value that can be found 
and is greater than 1. This discrepancy, when processed 
properly, could be an indicator of periodicity of the sea-
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Definition 1 (Average Power Function of Noise): Let 
 x t  be a stochastic process. Then, for any given real 

numbers  , if the following limit exists, it will be called 
the Average Power Function of Noise (APFN) of  x t  
at lag  : 

sonal time series. This is because if the time span be-
tween two observations is indeed the period of the sea-
sonal time series, the discrepancy should be smaller than 
if the time span is not the period of the seasonal time 
series. If the seasonal time series possesses multiple pe-
riods, then the discrepancies at different periods may be 
quite different. A smaller discrepancy indicates a closer 
and better similarity between the observations at differ-
ent times with zero discrepancy being the perfect and 
ideal case. We will explore and extend this idea in this 
section.  

 
    2

APFN lim d
2

T

T
T

x t x t
E t

T


 



  
 
 
 
   (1) 

Obviously,  APFN   is an even function of   if 
 x t  is periodic. First, we consider the case where 
 x t  has a unique period p. Then, we have the follow-

ing major result. 
Without loss of generality, we will work with stochas-

tic processes and extend the obtained results to time se-
ries in the sequel. In literature, discrepancies can be in 
various forms, such as absolute deviations, square of 
errors, and even absolute relative errors, just to name a 
few. Therefore, it is quite likely to obtain certain results 
parallel to what will be reported in this paper, if different 
forms of discrepancies are adopted. In this paper, we 
choose the square of errors as the form of discrepancy 
simply because of its good analytical properties. 

Theorem 1. Let  x t  be a stochastic process and be 
expressed as      x t a t t   where  a t  is the 
mean process of  x t , i.e., , and is a 
deterministic function of t, and 

 a t  tE x
 t  is a white noise 

process, i.e.,  t  follows  20,N  . If  a t  is a 
periodic function of t with a unique period p so that 
   a t a t p  , then AP FN   has a strict local 

minimum when p  . 
Proof: As      x t p a t p t p     , if setting  

p   in (1), then (1) can be written as 
First, we present the definition of Average Power 

Function of Noise, the corner stone of this paper. 
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Exchanging the order of integration and expectation 
above and noticing that t p   and  t  are inde-

pendent, we obtain 

 
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

        (2) 

When  ,p N p    where 0   and   ,N p   is a neighborhood of p, we have 

 
             

                   

2 2

2 2

APFN lim d lim d
2 2

2
lim d

2

T T

T T
T T

T

T
T

x t p x t a t p t p a t t
p E t E

T T

a t p a t a t p a t t p t t p t
E t

T

 

   

 
 




t
           
     
   
  

             
 
 
 

 




 

Exchanging the order of integration and mean calcula-
tion and noticing that  t  is white noise and  
    0a t p a t   , we will get 

That is, we have 

 APFN APFNp   p .         (3) 
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 

 

Therefore,  APFN   has a strict local minimum at p. 
This finishes the proof. 

One of the forecasting methods, called naïve method, 
is to use the most recent history data as the forecast of 
the future. Here, if we use the history data exactly   
time units ago as the forecast, then    x t x  t  can 
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be interpreted as the forecasting error of x t   using 
 x t . Thus, (1) may be interpreted as the average power 

of forecasting errors using the naïve method. Theorem 1 
implies that if a stochastic process is seasonal and if we 
use the right period in the naïve method to predict its 
future, the mean square function of the forecasting errors 
will have a local minimum. Intuitively, this is quite 
natural as for seasonal stochastic process, observations 
with the same periodicity are quite close to each other 
and therefore the differences are minimal. One of the 
merits of (1) is that it relates periods in a seasonal sto-
chastic process to a type of forecasting errors in a natural 
way. This gives one an instrument helpful in detecting 
periods from multiple candidates: When detecting peri-
ods for a seasonal stochastic process, select those periods 
that correspond to the smallest APFN values in (1). Fig-
ure 14 presents the plot of the sample APFN of the sea-
sonal time series of daily sales at a retail store. It can be 
seen that the APFN plots have a local minimum at period 
7, 28, and 364, and the values of APFN at those three 
periods are different. 

With Theorem 1, it is easy to prove the following cor-
ollaries which assume that  x t


 has a unique period. 

Corollary 1. APFN   has the same periods as 
 x t  if x(t) itself is periodic. 
Corollary 2. If p is a period of  x t , then  NAPF   

has a strict local minimum at any integral multiples  
where n is a nonzero integer. That is, if p is a period of 

np

 x t , then the corresponding local minima will repeat 
with the same period. 

