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Abstract 
 
In this paper, we generalize  ,H   -accretive operator introduced by Zou and Huang [1] and we call it 

 ,H   - - -accretive operator. We define the resolvent operator associated with  ,H   - - -accretive 
operator and prove its Lipschitz continuity. By using these concepts an iterative algorithm is suggested to 
solve a generalized variational-like inclusion problem. Some examples are given to justify the definition of 

 ,H   - - -accretive operator. 
 
Keywords:  ,H   - - -Accretive Operator, Variational-Like Inclusion, Resolvent Operator, Algorithm, 

Convergence 

1. Introduction 
 
Variational inclusion problems have emerged as a po- 
werful tool for solving a wide class of unrelated problems 
occuring in various branches of physical, engineering, 
pure and applied sciences in a unified and general frame 
work. 

In 2001, Huang and Fang [2] firstly introduced the 
generalized -accretive mappings and gave the defini- 
tion of resolvent operator for the generalized -accre- 
tive mappings in Banach spaces. Also, they have shown 
some properties of their resolvent operator. Since then, 
Fang and Huang, Lan, Cho and Verma and others 
introduced and studied several generalized operators 
such as H-accretive, 

m
m

 -H  -accretive and  ,A  -ac- 
cretive mappings. For example, see [3-16] and references 
therein. 

In 2008, Zou and Huang [1] introduced -accre- 
tive operator, its resolvent operator and applied them to 
solve a variational inclusion problem in Banach spaces. 
In this paper, we generalized -accretive operator 
to -

 ,H  

 ,H  
 ,H    - -accretive operator and define its resol- 

vent operator. Further, we prove the Lipschitz continuity 
of resolvent operator and apply these new concepts to 
solve a variational-like inclusion problem. Some example 
are constructed. 

2. Preliminaries 
 
let X be a real Banach spaces with its dual *X , ,   be 
the duality pairing between X and *X  and  (respec- 
tively 

2X

 CB X ) denote the family of non-empty subsets 
(respectively, closed and bounded subsets) of X. The  

generalized duality mapping  is defined  
*

: 2X
qJ X 

by  

   1* : , ,
q q

qJ x f X x f x f x
    , x X  , 

where  is a constant. In particular, 2> 1q J  is the 
usual normalized duality mapping. It is known that, 

   1

2

q

qJ x x J x
  for  and q0x  J  is single- 

valued if X* is strictly convex. If X is a real Hilbert space, 
then 2J  becomes the identity mapping on X. 

The modulus of smoothness of X is the function 
   : 0, 0,X     defined by  

   1
sup 1: 1,

2X t x y x y x y t
        
 

. 

A Banach space X is called uniformly smooth, if  

 
0

0lim
X

t

t

t




 . 

X  is called -uniformly smooth, if there exists a 
constant  such that  

q
> 0C
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Note that qJ  is single-valued if X  is uniformly 
smooth. The following inequality in -uniformly 
smooth Banach spaces has been proved by Xu [17]. 

q

Lemma 2.1. Let X  be a real uniformly smooth 
Banach space. Then X  is -uniformly smooth if and 
only if there exists a constant  such that for all 

q
> 0qC

,x y X ,  

 ,
q q

q q

q
x y x q y J x C y    . 

Definition 2.1. Let , :A B X X  and  
, :H X X X    be the single-valued mappings.  
i) A  is said to be  -accretive, if  

  , , 0qAx Ay J x y  , ,x y X  ; 

ii) A  is said to be strictly  -accretive, if A  is  - 
accretive and equality holds if and only if x = y;  

iii)  H A ，  is said to be  -strongly  -accretive 
with respect to A , if there exists a constant > 0  
such that  

      , , , ,

                          , , ;

q

q ,H Ax u H Ay u J x y x y

x y u X

  

 


 

iv)  ,H B  is said to be  -relaxed  -accretive 
with respect to , if there exists a constant B > 0  
such that  

        , , , ,

                           , , ;

q

q ,H u Bx H u By J x y x y

x y u X

    

 
 

v)  is said to 1 -Lipschitz continuous with 
respect to , if there exists a constant  such that 

( , )H  
A

r

1 > 0r

    1, ,H Ax u H Ay u r x y   , ,, x y u X  . 

