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Abstract 

We study the Hamiltonian, path integral and Becchi-Rouet-Stora and Tyutin 
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1. Introduction 

In this work we consider the restricted gauge theory of quantum chromodynamics 
(QCD) in one-space one-time dimension (QCD2) à la Cho et al. [1]-[14], studied 
rather widely [2]-[23], and study its quantization using Hamiltonian [24], path 
integral [25] [26] [27] [28] and Becchi-Rouet-Stora and Tyutin (BRST) [29] [30] 
[31], formulations [24]-[31], in the usual instant-form (IF) of dynamics (on the 
hyperplanes: 0 constantx t= = ) [32] [33]. We recap the basis of this theory in 
the next section where we also highlight the motivations for the present study. 
The theory is seen to be gauge-invariant (GI) possessing a set of first-class con-
straints [14]. We quantize this theory under appropriate gauge-fixing conditions 
(GFC’s) using the Hamiltonian and path integral formulations [24] [25] [26] [27] 
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[28]. 
However, in the usual Hamiltonian and path integral quantization [24] [25] 

[26] [27] [28] of a theory under some GFC’s, the gauge-invariance of the theory 
gets broken because of the gauge-fixing. In view of this, in order to achieve the 
quantization of the theory such that the gauge-invariance of the theory is main-
tained even under gauge-fixing, we go to a more generalized procedure called 
the BRST quantization [29] [30] [31], [27] [28] [29] [30] [31], where the ex-
tended gauge symmetry of the theory (called the BRST symmetry) is maintained 
even under gauge-fixing. In fact, this also necessitates a study of the BRST quan-
tization of the theory to achieve a kind of complete quantization of the theory. 

The paper is organized as follows. In the next section, we briefly recap the ba-
sics of the so-called restricted gauge theory of QCD2 à la Cho et al. [1]-[13]. In 
Section 3, we study its Hamiltonian and path integral formulations. Its BRST 
formulation is studied in Section 4. Finally the summary and discussion is given 
in Section 5. 

2. Restricted Gauge Theory of QCD2 à la Cho et al.: A Recap of  
Basics 

In this section, we recap the basics of the restricted gauge theory of QCD2 à la 
Cho et al. [1]-[14] and others [1]-[23]. The theory makes use of the so-called 
“Cho-decomposition“, which is, in fact, the gauge independent decomposition 
of the non-Abelian potential into the restricted potential and the valence poten-
tial and it helps in the clarification of the topological structure of the 
non-Abelian gauge theory, and it also takes care of the topological characters in 
the dynamics. 

The non-Abelian gauge theory has rich topological structures manifested by 
the non-Abelian monopoles, the multiple vacua and the instantons and one 
needs to take into account these topological characters in the non-Abelian dy-
namics. Since the decomposition of the non-Abelian connection contains these 
topological degrees explicitly, it can naturally take care of them in the 
non-Abelian dynamics. 

An important consequence of the decomposition is that it allows one to view 
QCD as the restricted gauge theory (made of the restricted potential) which is 
coupled to a gauge-covariant colored vector field (the valence potential). The re-
stricted potential is defined in such a way that it allows a covariantly constant 
unit isovector n̂  everywhere in space-time, which enables one to define the 
gauge-independent color direction everywhere in space-time and, at the same 
time, allows one to define the magnetic potential of the non-Abelian monopoles. 
Furthermore it has the full SU(2) gauge degrees of freedom, in spite of the fact 
that it is restricted. Consequently, the restricted QCD made of the restricted po-
tential describes a very interesting dual dynamics of its own, and plays a crucial 
role in the understanding of QCD. 

On the other hand, the restricted QCD is a constrained system, due to the 
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presence of the topological field n̂  which is constrained to have the unit norm. 
A natural way to accommodate the topological degrees into the theory is to in-
troduce a topological field n̂  of unit norm, and to decompose the connection 
into the Abelian projection part which leaves n̂  a covariant constant and the 
remaining part which forms a covariant vector field:  

2

1 ˆˆ ˆ ˆ

ˆ

ˆ 1

A n n n A
g

A n

n

µ µ µ µ µ µ

µ µ

= − ×∂ + = +

= ⋅

=

A X X

A               (1a) 

where Aµ  is the “electric” potential and the Abelian projection Aµ  is precise-
ly the connection which leaves n̂  invariant under the parallel transport and 
makes n̂  a covariant constant:  

ˆˆ ˆ ˆ ˆ 0D n n gA nµ µ µ= ∂ + × =                       (2) 

