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Abstract 
 
In this paper, we propose a novel approach for Fuzzy random-valued Optimization. The main idea behind 
our approach consists of taking advantage of interplays between fuzzy random variables and random sets in a 
way to get an equivalent stochastic program. This helps avoiding pitfalls due to severe oversimplification of 
the reality. We consider a numerical example that shows the efficiency of the proposed method. 
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1. Introduction 
 
1.1. Background 
 
Fuzzy Stochastic Optimization (FSO) is a worthwhile 
topic. It provides a glimpse into joustling with the com- 
plex and yet useful issue of handling situations where 
fuzziness and randomness are under one roof in a optimi- 
zation setting. Here are, without any claim for exhausti- 
vity, some examples of concrete problems necessitating 
consideration of both fuzziness and randomness: Linear 
regression problem in the presence of both random and 
fuzzy variables [1]; Renewal processes where inter-arri- 
val times are only known as subjective categories of the 
form; almost 3 hours, around 2 hours, less than 4 
hours…, the occurrence of which cannot be predicted 
with precision [2]. An interested reader is referred to [3] 
where the terrain covered by FSO is surveyed. The 
reader may also consult [4-9] for more insights in this 
emerging subfield of mathematical programming under 
uncertainty. The presence of both possibilistic and proba- 
bilistic information within a mathematical programming 
framework is a harbinger of computational nightmares if 
one were to approach the problem without any simplifi- 
cations. Nevertheless, pitfalls due to severe oversimplifi- 
cation of the reality may lead to a bad caricature of the 
problem under consideration. In this paper the focus is on 
an Optimization model involving fuzzy random coef- 
ficients. This model comes up in several applications 
including optimal portfolio selection [10], inventory 
model [11], water resource management [12]. The com- 
monly used approach for solving this model is to craft a 
deterministic surrogate of the fuzzy stochastic optimiza- 

tion at hand, by exploiting the structure available while 
sticking as well as possible to uncertainty principles. 
This approximation paradigm is central to the literature 
[13-15], although some researchers have questioned both 
its robustness and its general validity [16]. Without a 
serious output analysis, it is hard to ascertain both the 
quality of the approximation and the viability of the 
obtained solutions. 
 
1.2. Contribution 
 
In this paper, we establish a mathematical connection 
between fuzzy random variables and random sets. This 
connection is then used to get an equivalent counterpart 
to the original problem. The challenging task of singling 
out a solution of the resulting stochastic program with 
infinitely many objective functions is also addressed. 
The paper contains a systematically solved example 
showing the efficiency of the proposed method. 
 
1.3. Notation 
 
Throughout the paper  will denote the set of 
fuzzy numbers with compact supports. If 

 ccF 
 cca F   

then a  is its  -level set that is a closed interval.  

With  0,1C  we will indicate the set of real-valued  

bounded functions f on [0,1] such that:  
1) f is left continuous for any  0,1t

 0,1
  

2) f has a right limit for any   t
 Conventionally, for ,  and  cca F ,La a a   

   
 0,1C

   stands for the collections of families  

    0,1
Z Z





  of closed intervals endpoints of which  
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are members of  0,1C . We’ll use the following notation 
for  Z  ; 

     ,
L

Z Z Z     


. 

For  the distance between  
1 2

0,1
,

C
Z Z  

1Z  and 
2Z  is given by:  

        11 2 1 2
0,1 0

, d ,HC
d Z Z Z Z d      

where Hd  denotes the Hausdorff metric. Moreover I  
and  denote the interval [0, 1] and the indicator 
function of A respectively. 

1A

 
1.4. Structure of the Paper 
 
The remainder of the paper is organized as follows. In 
the following section, we introduce the notions of random 
closed set and fuzzy random variable and we briefly 
discuss some of their properties. In Section 3, we prove 
that the set of fuzzy random variables can be embedded 
into the set of random closed sets isomorphically and 
isometrically. This embedding result is then exploited in 
Section 4 to describe an approach for solving mathemati- 
cal programs with fuzzy random coefficients. Section 5 
is devoted to a numerical example for the sake of illus- 
tration. We end up in Section 6 with some concluding 
remarks along with lines for further developments in this 
field. 
 