In a similar way, we can define the Lipschitz continuity 
of the mapping  with respect to .   ,H   B

vi)   is said to be  -Lipschitz continuous, if there 
exists a constant > 0  such that  

 ,x y x y ,   , x y X  . 

Definition 2.2. Let , :N X X X  
: XM X X 

 be the single- 
valued mappings. Let  be multi-valued 
mapping.   

2

i) M  is said to be  -accretive, if  
  , , 0qu v J x y   ,, x y X 

z X
, ,  

, for each fixed 
 ,u M x z 

v M ,y z  ; 
ii) M is said to be strictly  -accretive, if M is  - 

accretive and equality holds if and only if x y ;  
iii) N is said to -relaxed t  -accretive in the first 

argument, if there exists a constant  such that  > 0t

      , , , ,

                       , , ;

q

qN x u N y u J x y t x y

x y u X

 

 

iv) N is said to be  -Lipschitz continuous in the first 
argument, if there exists a constant > 0  such that  

   , ,N x u N y u x y   , , ,x y u X  . 

Similarly, we can define the Lipschitz continuity of N 
in the second argument.  
 
3.  ,H   - - -Accretive Operator 
 
In this section, we generalize -accretive operator 
[1] and call it 

 ,H  
 ,H   -  -  -accretive operator and 

discuss some of its properties. 
Definition 3.1. Let , , :A B X X  ,  
, :H X X X  
: XM X X 

 be the single-valued mappings. Let 
 be a multi-valued mapping. M is said 

to be 
2

 ,H   - - -accretive operator with respect to 
mappings A  and , if for each fixed ,  B z X

 ,M z   is  -accretive in the first argument and  
     , ,H A B M z X X   . 

Remark 3.1. If  x x  , x X   and > 0 , 
   ,M M     and  ,x y x y   then  ,H   -  - 

 -accretive operator reduces to -accretive opera- 
tor, which was introduced and studied by Zou and Huang 
[1]. 

 ,H  

Example 3.1. Let X   . Let , 0Ax  sinBx x , 
 ,H Ax By Ax By   and   2 2,M x z x z , x X   

and for each fixed z X . Let  

   , , 2M x z M x z x
x

 
   

  and  ,
2

x y
x y 

 .  

Then  

     

 2

, , , , 2 2 ,
2

                                                        0,

x y
M x z M y z x y x y

x y

        

  

 
 

which means that  ,M z   is  -accretive in the first 
argument. Also, for any x X , it follows from above 
that  

         , , ,

                                        0 sin 2 2 sin ,

,H A B M z x H Ax Bx M x z

x x x x

    

    

 
 

which means that     , ,H A B M z   is surjective. 
Thus M is  ,H   - - -accretive operator with respect 
to mappings A  and . B

Example 3.2. Let X, A, B, H,   and M are same as in 
Example 3.1. Let   2

,
2x zM x z  e  . Then 

      

, 
 

  
2 2

, , ,

                                         sin ,x z

,H A B M z x H Ax Bx M x z

x e

 



   

 

 
 

which shows that      0 , ,H A B M z X   , that 
is     ,,H A B  M z  is not surjective, hence M is 
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not - ,H    - -accretive operator with respect to the 
mappings A and B. 

Theorem 3.1. Let  , H A B  be  -strongly  -ac- 
cretive with respect to A,  -relaxed  -accretive with 
respect to B, >  . Let M be an - ,H    - - 
accretive operator with respect to mappings A and B.  

Then the operator  is single-       1
, ,H A B M z


 

valued for each fixed . z X
Proof. For any given u and , let  z X

  1
, , ,  x y H A B  M z 

 
u


 . Then  

, , H Ax Bx u  M  x z

  , ,

, 

H Ay By u M y z    . 