Also, under the infinitesimal gauge-transformation:  

1 1 1ˆ ˆˆ  ,    ,  

ˆ ˆ  ,  

D A n A D
g g g

n n

µ µ µ µ µ µ

µ µ

δ α δ α δ α

δ α δ α

= = ⋅∂ =

= − × = − ×

  

 

A

X X
          (3) 

This shows that Aµ  by itself describes an ( )2SU  connection which enjoys 
the full ( )2SU  gauge degrees of freedom. The restricted potential Aµ  is de-
fined by the Abelian projection and the connection space (the space of all gauge 
potentials) forms an affine space. Indeed the affine nature of the connection 
space guarantees that one can describe an arbitrary potential simply by adding a 
gauge-covariant piece X µ  to the restricted potential. 

The above mentioned decomposition is known as the Cho-decomposition or 
the Cho-Faddeev-Niemi decomposition. It was introduced [2]-[23] in an attempt 
to demonstrate the monopole condensation in QCD. The decomposition itself and 
the importance of this decomposition in clarifying the non-Abelian dynamics in 
QCD2 has been studied by many authors and for further details we refer to the 
work of Refs. [2]-[23]. 

The restricted potential Aµ  actually has a dual structure and the field 
strength made of the restricted potential is decomposed as:  

( ) ( )ˆ ˆ,  F F H n F A Aµν µν µν µν µ ν ν µ= + = ∂ − ∂             (4a) 

( ) ( )1 ˆ ˆ ˆ H n n n C C
gµν µ ν µ ν ν µ= − ⋅ ∂ ×∂ = ∂ − ∂              (4b) 

where Cµ  is the “magnetic” potential. Further, following the work of Refs. 
[2]-[23], it is possible to introduce the magnetic potential as above (at least lo-
cally section-wise) in view of the following identity:  

10,  
2

H H Hµ µν µν µνρσ ρσ∂ = =                      (5) 

which allows one to identify the non-Abelian monopole potential by:  
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1 ˆ ˆn n
gµ µ= − ×∂C                         (6) 

in terms of which the magnetic field is expressed as  
1 ˆ ˆ ˆg n n H n
gµν µ ν ν µ µ ν µ ν µν= ∂ − ∂ + × = − ∂ ×∂ =H C C C C          (7) 

With the above connection (-albeit decomposition) one has:  

( ) ˆ ˆˆ

ˆ 0
ˆˆ 0

F H n D D g

n

n D

µν µν µν µ ν ν µ µ ν

µ

µ ν

 = + + − + × 
⋅ =

⋅ =

F X X X X

X

X

          (8) 

and for the Yang-Mills Lagrangian density one has: [1]-[15]:  

( ) ( )

( ) ( )

2

2 2 2

1 1ˆ ˆ ˆ ˆ ˆ
4 4 2

ˆ ˆ       1
4

gF F D D F

g n n

µν
µν µ ν ν µ µν µ ν

µ ν µ µλ λ

= − − − − ⋅ ×


− × + − + ⋅ 


 X X X X

X X X
       (9) 

where λ  and µλ  are the Lagrange multiplier fields and  
( ): 1, 1g g diagµν

µν= = + − . The Lagrangian density of the so-called restricted 
gauge theory made of the Abelian projection without µX  is therefore defined 
by [2]-[14]:  

( )21 ˆ ˆ ˆ 1
4

F F nµν
µν λ = − + −  

                   (10) 

The theory defined by the above Lagrangian density has a full ( )2SU  gauge 
invariance and it describes the dual dynamics of QCD with the dynamical de-
grees of the maximal Abelian subgroup U(1) as the electric component and the 
topological degrees of SU(2) as the magnetic component. It therefore represents 
an important model in the QCD theory namely, in QCD2 and deserves to be stu-
died more properly. One of the important steps in this direction is to construct 
the quantum theory corresponding to this classical theory of QCD2 by quantiz-
ing the theory. This provides motivation for the present studies and in fact, ne-
cessitates our presents studies. In the next section, we consider the Hamiltonian 
and path integral formulations of this constrained theory. 