Corollary 3. If  x t  is a white noise, then  
 APFN   is a constant with respect to  . 

Corollary 4. Let APFN* be the global minimal value 
of the average power function of noise. Then, we have  

* 22APFN  , or 
*

2APFN

2  . 

Corollary 4 implies that the global minimal value of 
APFN, when divided by 2, can be used as an upper 
bound of the variance of the noise in the stochastic proc-
ess. This will be seen very useful in estimating the fore-
casting error variance. 

A seasonal stochastic process may have multiple pe-
riods. Now, let us consider the potential sources that 
contribute to the error or discrepancy when forecasting a 
seasonal stochastic process, including processes with a 
unique period and multiple periods. Of course, the major 
source is the noise in the data. This noise will always 
produce error in forecasting. There is a second source, 
however, that is any improper time lags chosen in fore-
casting  x t   when multiple periods exist. For dif-
ferent values of  , the errors could be quite different. 
This is reflected in the APFN plot which exhibits multi-
ple local minima with different values. We intend to in-
terpret this phenomenon by means of the conditional 
variance of the noise defined as a deterministic periodic 
function of  . With this said, we could have the fol-
lowing theorem. 

Theorem 2. Let  x t  be a stochastic process and be 
expressed as      x t a t t   where  a t  is the 
mean process of  x t  and is a deterministic periodic 
function of t, and  t  is a noise process which follows 

 20,N   and the conditional variance  

      2 E t t     is a deterministic periodic   

function of   and     0iE t p t     . If both  

 a t  and    have the same periods i  so that p
   ip a t a t ,    has a local minimum when 

ip   and    ip   
j

 where , 
then there exists a  such that 

1,2, ,i M
APFN   has a global 

minimum when ip   where 1 . j  M
Proof: Let  be one period. It can be shown that  ip
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In the above, it is assumed that the orders of the inte-
gration and the expectation operations can be exchanged. 

Conditioning the expectation on  t , we obtain 
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As    2
E t t    function of   and     0iE t p t  


  is a deterministic periodic    , we have  
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      lim d APFN
2

T

T

T i

T i
T

E E t p t t
t p

T

  






        





 

for in the above 
    2

lim d 0
2

T

T
T

a t a t
t

T






 
 ,  

     0E t t     , and    0E t   
Therefore, i  is a strict local minimum. 

Among the M local minima, there must be one that is the 
smallest, and that minimum must correspond to a certain 
period 

APFN p 

jp . This finishes the proof. 
Theorem 2 explains why the APFN could have multi-

ple local minima with different values in the case where 
multiple periods exist: it is due to the conditional vari-
ance function of  t  which has different values at 
different periods. 

From Corollary 2, we can prove that if  is a period 
of 

ip
 x t  for , then 1,2, ,i M   APFN   will have 

a local minimum at any multiples of i , i.e.,  

i  is also a local minimum. Hence, we have 
the following conclusion. 

p
FN AP np

Corollary 5. If  x t
APF

 has multiple distinct periods 

1 2 , then , , , mp p p  N   has a strict local mini-
mum at each period  where . i

From Theorem 2, we may conclude that not all periods 
have equal APFN values. The period that yields the 
global minimum APFN value is the most important one 
and is the one that must be found in modeling as it may 
produce the smallest forecasting error using the naïve 
method. For this reason, we give the following defini-
tion. 

np 1,2, ,i M 

Definition 2. Suppose  x t
 

 is a stochastic process 
and can be expressed as    x t a t t   where  
 a t  is a deterministic periodic function of t and  t  

is a noise process which follows  20,N   and the  

conditional variance   ( )t2
E t   is a determinis-  

tic periodic function of  . Suppose also that both  a t   

and   2
( )E t t    have the same periods   ip

where 1,2, ,i M  , then the period that yields the 
smallest APFN value is called the primary period while 
all others secondary periods. 

Hence, if only one period is chosen for a seasonal sto-
chastic process, it should be the primary period. How-
ever, one may not be able to find the primary period if 
using the power spectrum or ACF plot. 

The APFN plot can also be used to identify if a deter-
ministic trend exists in a process. 

Corollary 6. If    x t bt t   where  is a non-
zero constant and

b
 t  is a white noise process, then 

 APFN   is an increasing function of  . 
To apply APFN in detecting the cycle lengths of mul-

tiple periods for a seasonal stochastic process, we rec-
ommend the following outline which can be used as a 
basis in designing detailed algorithms. 