Since  , M z   is  -accretive in the first argument, 
we have  

       
      
     
    
      
      

 

0 ,

,

, , ,

  , , , ,

  , , ,

      , ,

  , , , ,

, , , ,

  0.

q

q

q

q

q

q q q

H Ax Bx

Bx

Bx

By

Bx

Bx



u H Ay By u J x y

H Ax H Ay By J x y

H Ax H Ay Bx H Ay Bx

H Ay J x y

H Ax H Ay Bx J x y

H Ay H Ay By J x y

x y x y x y











   

     

  

   



  

 

        

 

Since >  , we have x y  and so  
 is single-valued. This com- 

pletes the proof. 
  , B     1

,H A z


 M

Definition 3.2. Let  ,H A B  be  -strongly  - 
accretive with respect to A and  -relaxed  -accretive 
with respect to B and >  . Let M be an  ,H   - - 
 -accretive operator with respect to mappings A and B. 
Then for each fixed , the resolvent operator 

 is defined by  
z X

 
 ,

, :M zR     


 ,H     

H X  X

        , ( ) , ,M zR u H A B M z    1
u  u X,   . 

Theorem 3.2. Let  , H A B  be  -strongly  -ac- 
cretive with respect to A,  -relaxed  -accretive with 
respect to B, >   and   is  -Lipschitz continuous. 
Let  is  a -: 2 HXM X X   ,   - -accretive 
operator with respect to mappings A and B. Then the  

resolvent operator  is  
 ,

, :H
M zR X    

  X
1q

 




-Lips-  

chitz continuous i.e., 

 
 

 
 

1
, ,
, ,( )R u 

 ,u v

( )
q

H H
M z M zRR v u v  

 


       
   


, 

 and each fixed . X  z X

Proof. Let ,u v X , then by definition of resolvent 
operator, it follows that  

 
          1,

, , ,H
M zR u H A B M z  

   
    u

v

, 

and  

 
          1,

, , ,H
M zR v H A B M z  

   
    . 

Then  

 
      

     
 
    

, ,
, ,

,
,

,

, ,

H H
M z M z

H
M z

u H A R u B R u

M R u z

   

 

       
 

   




 
 

and  

 
      

     
 
    

, ,
, ,

,
,

,

, .

H H
M z M z

H
M z

v H A R v B R v

M R v z

   

 

       
 

   




 
 

Let ,   
   ,

,
H
M zPu R u    

  
   ,

,
H
M zPv R v    



Since  ,M z   is  -accretive in the first argument, 
we have  

          
  

, ,

, 0q

u H A Pu B Pu v H A Pv B Pv

J Pu Pv

  



,
 

       
       

, , ,

                           , , , .

q

q

u v J Pu Pv H A Pu B Pu

H A Pv B Pv J Pu Pv





 


 

It follows that 

    
         
  
         
  
         
  

 

1
, , ,

        , , ,

            ,

        , , ,

            ,

        , , ,

            ,

        

q

q

q

q

q

q q

u v Pu Pv u v J Pu Pv

H A Pu B Pu H A Pv B Pv

J Pu Pv

H A Pu B Pu H A Pv B Pu

J Pu Pv

H A Pv B Pu H A Pv B Pv

J Pu Pv

Pu Pv Pu Pv Pu Pv

 







   


  

 

 

 

       q

 

 11 q qqu v Pu Pv Pu Pv        
1q

Pu Pv u v

 



  


  

i.e.  
     

   
1

, ,
, ,

q
H H
M z M zR u R v u    

 


       
  v  


. 

This completes the proof. 
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4. An Application for Solving Generalized 
Variational-Like Inclusions 

 
In this section, we apply  ,H   - - -accretive operator 
for solving generalized variational-like inclusions. 

Let  , , :S T G X CB X
, , :

 be the multi-valued map- 
pings. A B X X  , , , :H N X X X  

: 2M X X 
 be sin- 

gle-valued mappings. Suppose  be a 
multi-valued mapping such that 

X

M  is  ,H   - - - 
accretive operator. 