3. Hamiltonian and Path Integral Formulations 

We now study the Hamiltonian and path integral quantization of the above re-
stricted gauge theory of QCD2 (made of the Abelian projection without µX ) 
defined by the Lagrangian density [2]:  

( ) ( )

( )( ) ( )

( )

2 2

2

2

1 1ˆ ˆ ˆ ˆ1   1
4 4
1 ˆ 1
4
1 1 1 ˆ 1
4 2 4

F F n G G n

F H F H n

F F F H H H n

µν µν
µν µν

µν µν
µν µν

µν µν µν
µν µν µν

λ λ

λ

λ

   = − + − = − + −      
 = − + + + −  
 = − − − + −  



        (11) 

In the instant-form (IF) of dynamics, the above Lagrangian density reads:  
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( ) ( ) ( )2 2 2
0 1 1 0 0 1 1 0 2

1 1 1 ˆ 1
2 2

A A A A n
g g

λ
 

= ∂ − ∂ + ∂ − ∂ Φ + Φ + − 
 

    (12a) 

( )0 1ˆ ˆ ˆn n nΦ = ∂ ⋅ ×∂                         (12b) 

Here Φ  is another topological scalar field constructed out of the topological 
field n̂  (of unit norm) and its space derivative ( 1n̂∂ ) as well as its time deriva-
tive ( 0n̂∂ ), as defined above. The canonical momenta obtained for the above 
theory are:  

( ) ( )
0

0 0 0

0,  0
Aλ λ

∂ ∂
Π = = Π = =

∂ ∂ ∂ ∂
                (13a) 

( ) ( ) ( )1
0 1 1 0

0 1

1:E A A
A g

∂
= Π = = ∂ − ∂ + Φ

∂ ∂
            (13b) 

( ) ( )( )ˆ 0 1 1 0 1
0

1ˆ ˆ ˆ
ˆn A A n n
n g

∂
Π = = − ∂ − ∂ ×∂

∂ ∂
             (13c) 

Here λΠ , 0Π , ( )1:E = Π , and ˆ
ˆ

nΠ  are the momenta conjugate canonically to 
λ , 0A , 1A , and n̂  respectively. The above equations however, imply that the 
theory possesses three primary constraints:  

1 0λχ = Π ≈  
0

1 0Ω = Π ≈  

ˆ1
ˆˆ 0nnψ = ⋅Π ≈                         (14) 

The symbol ≈  here denotes a weak equality in the sense of Dirac [24]. The 
canonical Hamiltonian density of the theory c  is:  

( )2 2
1 0

1 ˆ 1
2

N
c E E A nλ = + ∂ − −  
                (15) 

After including the primary constraint 1χ , 1Ω , and 1ψ  in the canonical 
Hamiltonian density c  with the help of Lagrange multiplier field ( ),u x t , 
( ),v x t  and ( ),w x t  which is treated as dynamical, the total Hamiltonian den-

sity of the theory T  could be written as:  

( )2 2
1 0 1 1 1

1 ˆ 1
2

N
T E E A n u v wλ χ ψ = + ∂ − − + +Ω +  
          (16) 

The Hamilton’s equations of motion of the theory that preserve the con-
straints of the theory in the course of time could be obtained from the total Ha-
miltonian: 1dT TH x= ∫  and are omitted here for the sake of brevity. De-
manding the preservation of the primary constraints 1χ  and 1Ω  for all time 
leads to the secondary Gauss-law constraints 2χ  and 2Ω  respectively:  

( )2
2 ˆ 1 0nχ = − ≈  

2 1 0EΩ = ∂ ≈                         (17) 

The preservation of 1ψ  for all times does not lead to any secondary con-
straint. The preservation of 2χ  and 2Ω  also does not lead to any new con-
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straints. The theory is therefore seen to possess a set of five constraints:  

( )

0
1 1

2 2 1

3 1

2
4 2

ˆ5 1

0
0

0

ˆ 1 0

ˆˆ 0n

E

n

n

λ

ρ
ρ
ρ χ

ρ χ

ρ ψ

= Ω = Π ≈
= Ω = ∂ ≈
= = Π ≈

= = − ≈

= = ⋅Π ≈

                    (18) 

Matrix Rαβ  of the Poisson brackets of the above constraints iρ  among 
themselves is clearly singular implying that the set of these constraints iρ  is 
first-class and that the theory under consideration is GI. In fact, the theory is 
seen to be invariant under the local vector gauge transformations:  

0

0
ˆ

1 1 1ˆ ˆ ˆ ,  , 0

ˆ 0n u v w

A n n n
g g g

E

µ µ µ

λ

δ α α δλ α δ α

δ δ δ δ δ δ δ

= ⋅∂ = ∂ = ∂ = × =

Π = = Π = Π = Π = Π = Π =

 