2. Random Set and Fuzzy Random Variable 
 
2.1. Random Set 
 
Consider a probability space  , , P B  and let F  be a 
set of collections of subsets of . A random set in  
is a map: 

E E
F  that satisfies some measurability 

conditions [17]. For our purposes,  and we 
consider random sets of the form:  

E  

 

 
0,1

:

      ( )

C

I

X

X 
 



  


 

The class of the above random sets is denoted by 
 R  .  
 R   can be endowed with the following metric 

based on the Hausdorff metric Hd  For  

 ,X Y R  , 

          , dRd X Y Y P , dHI
X d      


 

Given  we say that  ,X Y R  X  is less or equal 
than , in symbol:  Y

 R
X Y


  

if   , I  ,    sup infX Y   . 
For details on random sets, we refer the reader to [18, 

19]. 
 
2.2. Fuzzy Random Variable 
 
Consider again a probability space  A map   , , P B 

 :

      
ccX F

X
 


 

is a fuzzy random variable if for every  0,1   and 
for every Borel set B of ,  where  

 is defined as follows.  
  1X B

 B
: 2X   

    X x X x     . 

In the sequel, the set of fuzzy random variables in the 
above sense is denoted by . A remarkable pro- 
perty of a fuzzy random variable (frv) is that Zadeh’s 
decomposition principle for fuzzy quantities extends 
naturally to frvs, that is for  

 F 

 Y F  , 
 0,1

Y Y





  . 

Another fundamental key fact about fuzzy random 
variables, which is of interest on its own right and 
which has a huge impact on applications is that an 
 -level set of a fuzzy random variable is a random 
interval [17]. Arithmetic operations on  F   are 
defined as follows. 

Given  ,Y Z F   and    we have:  

  Y Z Y Z    ;    

  Y Y   ⊙ ;    

Y Z  if and only if Y Z  ,    

where  and ○  indicate that operations are on  □

 F   and on  ccF   respectively. It is worthmen- 
tioning that   and ⊙  are based on Zadeh’s extension 
principle [20]. Moreover, Y Z   is tantamount to  

I
ZY    for all (0,1]   where I  stands for in-  

equality between intervals. 
We equip  F   with a distance defined as follows. 
Given  ,Y Z F    

        , d , dHF I
d Y Z Y Z P  d   

    

As in the case of random variables, it is efficient to 
describe the distribution of a frv by means of certain 
measures summarizing some of its most relevant charac- 
teristics. In this way, the first two moments of a fuzzy 
random variable  are defined as follows. The expecta- 
tion of a frv , in symbol  is the fuzzy quantity 
whose 

Y
Y EY

 -level sets are given by:  
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   d  is a selection of EY f P f Y 
  . 

The variance of Y, in symbol VY, is given by the 
following relation:  

    ,FVY E d Y EY  

Limit theorems [22] have been obtained for frvs based 
on the above notions of expectation and variance. 

Moreover, fuzzy random variables enjoy the Random- 
Nikodým property [21]. That is, if  : ccF F   is a 
P-continuous fuzzy measure of bounded variation, then 
there is  such that:   Y F 

  d
B

F B Y  P B B,  

 
3. Embedding Theorem for Fuzzy Random 

Variables 
 
3.1. Auxiliary Mappings 
 
The following three maps will play a staring role in the 
statement and the proof of an Embedding Theorem for 
fuzzy random variables. 
 
3.1.1. Mapping  

  maps  into  as follows.  ccF   0,1C
 

   

   
0,1

:

      ,

cc C

L

I

F

a a a


 


  

  



  




 

where   =L La a   and   =a a   . 
It is well known (see e.g [23,24]) that  thus defined 

is injective, isometric and satisfies the following relation: 


For  and  , cca b F  ,s t , ,   0s  0t 

         1 1s ta b s a t      ⊙ ⊙ b  . 

 
3.1.2. Mappings f  and   
The two other auxiliary maps are given below.  

   :

            
ccf F F

X X




 




 

   

 
0,1

:

        

C
F

X X





   





 

 
3.1.3. Remark 
Relationships between auxiliary mappings are shown in 
Figure 1. The three auxiliary mappings make the dia-
gram given in Figure 1 commutative. 

As a matter of fact,      f X X    

 

Figure 1. Diagram involving auxiliary functions. 

Therefore 
o

f  . 
 