We consider the following problem of finding x X , 
 u S x ,  v T x  and  and   z G x

  0 , ,N u v M x z   .          (4.1) 

Problem (4.1) is called generalized variational-like 
inclusion problem. 

Below are some special cases of our problem: 
i) If X  is real Hilbert space and  ,M z  is maximal 

monotone operator then a problem similar to (4.1) was 
introduced and studied by Huang [18].  

ii) If ,  is single-valued and identity 
mapping and  and 

0T G 
N  

S
, =   N     ,M M     then 

our problem reduces to the problem considered by Bi et 
al. [19], that is find  such that  u X

   0 N u M u  . 

It is clear that for suitable choices of operators in- 
volved in the formulation of problem (4.1), one can 
obtain many variational-like inclusions studied in recent 
past. 

Lemma 4.1. Let X  be a -uniformly smooth Ba- 
nach space. 

q
 X, ,G S T CB

, :
: X  be multi-valued map- 

pings, A B X  X  be single-valued mappings and 
: X X 
 

 be a mapping satisfying  
  x y x y

 : 0x X   
   

 x
 and , where  

. Let 
   = 0

, ,
ker

 ker :H N X X X  
: 2XX 

 
be the single-valued mappings. Let  be 
a multi-valued mapping such that 

M X
M  is - , H  - - 

accretive operator. Then  ,, ,x u v z  where x X , 
,  and  is a solution of 

problem (4.1) if and only if 
 xu S v T x  x

,
z G
 , ,x u v z  satisfies  

 
    ,

,= ,H
M z ,x R H Ax Bx N u     

    v



.   (4.2) 

Proof. Let  , , ,x u v z  where x X ,  u S x ,  
 and  satisfies the Equation (4.2), 

i.e.,  
 v T x z G x 

 
    ,

,= ,H
M z ,x R H Ax Bx N u     

   v 




,

,

. 

Using the definition of resolvent operator, we have  

       
      

1
, , ,

, , ,

x H A B M z H Ax Bx N u v

H Ax Bx N u v H Ax Bx M x z

 

 


     

   

 

 
 

   
    
       1

0 , ,

0 , ,

(0) , , 0 , , .

N u v M x z

N u v M x z

N u v M u z N u v M x z

 





  

  

     

 

 

This completes the proof. 
Based on Lemma 4.1, we define the following algori- 

thm. 
Algorithm 4.1. Let , , , G S T A , , B H , , N

 ,   and M  all are same as in Lemma 4.1. For any 
given 0x X ,  0 0xu S , 0 0  and   xv T

 x0z G 0  and 0 < < 1 , compute the sequences 
 nx ,  nu ,  nv  and  nz  by the following iterative 
scheme:  

 
    ,

1 , , ,
n

H
n n nM z n nx R H Ax Bx N u v     
      ; (4.3) 

 
     1

1 1

,

, ;

n n

n
n n n n n n

u S x

u u S x S x x x
 



     1

 (4.4) 

 
     1

1 1

,

, ;

n n

n
n n n n n n

v T x

v v T x T x x x
 



     1

 (4.5) 

 
     1

1 1

,

, ;

n n

n
n n n n n n

z G x

z z G x G x x x
 



     1

 (4.6) 

0,1,2,n   , where  ,   is the Hausdorff metric 
on  CB X . 

Theorem 4.1. Let X  be -uniformly smooth Ba- 
nach space and 

q
, , :A B X X 

, ,
 be the single-valued 

mappings. Let :H N X X X  
X 

M X

 be the single-va- 
lued mappings and  be multi-va- 
lued mappings. Suppose  be a multi- 
valued mapping such that 

 X
X

, ,G S :T CB
: X  2

M  is - , H  - -accre- 
tive operator with respect to mappings A  and . 
Assume that 