       (19) 

where gauge parameter ( ),x tα  is an arbitrary function of its arguments. The 
components of the vector gauge current ( )0 1,J J Jµ ≡  are:  

0 0 1 0 0 1
1 0 1 1 0

1 0 1 1 0 1
0 0 1 1 0

1 1d d d d

1 1d d d d

J x x j x x A A
g g

J x x j x x A A
g g

α

α

  
= = ∂ ∂ − ∂ + Φ  

  
  

= = − ∂ ∂ − ∂ + Φ  
  

∫ ∫

∫ ∫
     (20) 

The theory is clearly gauge-invariant and could now be quantized under appro-
priate gauge-fixing conditions (GFC’s), which could e.g. be chosen as (which by 
no means is an unique choice):  

1 2 1 3 00,  0,  0A Aζ λ ζ ζ= ≈ = ≈ = ≈               (21) 

It may be important to mention here that any set of GFC’s could be chosen here 
such that the resulting set of constraints of the theory (including the set of GFC’s) 
becomes a set of second-class constraints so that the matrix of the total set of 
constraints becomes non-singular and consequently could be inverted. 

The total set of constraints of the theory under these GFC’s then becomes:  
0

1 1 1 0ξ ρ= = Ω = Π ≈                   (22a) 

2 2 2 1 0Eξ ρ= = Ω = ∂ ≈                  (22b) 

3 3 1 0λξ ρ χ= = = Π ≈                   (22c) 

( )2
4 4 2 ˆ 1 0nξ ρ χ= = = − ≈                 (22d) 

ˆ5 5 1
ˆˆ 0nnξ ρ ψ= = = ⋅Π ≈                  (22e) 

6 1 0ξ ζ λ= = ≈                      (22f) 

7 2 1 0Aξ ζ= = ≈                     (22g) 

8 3 0 0Aξ ζ= = ≈                     (22h) 

The non-vanishing matrix elements of the matrix Mαβ  of the Poisson Brack-
ets’s among these above constraints iξ  are:  
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( )18 81M M x yδ= − = − −                  (23a) 

( )27 72 1M M x yδ= + = −∂ −                 (23b) 

( )36 63M M x yδ= − = − −                  (23c) 

( )2
45 54 ˆ2M M n x yδ= − = + −                (23d) 

The above matrix Mαβ  is clearly non-singular implying that the constraints iξ  
form a set of second-class constraints. The theory could therefore be quantized 
using the Dirac’s Hamiltonian Formulation as well as using the path integral 
formulation. The square root of the absolute value of the determinant of this 
matrix Mαβ  is:  

( ) ( )( ) ( )
1

322
1ˆ2det M n x y x yαβ δ δ   = − ∂ −    

          (24) 

The non-vanishing equal-time Dirac brackets (DB’s) of the theory are [24]:  

( ) ( ){ } ( ) ( )ˆ ˆ ˆ ˆ2

1, , ,
ˆ

a b a b a b
n n n nDB

x t y t n n x y
n

δΠ Π = Π −Π −        (25a) 

( ) ( ){ } ( ) ( )ˆ ˆ ˆ2

1,  , ,
ˆ

a b a b a b
n n nDB

n x t y t n n x y
n

δΠ = Π −Π −        (25b) 

( ) ( ){ } ( ) ( )ˆ ˆ ˆ2

1,  , ,
ˆ

a b a b a b
n n nDB

x t n y t n n x y
n

δ−
Π = Π −Π −        (25c) 

Here one needs to remember that while making a transition from equal-time 
Dirac brackets to the equal-time commutation relations using the Dirac quanti-
zation rule, one needs to take in to account the problem of operator ordering 
(which occurs here because the results of the equal-time commutation relations 
involve the product of the operators). Also, the roman indices a and b here, are 
the color indices of the gauge theory of QCD2. 