3.2. Main mapping   
 
The mapping   that is used in our Embedding Theorem 
for fuzzy random variables is defined as follows.  

  :

      

F R

X X




  


 

where  

 

   
0,1

:

         ,

C

L

X

X X 



  



  




 

and  

   , ,L L

I
X X X X    

 


      
   

Relationships between the main mapping and auxiliary 
mappings is given in Figure 2. Mappings involved in Fig-
ure 2 make the diagram given in Figure 2 commutative. 

As a matter of fact, 
For    

     X X X      

Hence X X  . 
For the sake of convenience, we identify a real number 

a with the following degenerate fuzzy number.  

 : 0a   ,1  

with  

 
X   Figure 2. Diagram involving the main mapping. 
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

 
1 if 

0 otherwise.

t a
a t


 


  

Moreover, we denote by , the degenerate 
fuzzy random variable:  

1A A  

 1 :

      1
A cc

A

F A





 

Building on the mappings  , f ,  ,   and on 
the above terminological conventions, we are now ready 
to present the main result of this section. 
 
3.3. Statement and Proof of the Embedding 

Theorem 

3.3.1. Theorem 1 
Consider ;  ,X Y F   ,   , 0  , 0   
and let   be as in §3.2. Then the following statements 
hold true.  

1)   is injective  

2)     1 1 =X Y X  Y     
      

3)          , ,F Rd X Y d X Y  

4) 
 R

X Y X Y 


     

In other terms   maps  F   into  isomor- 
phically and isometrically.  

 R 

Moreover,   is order preserving. 

3.3.2. Proof of Theorem 1 
1) Let  and assume  ,X Y F  X Y   Then for 
  we have that:  

     X Y    ;  

   X Y   . 

This means that for   we have:  

         f X X f Y Y           

As  is injective, we conclude that  X Y   for all 
.  

Therefore X Y  and we are done. 
2)  

       

     
       

     
        

   1 1

1 1

1 1

1 1

1 1

X Y

X Y

f X Y

X Y

X Y

 

  

  

 


 

 



 

 
 
   

   
   

 





 

 

 

 

 

  

  

  

  

 

         
         

        

1 1

.

X Y

X Y X

X Y X Y

 

 

 

     

        

   
   

   


 

 ⊙ ⊙

Y  

Therefore  

     1 1X Y X  Y      
     

as desired. 
3)  

   
          

         
        

   d ,

d , d

d , d

d , d

R

HI

HI

HI

X Y

X Y P

X Y P

X Y P

 

 

 

 

d

d

d .

     

     

  















 
 

   

 

As   is isometric we have that:  

 
 

      

   

d , d , d d

                  d , .

HI
R

F

X Y X Y P

X Y

    










   
 

4) X Y  if and only if X Y  ,   . 
This is tantamount to say that: 

X Y  if and only if LX Y 
   ,     (1) 

As LX X 
    and LY Y 

   , we have that (1) 
can be written:  

 if and only if

, ,  ,L L

X Y

X X Y Y   
     



        
      (2) 

(2) is equivalent to X Y  if and only if  

X Y  if and only if      X Y    ,   (3) 

But     X Y    ,   is equivalent to  

       sup infX Y     ,     

or  

 R
X Y 


 . 

Therefore (3) can be written: X Y  if and only if 

 R
X Y 


  and we are done.  

 






 

4. Solving Fuzzy Random-Valued 
Optimization Problems 

 
4.1. Case of Deterministic Feasible Set 
 
Here we are interested in solving the following Optimi- 
zation problem: 
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   min
1

f x
P

x X







 

where  and  : nf F   X  is a convex and 
bounded subset of  n

As   is an isomorphism isometric and order preser- 
ving, solving  1P  is tantamount to find a solution of 
the mathematical program:  

   min
1

f x
P

x X

 



 

More formally we have, 
Proposition 1 

*x  is an optimal solution of  1P  if and only if *x  
is an optimal solution of  1P  . 

