
J. Software Engineering & Applications, 2009, 2: 276-282
doi:10.4236/jsea.2009.24035 Published Online November 2009 (http://www.SciRP.org/journal/jsea)

Copyright © 2009 SciRes JSEA

A CORBA Replication Voting Mechanism for
Maintaining the Replica Consistent
Guohua WU, Xiaojun LI, Qiuhua ZHENG, Zhen ZHANG

College of Computer Science, Hangzhou Electronic University, Hangzhou, China.
Email: lixjun007@gmail.com

Received April 23rd, 2009; revised June 29th, 2009; accepted July 8th, 2009

ABSTRACT

Nowadays, more and more applications are being developed through distributed object computing middleware, such as
CORBA, their requirements for fault-tolerance, especially real time and critical system, become more and more critical.
Despite almost ten years have passed since the earliest FT-CORBA standard was promulgated by Object Management
Group (OMG), CORBA is still facing many challenges when it is used for distributed applications developing, as the
standard is complex and lack of understanding. This paper focus on the consistency of the replicated object and the
network partition problem, it incorporates a CORBA Replication Voting Mechanism (CRVM) to meet the challenge
which makes a good performance.

Keywords: distributed computing, CRVM, fault-tolerance, replica consistent, networking partition

1. Introduction

The progress of the distributed application system and
object-oriented programming technology has led to dis-
tributed object middleware, where objects are distributed
across processors. Typical middleware applications con-
tain sending client objects’ requests and receiving reply
from server objects, which implementing through mes-
sage sent across the network. The Common Object Re-
quest Broker Architecture (CORBA) [1] is a standard for
middleware and it is established by the Object Manage-
ment Group.

CORBA has become one of the most popular middle-
ware developing technologies, which is supported on
almost every combination of hardware and operating
system in existence. CORBA uses OMG Interface Defi-
nition Language (IDL) to define interface for objects,
which is CORBA’s fundamental abstraction mechanism
for separating object interfaces from their implementa-
tions. A client only needs to know the IDL interface
without the language-specific implementation of the
server object. Under the CORBA’s standard, clients and
servers can communicate with the TCP/IP-base Internet
Inter-ORB Protocol (IIOP), careless of the heterogeneity
in their respective platform and operating system. Clients
are allowed to invoke operation without caring about the
server objects’ physical location. These are attributed to
the ORB, which make clients and servers transparent to
each other’s differences in platform, programming lan-
guage and location.

More and more distributed system desire highly-per-
formance, including dependability, efficiency, reliability
etc, thus adding fault-tolerant standard to CORBA be-
comes more and more pressing. OMG adopted
Fault-Tolerant CORBA standard in the late 1990s
(1999.2 Version1.0, 2001.9 Version2.0). Although al-
most ten years have passed, due to the diverse set of
fault-tolerance requirements and the large varieties of
distributed applications requiring fault-tolerance, the
current version of FT-CORBA standard compromises on
the number of interfaces, policies, and features it pro-
vides. As a result, FT-CORBA vendors are free to pro-
vide proprietary extensions [2].

Replication is the most basic way we adopt to achieve
fault tolerance, however it still faces many challenges.
How to maintain replica consistency is a typical problem,
as Fault tolerance will obviously fail if replicas are in
different status during a servicing time. Another problem
is network partition. There is no support for the consis-
tent remerging of the replicas of CORBA objects fol-
lowing a network partition [3]. This paper focuses on
these two problems as mentioned above and it introduces
a voting mechanism CRVM to meet the challenges.

The remainder of this paper is organized as follows.
Section 2 describes FT-CORBA standard and existing
fault-tolerance strategies. Section 3 provides the related
work about fault-tolerance in CORBA. Section 4 de-
scribes the dynamic voting algorithm in detail. Section 5,
we put forward to vote mechanism (CRVM). Section 6
describes an implementation. Section 7 concludes the

A CORBA Replication Voting Mechanism for Maintaining the Replica Consistent 277

paper.

2. The review of FT-CORBA Standard and
Strategies

2.1 The FT-CORBA Standard

To achieve the purpose of fault-tolerant, FT-CORBA
standard provides three mechanisms: Replication, Fault
Detection and Fault Recover.