Also for the later use, for considering the BRST formulation of the theory we 
convert the total Hamiltonian density of the theory into the first order Lagran-
gian density IO : 

]

( ) ( )

0
ˆ0 0 0 0 1 0

0 0 0

2 2 2
0 1 1 0 2

ˆ ˆ

1 1 ˆ 1
2 2

IO n

u v w T

A E A n

u v w

A A n
g

λ λ

λ

= Π ∂ +Π ∂ + ∂ +Π ⋅∂
+Π ∂ +Π ∂ +Π ∂ −

 
= ∂ − ∂ − Φ + − 
 



             (26) 

For considering the path integral formulation, the transition to quantum 
theory is made again by writing the vacuum to vacuum transition amplitude for 
the theory, called the generating functional [ ]kZ J  of the theory, following 
again the Senjanovic procedure for a theory possessing a set of second-class con-
straints [25] [26] [27] [28], appropriate for our present theory, considered under 
the gauge-fixing conditions iξ , in the presence of the external sources: kJ  as 
follows [25] [26] [27] [28]: 
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[ ] [ ] 0 1 0
0 0 0 0 1

ˆ 0 0 0 0

d exp d d

ˆ ˆ             

k
k k

n u v w T

Z J i x x J A E A

n u v w

λµ λ = Φ +Π ∂ +Π ∂ + ∂
+Π ⋅∂ +Π ∂ +Π ∂ +Π ∂ − 

∫ ∫


    (27) 

where the phase space variables of the theory are: ( )0 1 ˆ, , , , , ,k A A n u v wλΦ ≡  
with the corresponding respective canonical conjugate momenta:  

( )ˆ0
ˆ, , , , , ,k n u v wEλΠ ≡ Π Π Π Π Π Π . The functional measure [ ]dµ  of the gene-

rating functional [ ]kZ J  under this gauge-fixing is obtained as:  

[ ] ( )( ) ( ) [ ][ ][ ][ ][ ][ ][ ][ ]

[ ] [ ][ ][ ] [ ] [ ]

( ) [ ] [ ] [ ]

32
1 0 1

0 0
ˆ 1

2
ˆ 1 0

ˆ ˆd 2 d d d d d d d d

ˆ            d d d d d d 0 0 0

ˆˆ ˆ            1 0 0 0 0 0

n u v w

n

n x y x y A A n u v w

E p p p E

n n A A

λ

λ

µ δ δ λ

δ δ δ

δ δ δ λ δ δ

 = − ∂ − Π  

    Π Π Π ≈ ∂ ≈ Π ≈    

   − ≈ ⋅Π ≈ ≈ ≈ ≈   

(28) 

This completes the Hamiltonian and path integral formulations of the theory. 
The BRST formulation of the theory is considered in the next section. 

4. BRST Formulation 

In the following, we study the BRST formulation of the theory. For the BRST 
formulation of the model, we rewrite the theory as a quantum system that pos-
sesses the generalized gauge invariance called BRST symmetry. For this, we first 
enlarge the Hilbert space of our gauge-invariant theory and replace the notion of 
gauge-transformation, which shifts operators by c-number functions, by a BRST 
transformation, which mixes operators with Bose and Fermi statistics. We then 
introduce new anti-commuting variables c and c  (Grassman numbers on the 
classical level and operators in the quantized theory) and a commuting variable 
b such that [27] [28] [29] [30] [31]:  

0 0 0 1 1 0 0
1 1 1 1ˆ ˆ ˆ ˆ, , , c A c A c u c
g g g g

δλ δ δ δ= ∂ = ∂ = ∂ = ∂ ∂           (29a) 

0
ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ 0n u v wE λδ δ δ δ δ δ δΠ = Π = = Π = Π = Π = Π =            (29b) 

ˆ ˆ ˆ ˆ ˆ ˆˆ 0, 0, , 0n v w c c b bδ δ δ δ δ δ= = = = = =              (29c) 

with the property 2ˆ 0δ = . We now define a BRST-invariant function of the dy-
namical phase space variables of the theory to be a function f such that ˆ 0fδ = . 
Now the BRST gauge-fixed quantum Lagrangian density BRST  for the theory 
could be obtained by adding to the first-order Lagrangian density IO , a trivial 
BRST-invariant function (e.g.) as follows:  

( ) ( )2 2 2
0 1 1 0 2

0 0 1 0 0 1

1 1 ˆ 1
2 2

1ˆ            
2

BRST A A n
g

c g A g A g A b

λ

δ


= ∂ − ∂ − Φ + −


  + ∂ + ∂ − ∂ +     



           (30) 

The last term in the above equation is the extra BRST-invariant gauge-fixing 
term. After one integration by parts, the above equation could now be written as:  
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( ) ( )

( )( )

2 2 2
0 1 1 0 2

2
0 0 0 0

1 1 ˆ: 1
2 2

1 1             
2

BRST A A n
g

b gb A E c c
g

λ


= ∂ − ∂ − Φ + −


 
+ + ∂ − + Φ + ∂ ∂  

  



          (31) 