Proof 
Assume *x  is an optimal solution for  1P . Then 

*x X  and    *f x f x   x X  . 
Then by Theorem 1 (d) we have that:  

 
 

 *

R
f x f 


  x  x X   

This means *x  is optimal for .  1P 

Assume now that *x  is optimal for  1P  . Then 
*x X  and    *f x f  x   x X  . By Theorem 

1(d) again, we have that:  

   *f x f x   x X   

and we are done  
By definition of  ,   is equivalent to: 1P 

L

 
     

 

min ( , (

1

0,1 ; .

f x f x

P x X

  

 

   


 

  
 

Worthy to note here is the fact that  is a sto- 
chastic multiobjective mathematical program with infini- 
tely many objective functions. 

 1P 

To the best of our knowledge, there is no available 
solution technique for it. This is the price to pay for 
considering an equivalent approach to treat fuzziness 
instead of an approximate one. To be able to carry out a 
fairly discussion of  we find it convenient to assu- 
me that: 

 1P 

1) the expectation model is acceptable for tackling 
randomness;  

2) minimizing an interval can be well handled by mi- 
nimizing its midpoint.  

It might be pointed out in passing, that assumption 1) 
is often used in the literature for derandomization 
purposes [25,26]. Moreover, assumption 2) grants us a 
way for transforming intervals into real numbers. This 

transformation generalizes quite canonically the real case. 
As a matter of fact the midpoint of  ,a a  is . a

Bearing in mind 1), 2) and considering the fact that 
multiplying an objective function by a constant does not 
alter the localisation of an optimum,  1P   may be 
written as follows.  

 
       

 

min

2

0,1 ; .

LE f x E f x

P x X

  

 

   
 


 

 

 

from now on,    f x   stands for  

       E f x E f x 
L      

Therefore (P2) reads merely:  

 
   min

2

f x

P x X

I





     




 

Let’s now select a finite subset of  1, = , , mI S    
and let 1, , n   be real-valued functions such that:   

1)   0  j ; I  ;   = 1, ,j m

2)   1 if 

0 if j i

i j

i j
 


  

 

Define a positive interpolating operator K with nodes 

1, , m   as follows:  

      
=1

=
m

j j
j

Kh h     

Consider now the following mathematical programs.  

 
   min

3

.

Kf x

P x X

I





   
 




 

 
  

 

min

4

1, ,

jf x

P x X

j m

   
 


 

 

The following result bridge the gap between  3P  
and  4P . 

Proposition 2 
If *x  is efficient for (P3) then *x  is efficient for 

(P4). 
Proof 
Suppose that *x  is an efficient solution for  3P  

and not efficient for  4P  Then there is no x X  
such that  

       *Kf x Kf x        I       (§) 
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and  

       *<Kf x Kf x      for some  I   (§§) 

As *x  is not efficient for  4  we have  that, P  also
there is  

x X  such that      *
j jf x f x   

 1, , m  j 

and  

     *<s sx f xf    for some  1, ,s m  . 

Consider now I   
 j j 

arb en. As  
 and at:  

itrarily chos
 we have th  0j   = 1

*   j j f x        0jf x      1,j  ,  m

and  

 for some        * < 0s s sf x f x     
  1, ,s m   

Therefore we can say that there is x X  such that:  




This means, as 

      *

=1

< 0j jf x f x      
m

j
j



  has been chosen arbitra , that 
there is 

rily
x X  such that:  

       *<Kf x Kf x        I   

This contradicts the fact that there is no x X  such 
that (§) and (§§) hold. 

Therefore *x  is efficient for (P4). 
It is a common place to say that (P3) is the same as 

P 2   where  f x  is replaced by  Kf x  Unfortuna- 

n be efficient for 
(P

tel
mathe

y both  2P   and (P3) are too cumbersome for 
matical tractability. For practical purposes, we’ll 

resort to (P4) is a discretization of  2P   
Thanks to the contraposite of Proposition 2, we know 

that only an efficient solution of (P4) ca

 that 

3). It might also be pointed out in passing that the 
discretization error decreases when the grid  

 1, , mS     is refined [30]. 
This means we should keep the roughness of the grid, 

i.e.  

 1
1

, , max minm ih h
i mI

       
 

as low as possible. 
The foregoing discussion leads us to describe the 

 for solving following algorithm  1P . 
Description of the algorithm 
Step 0: Fix 0  an acceptable nd bou  of error for 

e (P

h . 
Step 1: Read data of (P1). 

Step 2: Fram 1) as  2P  . 
Step 3: Put 0 . 
Step 4: Take a discretiz  ofation  

e (P4)
r (P4). 