Step 1. Determine the number of periods, M, to be de-
tected for a given seasonal time series; 

Step 2. Calculate APFN(t) using formula (4) to be 
given in the next section for different integer values of t; 

Step 3. Detect all local minima of APFN(t) and find 
the corresponding values of t;  

Step 4. Sort all the local minima from the least to the 
greatest, and rearrange the corresponding t values ac-
cordingly. Then, the t values of the first M local minima 
are the cycle lengths, and the first t value is the primary 
period. 

Some comments are in order regarding the number of 
data points required in calculating the value of APFN(t). 
In applications, one uses the sample APFN function in 
detecting cycle lengths. Evidently, the more data used in 
calculation, the more reliable the results. Although it is 
not clear at this stage what the minimum number of data 
points should be needed in calculating APFN, our em-
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pirical results suggest that it is reasonable to have at least 
50 data points in calculating each value of APFN in or-
der to get good results. Nevertheless, this is still an open 
problem that requires more research. 
 
3. Distribution of Local Minima of the  

Sample Average Power Functions of Noise  
 
In applications and especially when working with time 
series, we use the following form of definition of APFN: 

      2

1

1
APFN lim

N

N
t

p x t p
N



  x t    (4) 

As local minima of the APFN are the only interest to 
us, and at each local minimum    a t p a t  , denote 

     p t t p     t . Then, the above Equation (4) 
can be written as  

   2

1

1
APFN lim

N

N p
t

p t
N




  . 

Now, we want to derive the distribution of APFN(p) 
for any finite values of N. As  t  follows  20,N    

by assumption, we know that      p t t p     t  
follows  20, 2N  . Furthermore, we can infer that 

 p t  is independent of p  where t  m 0m  , and 
 2

p t  follows  12 . It is easy to see that  

  2 22pE t   . To find the variance of  2 t p , notice 

that     2 2 0t t pcov ,    ,  

       0t p2cov ,t t    , and  

      t t p2cov ,t p  0   . Then, we would have,  

           
          

2 2 2

2 2

var var 2

     var var 4 var

p t t p t t p t

t p t t t p

    

   

    

    
 

As  

         
     

 
  

2
2 4 2

4 4

4 4 2

4 2

var

                  as 0

                  3 as ( ) follows 0,

                  2 var .

t E t E t

E t E t

t N

t p



  



  

  

   

 

 

  

 

  

 

               
         

               
         

22 2

2 2

2 2 2 2

2 2

var

                             as 0

                             

                             as  and  are indepen

t p t E t p t E t p t

E t p t E t p t

E E t p t t E t E t p t

E t E t p t p t

     

   

     

   

    

   

   

  
2 2 4

dent

                             .     

 

Hence,   2 4var 8p t   . 
Thus, we have proved the following theorem. 
Theorem 3: Under the assumptions in Theorem 1, for 

any finite values of N > 0, any local minimum APFN(p) 
follows  2 N  with degree of freedom N, mean 22    

and variance 48
 where p is the unique period of the  

N


time series and N is the sample size of the time series. 
When multiple distinct periods exist, the distributions 

of local minima can be treated similarly, but they are 
more involved, and for this reason will be studied later.  
 
4. Measure of Seasonality of Seasonal Time 

Series 
 
It is not uncommon to hear people ask such a question: 
“How seasonal is a time series?” This question seems not 
easy to answer. Some time series is obviously very sea-
sonal whereas others are not so. To answer this question, 
one needs a number from 0 to 1 as the measure of how 
seasonal a time series is. This measure must be very low 

(close to zero) if a time series is almost a white noise and 
must be very high (close to 1) if a time series is gener-
ated by a sinusoidal process. We intend to provide an 
approach to measuring the seasonality of a time series by 
means of APFN. 