The last term in the above equation is the BRST-invariant gauge-fixing term. 
Proceeding classically, the Euler Lagrange equation for b reads:  

( )0 0 1 0 0 1b g A g A g A− = ∂ + ∂ − ∂                  (32) 

which in turn (with the requirement ˆ 0bδ = ) then implies:  

0 0 0c∂ ∂ =                            (33) 

The above equation is also an Euler-Lagrange equation (ELE) obtained by the 
variation of BRST  with respect to c . We define the bosonic momenta in the 
usual manner:  

( )0
0 0

: BRST gb
A

∂
Π = =

∂ ∂
                    (34) 

but for the fermionic momenta with directional derivatives we set  

( ) ( )0 0
0 0

: ; :c BRST c BRSTc c
c c

∂ ∂
Π = = ∂ Π = = ∂

∂ ∂ ∂ ∂

 

          (35) 

implying that the variable canonically conjugate to c is ( 0c∂ ) and the variable 
conjugate to c  is ( 0c∂ ). For writing the quantum Hamiltonian density from 
the Lagrangian density in the usual manner we remember that the former has to 
be Hermitian so that:  

( )

( )

2 2
ˆ0 0 1 0

2 2
0 0 0 1 1 0

1ˆˆ ˆ 1
2

1             
2

BRST u v n

c c

u v n w E E A n

g b gb A A A

λ= Π ∂ +Π ∂ + ⋅Π + + ∂ − −
+ +Π Π − ∂ − ∂ + ∂ 


     (36) 

We can check the consistency of our definitions of the the fermionic momenta 
by looking at the Hamilton’s equations for the fermionic variables:  

0 0;BRST BRST
c c

c c∂ ∂
∂ = ∂ =

∂Π ∂Π

 

                  (37) 

We thus see that  

0 0;BRST c BRST c
c c

c c∂ ∂
∂ = = Π ∂ = = Π

∂Π ∂Π

 

            (38) 

is in agreement with our definitions of the Fermionic momenta. Also, for the 
operators 0, , c c c∂  and 0c∂ , one needs to satisfy the anti-commutation rela-
tions of 0c∂  with c  or of 0c∂  with c, but not of c, with c . In general, c and 
c  are independent canonical variables and one assumes that [25] [26] [27] [28]:  

{ } { } { } { } ( ){ }0 0 0, , 0; , 0; , 1 ,c c c c c c c c c cΠ Π = = ∂ = ∂ = − ∂       (39) 
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where { },  means an anti-commutator. We thus see that the anti-commulators 
in the above equation are non-trivial and need to be fixed. In order to fix these, 
we demand that c satisfy the Heisenberg equation:  

[ ] 0, BRSTc i c= ∂                       (40) 

and using the property 2 2 0c c= =  one obtains  

[ ] { }0 0, ,BRSTc c c c= ∂ ∂                    (41) 

The last three equations then imply :  

{ } ( ){ }0 0, 1 ,c c c c i∂ = − ∂ =                    (42) 

Here the minus sign in the above equation is nontrivial and implies the exis-
tence of states with negative norm in the space of state vectors of the theory. 

The BRST charge operator Q is the generator of the BRST transformations. It 
is nilpotent and satisfies 2 0Q = . It mixes operators which satisfy Bose and 
Fermi statistics. According to its conventional definition, its commutators with 
Bose operators and its anti-commutators with Fermi operators for the present 
theory satisfy:  

[ ] ( ) [ ] [ ]0 0 1 1, ,  , ,  ,Q c A Q c A Q cλ = − = ∂ = ∂              (43a) 

[ ] ( )ˆ ˆ0 0
ˆ ˆˆ ˆ ˆ, ,  , 2 ,n nn Q n c Q nc c = ∂ Π = −Π ∂               (43b) 

{ } ( )ˆ0
ˆˆ, nc Q nλ= Π +Π + ⋅Π                    (43c) 

{ } ( )( )2
0 1 ˆ, 1 1c Q E n∂ = − ∂ + −                   (43d) 

All other commutators and anti-commutators of the theory involving Q and 
the other phase space variables of the theory are seen to vanish. In view of this, 
the BRST charge operator of the present theory could be written as:  

( ) ( )1 2 0
ˆ1 0

ˆˆ ˆd 1 nQ x ic E n i c nλ
 = ∂ + − − ∂ Π +Π + ⋅Π ∫          (44) 

This equation implies that the set of states satisfying the conditions:  

( ) ( )0 2
ˆ1

ˆˆ ˆ0, 0, 0, 1 0, 0nE n nλψ ψ ψ ψ ψΠ = ∂ = Π = − = ⋅Π =    (45) 

belong to the dynamically stable subspace of states ψ  satisfying 0Q ψ = , 
i.e., it belongs to the set of BRST-invariant states. 