 1
, , , mI S      . 

Step 5: Writ . 
Step 6: Find an efficient solution fo
Step 7: Compute 1max minI i m ih        and ch- 

ec


k whether <h  . 
If this is true, go t
Otherwise

o Step 9,  
 go to Step 8. 

tization , put Step 8: Take a finer discre S  S S   
an

 
4. zy Random Constraints 

ation pro- 
lem.  

d go to Step 5. 
Step 9: Print the solution obtained. 
Step 10: Stop. 

2. Case of Fuz
 
Here we are interested in the following optimiz
b

 
 

5
; = 1, ,i i

P
 min f x

g x b i m



 

 
 

, , = 1, ,if g i m    
 n  and 

where are fuzzy random  func- 
tions of

-valued
 ib F  ; 

ider the followin
= 1, ,i m . 

Cons g optimization problem:  

   
 

min
6

; = 1, ,

f x
P

 i iRg x b i m


 

    








Before stating a result that bridges the ga  between p
 5P  and  6P , we introduce the following respective 
surrogates to  5P  and  6P  respectively.  

   
5

f x
P 


 

min

x X






   min
6

f x
P

x X

 



 

X   and X where  are deterministic counterparts of 
the following sets respectively:  

  ; = 1, ,n
i ix g x b i m     

and  

    ; = 1, ,n
i iRx g x b i m      

Proposition 3 
is an optimal solution for if and only if  5P   *x  

*x  is optimal for  6P  . 
Proof 
By Theorem 1 (d e ha X X ), w ve that   Moreover 

by ition 1,  Propos  5P   and valent.  6P   are equi
(P5) anIn this sense, we can say that d (P6) are 
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lve (P haveequivalent. To so 5) we  to consider P 6   
an

amp  

we consider the following 
mple example.  

d then apply the method described in the previous 
section for solving  2P  . 
 
5. Numerical Ex le
 
For the sake of illustration, 
si

 

 max c x c x  1 1 2 2

1 2

1 2

1 2

8

2 3 19

0; 0

E

x x
P

x x

x x


 


 

  

 

where 1c  and 2c  are fuzzy random variables defined  

on 1 2,   with   1 1 5
P p 2

   and  

 2 2

3

5
P p  Details rvs are     on the two f given in  

Table 1.  
 , ,a b c  

 
stands for a triangular fuzzy number with 

membership  , ,a b c  defined as in Figure 3.  
According to Proposition 1,  EP  is equivalent to the 

following ma cal program:  themati

Table 1. Details on frvs 1
c  and 2

c . 

frv fuzzy values probabilities 

1c   11 = 1,1,1c   
11 =

5
p  

2

  12 = 4;2;0,5c   
12

3
=

5
p  

2c   21 = 2;1,5;3c   
21

2
=

5
p  

  22 = 3;0,5;0, 25c   
22

3
=

5
p  

 

 

 1 1 2 2

1 2

1 2

1 2

max

8

2 3 19

0; 0

E

c x c x

x x
P

x x

x x

  


  
 

  

 

 

  1 1 2 2=f x c x c x      and  reads:   2PHere 

 

    
    

1 1 2 2

1 1 2 2

1 2

1 2

1 2

max

         

8

2 3 19

0; 0

L L

E

E c x c x

E c x c x

x xP

x x

x x

 

 

 

 

  
   
  
  


 


 

 

 
 

;I  

Let 0, 25   
 

and consider the following discretiza- 
tion of I ;  

 = 0;0,25;0,5;0,75;1S  

with this grid,  takes the form:  



ideri g d

( 4)P

 

 
     
   

 

11 11 1 12 1 2

22 22 2 11 11 1 12 12 1

21 21 2 22 22 2

1 2

1 2

1 2

max

         

         

8

2 3 19

0; 0

0;0, 25;0,5;0,75;1

L

L

E

p c x p x

p c x p c x p c x

p c x p c x
P x x

x x

x x



 

 



  
   

      


 
  
 

 

 



  

 
 

   12 21 21
L Lc p c x 


 

Cons n ata of Tables 1-3,  EP   becomes:  




1 2 1 2 1

1 2 1 2

1 2

1 2

1 2

max 6,5 4,75 ,6,27 4, 05 4,97 ,

         5,82 5,08 ,10, 4 5,2

2 3 19

0; 0

86 ,6,

Figure 3. Triangular fuzzy number delta (a, b, c). 

