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Abstract 
 
This study addresses bilevel linear multi-objective problem issues i.e. the special case of bilevel linear pro-
gramming problems where each decision maker has several objective functions conflicting with each other. 
We introduce an artificial multi-objective linear programming problem of which resolution can permit to 
generate the whole feasible set of the upper level decisions. Based on this result and depending if the leader 
can evaluate or not his preferences for his different objective functions, two approaches for obtaining Pareto- 
optimal solutions are presented.  
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1. Introduction 
 
Bilevel programming problems occur in diverse applica-
tions, such as transportation, economics, ecology, engi-
neering and others. They have been extensively studied 
in the literature [1-3]. However, when facing a real- 
world bilevel decision problem, the leader and the fol-
lower may have multiple conflict objectives that should 
be optimized simultaneously for achieving a solution [4]. 
There are only very few approaches in the literature 
dealing with bilevel multiobjective problems: less than a 
dozen of paper in the literature are related to this par-
ticular class of problems to our knowledge [5-8]. Three 
reasons at least can explain the fact that the issue has not 
yet received a broad attention in the literature: the diffi-
culty of searching and defining optimal solutions; the 
lower level optimization problem has a number of trade- 
off optimal solutions; and it is computationally more 
complex than the conventional Multi-Objective Pro-
gramming Problem or a bilevel Programming Problem. 
Consequently, it is extremely desirable to develop a sim-
ple and practical technique that can permit to find effi-
cient solutions for this class of bilevel programming 
problem.  

This study addresses linear multi-objective problem 
issues. The optimistic formulation is considered. We 
introduced an artificial multi-objective linear program-
ming problem of which the resolution can permit to gen-
erate the whole set of feasible points of the upper level 
decisions. Based on this result and depending if the 
leader can evaluate or not his preferences for his differ-
ent objective functions, two approaches for obtaining 
Pareto-optimal solutions are presented.  

The paper is organized as follows. In the next section, 
we recall some notions about the solving of multiobjec-
tive programming problems (BLMPP). In Section 3, the 
optimistic formulation of a bilevel linear multi-objective 
programming problem is presented. Section 4 presents a 
relation between the feasible set of the upper level deci-
sions and the Pareto-optimal set of a particular multi- 
objective programming problem introduced. Section 5 
presents two approaches for solving BLMPP, based on 
the new relation established. Finally, the paper is con-
cluded in Section 6.  
 
2. Efficient Points in Multiobjective  

Programming 
 
A multi-objective programming problem is formulated in 
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
general as follows:  

        1 2"min" , , , Q
x

h x h x h x h x   

,    s t x U
Q

            (MOPP) 

where  is the objective function vector and 
 the set of constraints.  
: nh R R

nRU 
Due to the fact that, for , there is no canonical 

(total) order in , as there is on , one has to define 
how objective function vector  

Q 2
QR R

      1 2, , , Qh x h x h x   

must be compared for different alternatives x U . 
Closed pointed convex cones are generally used for the 
derivation of partial orders in the decision space. Let K  
be an arbitrary cone such that K  QR , then the binary 
relation with respect to the cone K  (denoted K ) is 
defined by:  

Ka  b  if and only if  b a K 

Due to the fact that it could not be possible to find a 
solution that optimizes simultaneously all the objective 
functions, a weaker concept, the concept of Non-domi- 
nated point is used.  

Definition 1.  
A point  0y h U  is a non-dominated point with 

respect to the cone K  if and only if there does not exist 
a point  y h U y , 0 , such that 0K . If y y y *y  
is a non-dominated point with respect to the cone K, then 

*x U , such that  is called Pareto-optimal 
(or efficient) solution with respect to the cone 

*y h x*
K .  

The following definition of efficient points is the most 
used in the literature [9-11].  

Definition 2.  
A feasible point *x U  is called Pareto-optimal if 

there does not exist x U  such that  

             * * *
1 2 1 2, , , , , ,Qh x h x h x h x h x h x Q  

and  

             * * *
1 2 1 2, , , , , ,Q Qh x h x h x h x h x h x    

If *x  is Pareto-optimal, then  is called non- 
dominated point.  

 *h x

Let us remark that Definition 2 is a particular case of 
Definition 1, where the cone used is . Pareto- 
optimal points are then solutions that cannot be improved 
in one objective function without deteriorating their per-
formance in at least one of the other objective functions. 
Through the paper, the set of efficient points of a multi- 
objective optimization problem defined by a vector func-
tion value h on a feasible set U, with respect to a cone 

 \ 0Q
QR

K , will be denoted by  K, ,E h U   and the corre-

sponding non-dominated set denoted by  , , KN h U  .  
Unfortunately, for a majority of MOPP, it is not easy 

to obtain an exact description of the efficient set, that 
typically includes a very large or infinite number of 
points. Solving multiobjective programming problems 
consists in general to find a finite subset of the efficient 
set and present them for evaluation to the decision maker 
(DM). A set  is a good representation of the efficient 
set 

W
 K, ,E h U   if the following three conditions are 

fulfilled:  is finite and contain a reasonable number 
of points; non-dominated points corresponding to W  
do not miss a large portion of 

W

 , , KN h U 

  h y

 (coverage 
criterion); and these points do not include points that are 
very close to each other (uniformity criterion).  