In order to understand the condition needed for recovering the physical states 
of the theory we rewrite the operators c and c  in terms of fermionic annihila-
tion and creation operators. For this purpose we consider Euler-Lagrange equa-
tion for the variable c derived earlier. The solution of this equation gives (for the 
instant-form time 0x t≡ ) the Heisenberg operators ( )c t  and correspondingly 
( )c t  in terms of the fermionic annihilation and creation operators as:  

( ) ( ) ( ) ( ) ( ) ( )† †,   c t G t F t c t G t F t= + = +                (46) 

which at the instant-form time  0t =  imply  

( ) ( ) ( ) †0 , 0c c F c t c F≡ = ≡ =                 (47a) 
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( ) ( ) ( ) ( ) †
0 0 0 00 , 0c t c G c t c G∂ ≡ ∂ = ∂ ≡ ∂ =            (47b) 

By imposing the conditions (obtained earlier):  

{ } { }2 2
0 0, , 0c c c c c c= = = ∂ ∂ =                 (48a) 

{ } ( ){ }0 0, 1 ,c c c c i∂ = − ∂ =                   (48b) 

we then obtain  

( ) { } { } { } ( ){ }22 , , 0, , 1 ,F F F F G G G F G F i= = = = = − =† † † † †      (49) 

Now let 0  denote the fermionic vacuum for which  

0 0 0G F= =                         (50) 

Defining 0  to have norm one, the last three equations imply  
† †0 0 ,    0 0FG i GF i= = −                  (51) 

so that  
† †0 0,    0 0G F≠ ≠                     (52) 

The theory is thus seen to possess negative norm states in the fermionic sector. 
The existence of these negative norm states as free states of the fermionic part of 

BRST  is however, irrelevant to the existence of physical states in the orthogonal 
subspace of the Hilbert space. In terms of annihilation and creation operators 

BRST  is:  

( )

( ) ( )

2 2
ˆ0 0 1 0

20 0
0 0 0 1 1 0

1ˆˆ ˆ 1
2

1             
2

BRST u v nu v n w E E A n

A A A G G

λ= Π ∂ +Π ∂ + ⋅Π + + ∂ − −
+ Π −Π ∂ − ∂ + ∂ + 



†

   (53) 

and the BRST charge operator of the present theory could be written as:  

( ) ( )1 2 0
ˆ1

ˆˆ ˆd 1 nQ x iF E n iG nλ
 = ∂ + − − Π +Π + ⋅Π ∫          (54) 

Now because 0Q ψ = , the set of states annihiliated by Q contains not only 
the set for which the constraints of the theory hold but also additional states for 
which  

0F Gψ ψ= =  

( ) ( )0 2
ˆ1

ˆˆ ˆ0, 0, 0, 1 0, 0nE n nλψ ψ ψ ψ ψΠ ≠ ∂ ≠ Π ≠ − ≠ ⋅Π ≠   (55) 

Now because 0Q ψ = , the set of states annihilated by Q contains not only 
the set for which the constraints of the theory hold but also additional states for 
which the constraints of the theory do not hold. However in our considerations, 
the Hamiltonian is also invariant under the anti-BRST transformations given by:  

0 0 0 1 1 0 0
1 1 1 1ˆ ˆ ˆ ˆ, , , c A c A c u c
g g g g

δλ δ δ δ= − ∂ = − ∂ = − ∂ = − ∂ ∂     (56a) 

0
ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ 0n u v wE λδ δ δ δ δ δ δΠ = Π = = Π = Π = Π = Π =        (56b) 
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ˆ ˆ ˆ ˆ ˆ ˆˆ 0, 0, , 0n v w c c b bδ δ δ δ δ δ= = = = = − =           (56c) 

with the generator or anti-BRST charge:  

( ) ( )1 2 0
ˆ1 0

ˆˆ ˆd 1 nQ x ic E n i c nλ
 = − ∂ + − + ∂ Π +Π + ⋅Π ∫       (57) 

or 

( ) ( )1 2 0
ˆ1

ˆˆ ˆd 1 nQ x iF E n iG nλ
 = − ∂ + − + Π +Π + ⋅Π ∫ † †       (58) 