Suppose a seasonal time series has a unique period P 
(>1). Then, this time series will repeat after any periods 
K which is a multiple of P, i.e., K = mP where m is a 
positive integer. On the APFN plot, a local minimum 
would appear at each lag of K. The lags of all the local 
minima are multiples of P. In other word, 100% of the 
lags of all local minima can be expressed as a multiple of 
P. Due to noise in the data, or due to a different period in 
the time series, lags of the local minima of the APFN 
may not be all multiples of P. Some lags of the local 
minima may be multiples of a period different from P. In 
this case, less than 100% of the lags of local minima are 
multiples of P. Such a seasonal time series is less sea-
sonal than the one with 100% of lags of local minima 
being multiples of P. When a time series is pseudo-white 
noise, a much smaller portion of the lags of local minima 

Copyright © 2011 SciRes.                                                                                AJOR 



 299Q. SONG

can be expressed as a multiple of P. Thus, the percentage 
of local minima that can be expressed as a multiple of a 
certain positive integer P (>1) can be used as a measure 
or indicator of how seasonal a time series could be. 
Based on this argument, we propose the following defi-
nition of measure of seasonality. 

Definition (Measure of Seasonality) Let  tx  be a 
time series and assume  are co-prime positive inte-
gers greater than 1 where . Denote per(Pi) 
as the percentage of local minima on APFN plot which 
can be expressed as multiples of Pi. Then, max{per(Pi) 
for } is defined as the measure of season-
ality of 

iP
1,2, ,i   M

M1,2, ,i  
 tx . 

With the above definition, the seasonality measure of 
the illustrative time series in Figure 11 is 0.60. 

Comments are in order to interpret measure of season-
ality: If this measure is 100%, one knows that the periods 
of the time series has a common factor, P. Then, if P is 
used in a seasonal model, errors due to the inaccuracy in 
P can be ignored. However, if this measure is less than 
100%, say, 60%, then 40% of the local minima of the 
APFN do not share the same common factor as the rest 
60% of the local minima. This indicates that the period 
of the time series changes over time. If P is the period 
shared by most of the data, it could happen that when P 
is used in modeling the part of the data that have a dif-
ferent period, then large modeling errors could be pro-
duced simply because the period P is not properly used. 
 
5. Applications 
 
In this section, we provide numerical examples to illus-
trate how to use the Average Power Function of Noise in 
determining cycle lengths of different periods in seasonal 
time series forecasting. For this purpose, we will work 
with three time series, and apply the sample power spec-
trum, the sample ACF, and the APFN to identify the pe-
riods. Then, for each of the three methods, we implement 
the identified periods in different models to produce 
forecast in order to compare different forecasting models. 
The algorithms used in detecting periods are as follows: 
To utilize sample ACF plot, the lags corresponding to the 
highest peaks are used as the periods; to utilize the power 
spectrum plot, the periods corresponding to the highest 
peaks are treated as the periods; to utilize the APFN, the 
discrete form of the definition (4) is used in calculation, 
and the periods corresponding to the lowest values are 
used as the periods. For simplicity and to be consistent to 
literature [5-7], only two periods are used in modeling 
and forecasting.  
 
5.1. Example 1 
 
In this example, we generate a time series of 251 data 

points with this formula:  

          500 sin 0.4 sin 0.9 sin 0.1

          2000

x t t t t    



t
 

where 1,2,3, , 251t   , and  t  is a random number 
sampled from uniform distribution U(0,1). Figure 1 il-
lustrates this time series. Figure 2 illustrates the sample 
ACF, and Figure 3 illustrates the power spectrum of this 
time series. Out of the 251 data points, the first 218 data 
points are used in modeling while the last 33 data points 
are used in calculating forecast error and are therefore 
not used in modeling. The sample ACF plot indicates 4 
major peaks at lags of 63, 14, 49 and 77. All the peaks 
are significant at the significance level of 0.95. On the 
power spectrum plot, three major peaks are seen at peri-
ods of 64, 7, and 16. Figure 4 illustrates the APFN plot 
which exhibits 4 major local minima at periods of 63, 
126, 189, and 140. For reasons mentioned above, we 
choose the first two major periods in modeling and fore-
casting. To model the time series, an additive seasonal 
autoregressive model with 2 different periods is selected 
while the order of the model is determined by an algo-
rithm to ensure the modeling error is white noise. The 
additive seasonal autoregressive model is given by this 
equation [12] 

 1 2  
1

M

t i t i i it i p t i p
i

x a x b x c x  


    

where , and  are the two different periods in the 
model. Once the periods are determined, the order of 
each model is determined by an automated algorithm. A 
Seasonal AR(1) model is identified with the periods de-
termined by both the ACF and the APFN methods while 
a Seasonal AR(4) model is identified with the periods 
detected by the Power Spectrum method. Table 1 lists 
the models with periods detected using different methods 
and model parameters. Numbers within the parentheses 
are the standard errors of the corresponding parameters.  