The coverage error is mathematically defined by:  

 
 

, ,
max min ,

K y Wx E h U
d h x

 
  

where  .,.d  is a given distance defined in the decision 
space. This measure can be seen as the error associated 
to the worst representation of an element of  
 , , KUE h   in W . The uniformity of a representation 

is mathematically defined by:  

  
, ;
min d ,

y z W y z
h y h

 
  z  

It measures the distance between a pair of closed ele-
ments of . A smaller number of points, a lower cov-
erage error and a more uniform level are desirable in 
order to have a good representation of the efficient set. 
Such subsets are called representative subsets of the effi-
cient set. Approaches that could generate a representative 
subset of the efficient set when solving linear multicrite-
ria optimization problems, can be found in [9-11]. 

W

 
3. Optimistic Formulation of a BLMPP  
 
A standard Bilevel Programming Problem (BPP) can be 
modeled as follows:  

 

 

min ,

0

min
subject to

 solve ,

x X

y Y

F x y

G x

 

 

,

, 0

f x y

y 

y s t

g x









 




    (BPP) 

where 1nx X R  ; 2ny Y R  ; , :F f X Y R 

, : X Y R 

  
are the outer (planner’s or leader’s) problem objective 
function and the inner (behavioral or follower’s) problem 
objective function, respectively;  are 
inequality constraints. 

G g
  x resp y  are decision variables 

controlled by the leader (resp the follower).  
If F  and f  are vector value functions  
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 1 2 1 1 2 2:  and :n n m n n mF R R R f R R R    ,  

then one speak about bilevel multiobjective program-
ming problems (BMPP). The standard formulation of a 
(BMPP) can then be as follows (Equation (1)):  

Our focus will be on the linear formulation of a BMPP, 
given as follows:  

      

   

11

22

1 2

1 1

1 2

2 3 2

min , , , , , , ,

min , , , ,
,

 solves

n

n

m
x R

m
y R

F x y C x y C x y C x y

A x b

f x y c y c y c y
s t

y s t

A x A y b














   
 


  



      

(BLMPP) 

where  are 21, 1, ,iC i m  1n n -dimensional constant 
row vectors; 2i  are 2 -dimensional con-
stant row vectors; 1  is a p-dimensional constant col-
umn vector and  is a q-dimensional constant column 
vector; 1

, 1c i 
b

2b

,, m n

A  is a  constant matrix; 21pn A  is a 1q n  
constant matrix and 3A  a q 2n  constant matrix.  

Let us denote by , the set of rational responses 
of the follower, for each decision 

R x
x  of the leader. It is 

defined as the Pareto-optimal point of the following 
problem:  

   22
1 2

3 2 2

min , , , ,

.    

n m
y R

f x y c y c y c y

s t A y b A x




 


 

with this notation, one has the following formulation of 
BLMPP:  

        

 

11 2

1 1

min , , , , , , ,

Subject to

m
x X

F x y C x y C x y C x y

A x b

y R x





 



 

Using also the following representation for the feasible 
space of BLMPP:  

    1 2
1 1,  and n n x y R R A x b y R x        

One obtains then the following optimistic formulation 
of BLMPP:  

        

 

11 2
,

min , , , , , , ,

.

,

m
x y

F x y C x y C x y C x y

s t

x y







     

(BMPP’) 

We present in the following section a theoretical result 
that will be used after to derive two algorithms for solv-
ing BLMPP’. Through all the rest of the paper, Z  
represents the set defined as follows:  

  1 2
1 1 2 3 2,  and n nZ x y R R A x b A x A y b        

It is assumed that Z  is a non-empty and bounded set 
over the convex polyhedron. We call S the solution set of 
the problem BLMPP’.  
 
4. A New Characterization of the Feasible 

Set of a BLMPP 
 
We introduce a multi-objective programming problem of 
which efficient set is exactly equivalent to the feasible 
set of BLMPP’. A similar result has already been devel-
oped in [5], but with a different multiobjective program-
ming problem. The result of the author is as follows. 
Consider the following multi-objective programming 
problem:  

   21 2
,

1 1

2 3 2

min , , , , ,

.