We also have  

[ ]0 0, 0,   , 0BRST BRSTQ Q Q Q ∂ = = ∂ = =            (59) 

with 
1dBRST BRSTx= ∫                        (60) 

and we further impose the dual condition that both Q and Q  annihilate physi-
cal states, implying that:  

  0   and    0Q Qψ ψ= =                   (61) 

The states for which the constraints of the theory hold, satisfy both of these 
conditions and are in fact, the only states satisfying both of these conditions, 
since with  

( )† †1G G GG= −                       (62) 

there are no states of this operator with †   0G ψ =  and †   0F ψ = , and hence 
no free eigenstates of the fermionic part of BRST  that are annihilated by each 
of G, †G , F, and †F . Thus the only states satisfying 0Q ψ =  and   0Q ψ =  
are those that satisfy the constraints of the theory. 

Now because 0Q ψ = , the set of states annihilated by Q contains not only 
the set of states for which the constraints of the theory hold but also additional 
states for which the constraints of the theory do not hold. This situation is, 
however, easily avoided by additionally imposing on the theory, the dual condi-
tion: 0Q ψ =  and   0Q ψ = . By imposing both of these conditions on the 
theory simultaneously, one finds that the states for which the constraints of the 
theory hold are the only states satisfying both of these conditions. This is traced 
to the conditions on the fermionic variables c and c  which constrain the solu-
tions such that one cannot have simultaneously c, 0c∂  and c , 0c∂ , applied to 
ψ  giving zero. Thus the only states satisfying 0Q ψ =  and   0Q ψ =  are 

those that satisfy the constraints of the theory and they belong to the set of 
BRST-invariant as well as to the set of anti-BRST-invariant states. 

Alternatively, one can understand the above point in terms of fermionic anni-
hiliation and creation operators as follows. The condition 0Q ψ =  implies the 
that the set of states annihilated by Q contains not only the states for which the 
constraints of the theory hold but also additional states for which the constraints 
do not hold. However,   0Q ψ =  guarantees that the set of states annihilated by 
Q  contains only the states for which the constraints hold, simply because 

†   0G ψ ≠  and †   0F ψ ≠ . Thus in this alternative way also, we see that the 
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states satisfying     0Q Qψ ψ= =  are only those states which satisfy the con-
straints of the theory and we also see that these states belong to the set of 
BRST-invariant states as well as to the set of anti-BRST invariant states. This 
completes the BRST formulation of the theory. 

5. Summary and Discussion 

In the present work, we have considered the restricted gauge theory of quantum 
chromodynamics (QCD) in one-space one-time dimension (QCD2) à la Cho et 
al. [1]-[14]. We have summarized the basics of the theory in Section 2 where the 
motivations of our present studies have also been discussed and are being omit-
ted here the sake of brevity. The theory under our present investigation is seen to 
be GI and we have studied its quantization using Hamiltonian [24], path integral 
[25] [26] [27] [28] and Becchi-Rouet-Stora and Tyutin (BRST) [29] [30] [31], 
formulations [24]-[31], in the usual instant-form (IF) of dynamics (on the 
hyperplanes: 0 constantx t= = ) [32] [33], under appropriate gauge-fixing con-
ditions. 

The restricted gauge theory of QCD2 à la Cho et al. [1]-[14] and others [1]-[23] 
makes use of the so-called “Cho-decomposition”, which is, in fact, the gauge in-
dependent decomposition of the non-Abelian potential into the restricted po-
tential and the valence potential and it helps in the clarification of the topologi-
cal structure of the non-Abelian gauge theory. This decomposition allows one to 
view QCD as the restricted gauge theory (made of the restricted potential) which 
is coupled to a gauge-covariant colored vector field (the valence potential). The 
restricted potential is defined in such a way that it allows a covariantly constant 
unit isovector n̂  everywhere in space-time, which enables one to define the 
gauge-independent color direction everywhere in space-time and at the same 
time allows one to define the magnetic potential of the non-Abelian monopoles. 
It even has full SU(2) gauge degrees of freedom, in spite of the fact that it is re-
stricted. Consequently, the restricted QCD made of the restricted potential de-
scribes a very interesting dual dynamics of its own, and plays a crucial role in the 
understanding of QCD. This restricted gauge theory of QCD is therefore very 
important and it is important to study its quantization using the standard con-
straint quantization methods, including the Hamiltonian, path integral and 
BRST quantizations, as we have done in the present work. 
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