1p 2p

 

Figure 1. A seasonal time series exhibiting multiple season-
lities. a
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Figure 2. Autocorrelation function plot of Example 1. 

Ta . 

Method Used MAPE 

ble 1. Models and the forecasting MAPE for Example 1

Model 

ACF 14t
     

1 63
0.0066 0.0066 0.0068

0.065 0.0766t t t0.854x x x     x  8.49% 

           

       

1 2 3 4 64 128
0.0305 0.0304 0.0304 0.0302 0.0299 0.0298

192 256 7 14 21
0.0297 0.0297 0.0303 0.0305 0

0.7349 0.0077 0.3816 0.3215 0.5281 0.2353

      0.09279 0.0802 0.3699 0.3250 0.3647

t t t t t t t

t t t t t

x x x x x x x

x x x x x

     

    

     

    
   

28
.0305 0.0306

0.3528 tx 
 Power Spectrum 54.4.1%

APFN 126t
     

1 63
0.0060 0.0059 0.0059

0.0973 0.7494 0.3292t t tx x x x      8.30% 

 

 

Figure 3. Power spectrum plot of Example 1. 

 

Figure 4. Sample average power function plot indicating 
multiple local minima. 

Figure 5 illustrates the forecasts of different models. It 
can be seen that the model whose periods are identified 

his 

using power spectrum fails to produce good forecasts. 
Although the two models whose periods are detected by 
ACF and by APFN produce about the same forecasting 
errors, the latter produces slightly better forecasts.  
 
5.2. Example 2 
 
In this example, 200 data points are generated using t

  12 sin 400 formula: sintx t t
1, 2,3, , 200t

 where  
  . In modeling and analysis, the first 167 

ror calculati
plot of

   

data points are used while the last 33 data points are used 
only in forecasting er on. Figure 6 presents 
the time  this time series. Figure 7 exhibits the 
sample ACF plot, Figure 8 shows the empirical power 
spectrum plot and Figure 9 represents the APFN plot. 
From the ACF plot in Figure 7, it can be seen that two 
significant peaks appear at lags of 12 and 21, both being 
significant at the significance level of 0.95. Hence, peri-
ods of 12 and 21 are detected with ACF plot for this time 
series; from the power spectrum plot in Figure 8, peaks 
are found at periods of 11, and 3. Therefore, periods of 
11 and 3 are determined from the power spectrum plot. 
Finally, from the APFN plot in Figure 9, two local 
minima are seen at periods 77 and 56 which have the 
lowest values. Thus, with the APFN method the periods   
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Figure 5. Forecasts using different models for Example 1. 

 

Figure 6. A seasonal time series with multiple seasonal pat-
terns for Example 2. 

 

Figure 7. Autocorrelation function plot for time series in 
Example 2. 

 determined, the order of a Seasonal AR 

 

are detected as 77 and 56 for this time series. Once the 
periods are
model is determined by an automated algorithm. The 
result is that a Seasonal AR(2) model is recommended 
with the periods determined by all the three different 
methods. Table 2 lists the models and parameters with 
standard errors of the parameters listed in the corre-
sponding parentheses. For this example, all three models 
produce good forecasts whereas the model of the power 

 

Figure 8. Power spectrum plot for Example 2. 

 

Figure 9. Plot of average power function of noise for Exam-
ple 2. 

spectrum produces the smallest forecasting error and the 
ACF produces the largest forecasting error. Figure 10
plots the forecasts of all the three models. The reason

s no noise introduced in the data. 

 
 

why all three methods produce good forecasts is that 
there i
 
5.3. Example 3 
 
In this example, 466 retail daily sales data points are 
used. The first 433 data points are used in modeling and   
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le 2. Models and parameters for Example 2. 

Method Used M

 
Tab

odel MAPE 

ACF t
           

1 2 12 24 21 42
0.00019 0.00019 0.00019 0.00019 0.00019 0.00019

0.0896t t t t t t0.0747 0.3651 0.5941 0.2645 0.5424x x x x x x    x        0.82% 

Power Spectrum 8t
           

1 2 12 24 4
0.00015 0.00015 0.00015 0.00015 0.00015 0.00015

0.1220 0.2479 0.2346 0.6097 0.1859 0.40471t t t t t tx x x x x x           x  0.646%

APFN 
           

1 2 77 154 56 112
0.00032 0.00032 0.00032 0.00032 0.00032 0.00032

0.003 0.0337 0.5385 0.0257 0.493 0.1098t t t t t t tx x x x x x           x   0.652%