0, 0

m
x y

f x y c y c y c y x

s t

A x b

A x A y b

x y




 

 

 

 (MPP2) 

Let    2 \ 0 0m
m nK R 

2 11  and  be as defined 
above. The following result holds:  



Lemma 1.  , , KE f Z  
1

The inconvenient of this result is that it is not easily 
applicable. In fact, there does not exist approaches de-
veloped in the literature for finding efficient points with 
respect to the particular cone 

  

   2 \ 0 0m
m nK R 

2 11 . 
Methods are usually for cones that have the form 

 \ 0n
nR , n R . It is the reason why in [5], the author 

approximates the efficient set of MPP2 by the weakly 
efficient set.  

        
 

       

 

1

2

1 2

1 2

min , , , , , , ,

0

min , , , , , , ,
,

 solves

, 0

m
x X

m
y Y

F x y F x y F x y F x y

G x

f x y f x y f x y f x y
s t

y s t

g x y










   
 
  



             (BMPP)    (1)

Copyright © 2011 SciRes.                                                                                AJOR 
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We introduce now a new relation that could be applied 
directly. 

Let us consider the following multi-objective linear 
programming problem:  

 
,

1 1

2 3 2

  0

min , 0

  0

.

0, 0

x y
t

c
x

H x y I
y

e

s t

A x b

A x A y b

x y

 
  

    
  

 


 

 

   (LMPP1) 

where  is a 2 2  matrix with rows ic s ;  is a 
vector having each entry equal to 1 and 

c m n  e
I  is an 1 1n n  

identity matrix. Recall that each i  represents the row 
vector that defined the ith-objective function of the fol-
lower. Let , then the following 
result holds.  

c

 2 1

1
2 \ 0m n 



2 1m nK R   1

Theorem 1.    2
, , KE H Z  

Proof:  

  Let us show that    2
, , KE H Z   

Let , from the definition 

of , one has naturally 

   20 0, , , Kz x y E H Z  

 2
, , KE H Z  2 0 3 0 2A x A y b    

and 1 0 1A x b . So, in order to show that , it suf-
fices to show that 0

z
 0y R x . Let us suppose the con-

trary. Then there exist y  such that: 1) 2 0 3 2A x A y b   
and 2) y  dominate .  0

Relation 2) is equivalent to  
y

  21 2 1 0 2 0 0, , , , , ,mc y c y c y c y c y c y  2m

m

  

with at least one  such that  21, ,k   0k kc y c y .  
Let now consider the point  0 ,z x y* , we have:  

0*
0

0

  0

0

  0
tt

c c
x

y

Hz I x
y

e xe

   
                




y

 and 

0
0

0
0

0

  0

0

  0
tt

c c
x

Hz I x
y

e xe

   
                  

 

Due to relation 2), one has 0cy cy  and  0cy cy , 
this permit to deduct that: 

00

0

xx
H H

yy

  
   

   
 and 00

0

xx
H H

yy

  
   

   
 

So  0 , x y  dominate  0 0, x y
2 1m n 

 with respect to the 
cone , which contradict the fact 2 1 1

2 \ 0m nK R  
 1

 0 0,x y  is a Pareto-optimal point with respect to the 
cone  2 1

2 1

1
2 1\ 0m n

m nK R  
 

 


 2
, , KE H Z 

 0 0,z x y

.  
  Let us show that   
Suppose that there is  such that 

 , , KH Z 
2

. Then there most be a point  z E
 1y 11 1,z x  such that Hz  dominates Hz . This im-

plies that 1Hz Hz  and 1Hz Hz . Using the structure 
of the matrix H , and the fact that  and  0 0, y z x

 1y

1

1

0   

0   

c cy
x

1 1,z x

  

  

, one obtains:  

1 0
0

1 0
0

1 0

0

0 0

0
t tt t

c
x

cy

I x I x
y

e xe e

   
               

y
e x

   
                 

cy





 

and then  

1 0

1 0

1 0
t t

cy

x x

e x

 
  

 e x

 
   
 
 

1 0x x


 

This implies that: 0   and  1 0 0te x x  , 
which means that 1 0x x  and also 1 0 . It fol-
lows that 

t te x e x
1 0cy cy  and 1 0cy . This implies that 1  

dominates . Contradicting the fact that 
cy

y
y

0  0 0y R x .  
From this theorem, one can deduce that solving our 

problem (BLMPP’) is equivalent to solve:  

        11 2, , , , ,m

   2

,
min , ,

.

, , ,

x y

K

F x y C x y

s t

x y E H Z



 

C x y C x y

 

(BLMPP”) 

The theorem led to the following corollary.  