2

8

x x x x

x x x x

x x

x x

  


 

  
  

 

x x

A Pareto optimal solution of this multiobjective pro- 
gram may be obtained by solving the following weighting
program. 

Table 2. Left endpoints of α-level cuts of 

x x
  

 


ijc . 

 L

ijc    0 0.25 0.5 0.75 1 

L

ijc   0 0.25 0. 0.75 1 5 

 11

Lc   3.5 3.625 3.75 3.875 4 

 21

Lc   –1 –0,25 0.5 1.25 2 

 22

Lc   2.75 2.812 2.875 2.937 3 
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Table 3. Right endpoints of α-level cuts of  
ijc .

 ijc    0 0.25 0.5 0.75 1 

 11c   2 1.75 1.5 1.25 1 

 12c   6 5.5 5 4.5 4 

 21c   3.5 3.125 2.75 2.375 2 

 22c   3.5 3.375 3.25 3.125 3 

 

  

 

1 1 2 2 1 2

3 1 2 4 1

5 1 2

1 2

1 2

1 2

max 6,5 4,75 6,27 4,86

      5,0

         , 4

8

2 3

> 0 , ,5s

x x x x 
2     6,05 4,97 5,82 8

 10 5, 2

19

0; 0; ; = 1

x x x     x

for 

x

x x

x x

x x

 





   


   
  
  
   

 x

s

1 2 43 4 1          we have th rame prog :  

 1 2max 35,04 24,86

1 2

1 2

1 2

19

0; 0

8

2 3

x x
x


x

x x

x x

  
 
 

 



which yields the solution   LINGO 
software th ugh all, this 
solution is a good approxim n o he 
riginal problem 

 8,* 0x
 the grid 

atio the

using
is sm. As e ro ness of h  

 n of solutio f t
o  EP  
 
6. Concluding Remarks 
 
Though significant progress has been made in recent 
years on Fuzzy Stochastic Optimization [3-7], there a e 
from an algorithmic point of view, many challenges 
remaining. Developing effective and efficient techniques 
for handling such problems still remain an important 
issue. This paper has been written to address some of the 

e mentioned challenges. It
references for those whose appetite has been sufficiently 
whetted that they are hungry for more. 

It might be pointed out that a general m thodology for 
solving Fuzzy Stochastic Optimization problems has 
been outlined in [3]. The quintessential of that methodo- 
logy is to perform a couple of transformations (possibili- 

r

abov  is also filled with many 

e

stic and probabilistic) say 1f  and 2f  either sequen- 
tially or in parallel in a way to put the original problem 
into deterministic terms. 

To be in tune uwith ncertainty principles [22], these 
troduce possibilistic 

at a more fundam
vel. They should also capture the essence of invo

transformations should be able to in
and probabilistic information ental 

lved le

fuzziness and randomness. This is the reason why, in this 
paper, we found it convenient not to let both 1f  and 2f  
be mere approximations. The possibilistic transformation 
is an equivalence obtained from connections between 
fuzzy random variables and random closed sets. There- 
fore our approach contrasts markedly with those where 
approximation of fuzzy values by real ones is followed 
by approximation of random variables by their moments 
[7]. It also differs form approaches base  fu  
sto

y 

ear optimization problems
m

d on zzy-

. The 

chastic simulation [28]. Moreover, our approach can 
handle both linear and non linear optimization problems. 
It is also less demanding in terms of information that the 
decision maker should provide before having his problem 
solved. This departs strongl with extant methods as 
illustrated by the following sample. In [4,5] for example, 
emphasis is placed on lin

ethod described in [28] is based on the assumption that 
involved fuzzy random variables are of the L R  type. 
Techniques discussed in [6,29] require that the decision 
maker be able to set appropriate targets and suitable 
thresholds or to manipulate complex indexes. The price 
to pay for using the method described here is t  
computational challenge brought up by the resulting 
problem that is a stochastic program with infinitely many 
objective functions. An algorithm for solving this pro- 
blem has be presented. An efficient implementation and 
numerical testing of the proposed algorithm is a topic of 
future research. 
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