 

Figure 10. Forecasts obtained with different models in Example 2. 

the last 33 data points are used in forecasting accuracy 
analysis. Figure 11 shows
Figure 12 illustrates the sample ACF plot which exhibits 

 

 the plot of the time series. 

two peaks at lags 7 and 28, both being significant at the 
significance level of 0.95. Figure 13 shows the sample 
power spectrum and shows two peaks at periods 7 and 30, 
and Figure 14 shows the Average Power Function of 
Noise plot of the time series which has two major local 
minima at periods of 364 and 336. Again, we pick 2 pe-
riods for the time series. An automated algorithm is used 
to determine the order and the parameters for each model. 

 

 

Figure 12. Sample Autocorrelation function plot for Exam-
ple 3. 

For the ACF model, a Seasonal AR(5) model is identi-
fied; for the Power Spectrum model, a Seasonal AR(6
model is identified, and for the APFN m
AR(1 , the 
parameters and the standard errors, and the forecasting 
MAPE. As the model corresponding to the power spec-
trum method is too complicated, it is not listed in the 
table. It can be seen that the APFN model produces the 
best forecasts while the Power Spectrum model fails to 
produce meaningful forecasts. Figure 15 illustrates the 
forecasts of all the 3 models. The power spectrum method  

) 
 odel, a Seasonal

) model is identified. Table 3 lists the models

Figure 11. Daily retail sales plot for Example 3. 
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Figure 13. Plot of power spectrum for Example 3. 

evidently detects an incorrect period, 30, and this incor-
rect period causes the modeling algorithm to produce a 
6th order model to fit the data, and fails to produce good 
forecasts in the end with a MAPE of 33.08%. This illus-
trative example indicates the significance of using the 
right periods in modeling and forecasting seasonal time 
series. 
 
6. Conclusions and Discussions 
 
In this paper, the definition of Average Power Function  

of Noise (APFN) has been proposed, and properties of 
such a function have been discussed. The most important 
property of APFN is that it has a local minimum at the 
time lags which are the periods of a seasonal time series. 
The numerical examples have exhibited the merits and 
the power of APFN in detecting periods in seasonal time 
series. ACF and power spectrum are proven to be pow-
erful instruments in signal analysis and many other are-
nas. They may not be the best instruments in detecting 
periods for seasonal time series because, as pointed out  

 

Figure 14. Plot of average power function of noise for Ex-
ample 3. 

 

Figure 15. Forecasts obtained w

Table 3. Models and pa

Method Used 

ith different models for Example 3. 

rameters for Example 3. 

Model MAPE

ACF 

0.332 0.094 0.035x x x x     
             

     

1 2 3 4 5 7 14
0.0062 0.0062 0.0062 0.0062 0.0062 0.0062 0.0062

21 28 35 56
0.00889 0.0062 0.0062

0.0302 0.108 0.234 0.065

      0.0167 0.2589 0.029 0.072 0.139

t t t t t t t t

t t t t

x x x x

x x x x x

   

   

  

    
     

84 112 140
0.0062 0.0062 0.0062

0.065 0.059t tx x  
 7.89%
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at the beginning of the paper, the detected periods of a 
seasonal time series should be the ones at which the time 
series repeats with the smallest discrepancy, not neces-
sarily the ones at which it repeats the most frequently. 
The results of seasonal time series forecasting depend on 
not only the model but the periods of the time series as 
well. Forecasts are very sensitive to the periods detected 
and used in the model. If periods are not properly chosen, 
one may end up with high order models and inferior 
forecast results. From the empirical examples, it is quite 
evident that properly detected periods of a seasonal time 
series almost always accompany low order model and 
superior forecasts, and APFN consistently produces the 
lowest order models in the three illustrative examples. 
Therefore, the significance of properly detected periods 
cannot be overemphasized
seasonal time series. 

As discussed at the beginning of t
pow  methods could lead to conflicting results 
in detecting periods for the same data set. For that reason, 
it will be difficult to automate the detection algorithm 
with A nd power spectrum plots. However, it is rela-
tively simple and easy to automate the period detection 
algorithm using APFN. Such an algorithm will involve 
selecting the first few lowest local minima, by sorting the 
lo n ascent order. 

The APFN is in the form of square of discrepancy. 
Differ rms of discrepancy are also possible and 
ould opted. For example, the following two dif-
rent forms can be considered in lieu of APFN: 
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