Corollary 1.   2 1
, , , ,K KH Z S E F E   where  

 1
\ 0m K R

, m

1
1

mK R

, ,

 and .   2 1

1 2

1
2 1\ 0m n

m m
 

  

We present now two approaches for solving BLMPP’ 
based on this last result.  
 
5. Two Approaches for Solving a BLMPP 
 
5.1. First Approach 
 
Suppose that the upper decision maker is fully knowl-
edgeable about all his preferences. One could then ag-
gregate the leader objective functions using the weights 

11 2   

 

1

, 1

min ,

.    ,

i

m

m i
x y i

C x

s t x y E





 that measure his preference concerning 
different objective functions. Solving BLMPP’ will be 
then equivalent to solve the following problem:  

 

 2
, , K

y

H Z 
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

1 1

2 3 2

,

0, 0

s t

A x b

A x A y b

x y


 

 

        (LMPP1) 

The obtained problem consists in an optimization of a 
linear function over a Pareto-optimal set. They are many 
approaches, developed in the literature, that are devoted 
to the optimization of a linear function over an efficient 
set (see [12], or the survey presented by Y. Yamamoto in 
[13] or C.O. Pieume and al in [14]). Any of these ap-
proaches can then be applied.  

Step 2: Compute a representative subset (called ) 
of the efficient set of LMPP1.  

S

 For instance, approaches developed in [9-11] can be 
used.  

Step 3: Compute the image set of  by  S
  F Y F S .  

Step 4: Find non-dominated points of  (called ) 
with respect to 

Y effY
F .  

Step 5: Find the Pareto-optimal points set EX  cor-
responding to .  

5.2. Second Approach 

The second approach could be to generate a representa-
tive subset of 

2
 using well known scheme 

[9-11], as described in the first section. Then one com-
putes the image of the obtained subset by the leader ob-
jective functions and selects elements that led to 
non-dominated points for the leader. The following algo-
rithm seems to be natural.   

 , , KE H Z 

eff

 The Pareto-filter approach presented in [10] can be 
used in Step 4 and Step 5.  

Y

Step 1: Construct the following multiobjective linear 
programming problem:  Step 6: EX  is a representative subset of the efficient 

set of BMLPP’, STOP.  

 
,

  0

min , 0

  0
x y

t

c
x

H x y I
y

e

 
  

    
  

 

 5.3. Illustrative Example 

Let consider the following problem [15].  

 

 

1 2

1 2

1 2 1 2
,

1 2

1 2

1 2 1 2
,

1 1 2

2 1

1 2 2

1 2

max 2 ,3

3

, 0

max 3 ,2

subject to: 6,

where  solves                3
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                , 0

x x

y y

x x x x

x x

x x

y y y y

x y ys t

y x y

x x y

y y

 

 
 
  
      

          

 

The solution obtained by the authors [15] is the 
unique point    
with values of leader objective functions and follower 
objective functions respectively equal to 

1 2 1 2, , , 1.5,1.5,4.1154,3.3846x x y y  

 * 4.5,6F 
 92,11.6154

 
and .  * 14.26f 

multiobjective linear programming problem introduced. 
Two approaches have then been proposed in order to 
generate efficient points. The first approach aggregates 
the leader objective function and suggests to use a tech-
nique of optimization of linear function over an efficient  

 The following Table 1 presents non dominated points 
provided by the second approach:  Table 1. Non dominated points. 

Consequently, Pareto-optimal points obtained are the 
points presented in the Table 2.  6. 3.5 4.25 6. 6. 5.1 4.9001736 6. 5.25 4.125

3. 8. 6.5 3. 3. 4.8 4.9826389 3. 4.5 6.75 Figure 1 illustrates non-dominated points provided by 
the last approach (red points).  
 

Table 2. Pareto-optimal points. 6. Conclusions 
0. 2.5 1.75 0. 0. 0.9 1.0130208 0. 0.75 1.875

3. 0.5 1.25 3. 3. 2.1 1.9435764 3. 2.25 1.125

6. 3.5 4.25 1. 2.625 4.225 1.9696181 3.5625 5.25 3 

0. 5. 3.5 5. 3.375 2.675 5.0434028 2.4375 1.5 0 

 
We have established in this paper equivalence between 
the feasible set of a bilevel multiobjective linear pro-
gramming and the set of efficient points of an artificial  
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Figure 1. Representation of non dominated points. 

set, in order to find an optimal solution. The second ap-
proach uses a Pareto-filter scheme to find an approxi-
mated discrete representation of the efficient set. The 
second approach has the advantage to keep the multi- 
criteria concept of the upper DM, while the first one uses 
an aggregation process to eliminate the multi-criteria 
concept for the leader. We hope that this research can 
benefit the development of decision support systems for 
tackling bilevel multi-objective linear optimization prob- 
lems in the real world.  
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