B

i)      x y x     y  and ;     ker 0 
ii)  ,H A B  is  -strongly  -accretive with respect 

to A  and  -relaxed  -accretive with respect to ;  B
iii)  ,H    is 1 -Lipschitz continuous in the first 

argument and -Lipschitz continuous in the second 
argument;  

r

2r

iv)  ,N    is 1 -Lipschitz continuous in the first 
argument and 2 -Lipschitz continuous in the second 
argument;  

v)  ,N    is -relaxed t  -accretive in the first 
argument;  

vi)   is  -Lipschitz continuous;  
vii) ,  and  are -Lipschitz continuous 

with constant 
S T G 

,S T   and G  respectively;  

viii)  
     

   , ,
1, , 1

H H
n nM z M zn n

R x R x z z           
  

   ,  

> 0 , 1,n nz z X  ;     
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ix)      1 1 1
1 2 1 1 2 1 21

1
<

q q Gq q q q qq
S S S q S q

r r qt q r r C
  

T        


  


          . 

Then  , , , x u v z  where x X , ,  
 and  is a solution of problem (4.1), 

and the sequences 

 u S x
v T x   z G x

nx , ,  and  nu  nv  nz  de- 
fined in Algorithm 3.1 converge strongly to x , ,  
and , respectively in 

u v
z X . 

Since ( , )H A B
r

 is 1 -Lipschitz continuous in the first 
argument and 2 -Lipschitz continuous in the second 
argument, we have  

r

Proof. Using Algorithm 4.1, Lipschitz continuity of 
resolvent operator and condition (viii), we have  

 
     

 
     

 
   

 
     

1

,
1 ,

,
1 1 1 1,

,
,

,
1 1 1 1,

, ,

       , ,

    , ( , )

       , ,

       

n

n

n

n

H
n n n n n nM z

H
n n n nM z

H
n n n nM z

H
n n n nM z

M

x x R H Ax Bx N u v

R H Ax Bx N u v

R H Ax Bx N u v

R H Ax Bx N u v

R

 

 

 

 











   
 

   
   

   


   
   



    

   

   

   











 
     

 
     

   

    

   

1

,
1 1 1 1,

,
1 1 1 1,

1

1 1 1 1

1

1 1

, ,

       , ,

    , ,

       , ,

    = , ,

   

n

n

H
n n n nz

H
n n n nM z

q

n n n n

n n n n n n

q

n n n n

H Ax Bx N u v

R H Ax Bx N u v

H Ax Bx N u v

   
 
   

 

1 1

1

1 1 1

1 1 2 1 1 2

   , ,

, ( , )

   , ,

  

n n n n

n n n n

n n n n

n n n n n n

H Ax Bx H Ax Bx

H Ax Bx H Ax Bx

H Ax Bx H Ax Bx

r x x r x x r r x x

 



  

 



 

 

       1

 

and hence  

     1 1 1 2 1, ,
q qq

n n n n n nH Ax Bx H Ax Bx r r x x      . 

(4.9) 

1H Ax Bx N u v z z

H Ax Bx H Ax Bx

 

 





 
 

 


 



   
   

   
   



    



 

 

   

 


  












    





   

1

1

1 1 1

1

    , ,

       , ,

       .

n n n n

q

n n n n

n n

N u v N u v

N u v N u v

z z

 

  
 






  



 

 


 

 

 

 (4.7) 

Since S is -Lipschitz continuous with constant S  
and using (4.4), we have  

    
 

1 1 1

1 1

,

      .

n
n n n n n n

n n
S n n n n S n n

u u S x S x x x

x x x x x x   

  

 

   

      

 

1

 (4.10) 

Since,  ,N    is -relaxed t  -accretive in the 
first argument and using (4.10), we have  

      
 

1 1

1 1

, , , ,

.

n n n n q n n

qq qn
n n S n n

N u v N u v J u u

t u u t x x

  

 

 

 



      

 
 (4.11) 

As,  ,N    is 1 -Lipschitz continuous in the first 
argument, ( , )H  

r
 is 1 -Lipschitz continuous in the first 

argument and 2 -Lipschitz continuous in the second 
argument and 

r

  is  -Lipschitz continuous, we have  
Now, we estimate  

    

   

     
      
     

      

1 1

1

1 1

1 1

1 1 1

1 1

    , ,

      ( , ,

, , ,

 , , , ,

 , , , ,

 , , ,

,

n n n n

q

n n n n

q

n n n n n n

n n q n n n n

n n q n n n n

q

q n n q n n n n

n

H Ax Bx H Ax Bx

N u v N u v

H Ax Bx H Ax Bx q N u v

N u v J u u q N u v

N u v J H Ax Bx H Ax Bx

J u u C N u v N u v

H Ax

 



  



  

 



 

 

 

 



 

  

 

   

  



 



 



 

     
      

     

     

1 1

1 1

1

1 1 1

1

1 1

, ,

 , , , ,

 ,  , ,

 , , , .

q

n n n n n

n n q n n n n

q

n n n n n n

q q

n n q n n n n

Bx H Ax Bx q N u v

N u v J u u q N u v

N u v H Ax Bx H Ax Bx

u u C N u v N u v



  



  

 

 



  



 

 

 

  
  



 



 

   

     

 

   

 

     

1

1 1

1 1 1

11

1 1 1 2 1

11
1

11

1 1 1 2 1

11 1
1

1 1
1 1 2

, ,

, , ,

  

  

n n n n

q q

n n n n n n

qq

n n n n

qq
n n

qqn
S n n n n

qq n q
S n n

qn q n
S S

N u v N u v

H Ax Bx H Ax Bx u u

u u r r x x

u u

x x r r x x

x x

r r

 







 

 

   



 

  


 





 

 


 



     
   

  
    

   

    

 





 
1

1 .
q q

n nx x



    

 

(4.12) 

Also  

   
 

1

1 1 1

  , ,n n n n

n
n n S n n

N u v N u v

u u x x

 

  



1 



    

 


 

(4.8) 
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     1 1, ,
qq qq n

n n n n S n nN u v N u v x x         .1                (4.13) 

Using (4.9), (4.11), (4.12) and (4.13), (4.8) becomes 

        
         

 
         

1 1 1

11 1
1 1 2 1

1 1

11 1
1 2 1 1 2 1

  , , , ,

   

q

n n n n n n n n

q qqn q n
S S n n

q qq n
q S n n

q qq qn n q n
S S S q

H Ax Bx H Ax Bx N u v N u v

q r r x x

C x x

r r qt q r r C

 

   

 

     

  

 




 

  

        

  

            

 

 



    

1 2 1 1

qq qq n
n n S n nr r x x qt x x      

1

q qq n
S n nx x 

    


 

        

       
1 1 1

1 1 1
1 2 1 1 2 1 1

  , , , ,

( ) ( )

n n n n n n n n

q qq n n q q n q q nq
S S S q S n

H Ax Bx H Ax Bx N u v N u v

r r qt q r r C x x

 

      

  

  


  

              

 

   
 

.n

  (4.14) 

Since  is  ,N   2 -Lipschitz continuous in the 
second a d g the -Lipschitz continuity 
of T with 

rgument, an
constant 

usin

T  and (4.5), we have  

   
     

 

1

2 1 1

,n n

n
T n n n n

N u v N

x x x x 



    

1 1 2 1

2 1 1

  ,

,

n n n n

n
n n n n
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Also, using -Lipschitz continuity of G with constant 
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Since 0 < < 1 , it follows that  n   , as  where  n 
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From (ix), it hat < 1follows t  , and consequently 
 nx  is a Cauchy sequence i . Since X is a Banach 
space, there exists 

n X
x X , such that nx x  as 

n  . 
From (4.4), (4.5) and (4.6) of Algorithm 4.1, it follows 

that  nu ,  nv  and  z  all are Cauchy sequences in 
X, that is there exi  and z X that 

, 

n

st ,u


v  such 

n nv v  and nz z  as n  . Now, using 
 continuity of operators S , T , G , 

u u 
the A , B , H , 

N  ,   and M and by Algorithm 4.1, we have  
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This implies that , since  
. Similarly, 

pletes the 
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