1) Replication: There is a Replication Manager (RM)
responsible for replicating objects and distributing the
replications across the system. Each replica has an indi-
vidual Interoperable Object Reference (IOR) to identify
them，RM itself also has many copies. The replication
styles can be divided into the following two types [4]:
 Passive replication: only one of the server replicas

is designated as the primary one, which responses for the
client’s requests. In the warm passive replication styles,
the remaining passive replicas, called backups, are up-
dated periodically with the primary replica so that one of
them can be selected to replace when the primary one
fails. In the cold passive replication styles, the remaining
backup replicas are “cold”, they would neither process
the client’s requests nor make update with the primary
one. To allow for recovery, the state of the primary rep-
lica is periodically checked and stored in a log. Once the
primary replica failed, a backup replica is selected and
initialized from the log to replace as the new primary
one.
 Active replication: all of the server replicas main-

tain the same state, each one responses to client’s re-
quests. There is no influence when any one of them
failed, keeping the running of replicas without any prob-
lem.

2) Fault Detection: Fault Detection implement by FD
which is in charge of detecting the possible failure in the
system and generates related reports. FD is arranged into
a hierarchical structure: object level, process level and
host level due to different detected objects. FD would
generate a fault report to the Fault Notifier (FN) when a
failure is detected, then the FN transmit it to RM and the
objects which have been registered to FN and are inter-
ested in it. There are two kinds of detecting styles,
pull-based and push-based.
 pull-based: FD periodically send a message Is_alive

() to the detected objects, which should echo “I_am_alive
()” in the limited time. The objects would be considered
erring in case of the FD did not receive the response in a
certain time, and then FD would send fault report to RM
for handling. It is passive for detected objects to echo,
they won’t return “I_am_alive ()” unless receive FD’s
“Is_alive ()”.
 push-based: In this scheme, it is also known as a

“heartbeat monitor”. The detected object would send the
message “I_am_alive ()” forwardly at set intervals. It is

same to the pull-based styles, the object would be con-
sidered erring if FD did not receive the response in a
certain time. It is active for detected objects to send the
message “I_am_alive ()” periodically.

3) Recovery: With FT-CORBA fault-tolerant mecha-
nism, the objects’ state would be logged automatically if
the replica inherit and implement the Checkpoint table
and Updateable interfaces, once receive the notice the
object would be returned to the latest state.

2.2 The Strategies of Existing FT-CORBA System

Generally speaking, research on FT-CORBA and its ap-
plications can be divided into the three strategies [5], the
integration strategy, the interception strategy, and the
service strategy, which are described in detail as below:
 Integration strategy: In this strategy it has to modify

the ORB core to provide the necessary fault tolerance
support, thus, it is certain to violate the FT-CORBA
standard.

Because the modification is added to the ORB, appli-
cation’s interfaces to the ORB remains unchanged, it
implies that the replication of server objects can be made
transparent to the client objects. Electra [6] and Or-
bix+Isis [7] are examples of the integration strategy.
 Interception strategy: In this strategy, an interceptor

is added into the architecture to capture the system’s call,
and then to modify the request parameter to change the
behavior of the application without the application or the
ORB being aware of the interceptor’s existence and op-
eration, finally repackage the call and deliver it through
multicast. However, the interceptor has to be ported to
every operating system which is intended to run the
CORBA application. The examples of this strategy are
Enternal System [8], and AQuA framework [9], etc.
 Service strategy: This strategy enhances CORBA

through adding a new service which just likes one of
CORBA Common Object Service. In order to achieve
fault tolerance, a set of interfaces are defined to provide
the policies and mechanisms. In other words, fault toler-
ance can be provided as apart of the standard suite of
CORBA ORBs. Since the CORBA service is a collection
of CORBA object fully above the ORB, the ORB is cer-
tainly unnecessary to be modified. However, the applica-
tion code may require modification for supporting the
fault-tolerance service.

The comparison of different strategies outlined above
is illustrated in Table 1 [3].

2.3 Replication

No matter adopting which kind of strategy to achieve the
purpose of fault-tolerant, replication is the most basic
way, which has been widely applied in distributed sys-
tems. The purpose of replication is to provide multiple,
redundant, identical copies, or replicas, of an object so
that the object can continue to provide useful services,

Copyright © 2009 SciRes JSEA

A CORBA Replication Voting Mechanism for Maintaining the Replica Consistent 278

Table 1. Comparison of three strategies

Strategy Advantages Disadvantages System

Intergration

Transparent to
client applica-
tions (Without

modify any
co- de of client
ap- plications)

Bad portable due to
modify ORB and

IDL

Orbix+Isis
Electra

Interception

Without mod-
ify ORB and
transparent to
the applica-

tions

Interceptor needs to
be ported to every
operating system

which intend to use
it

Eternal

Service

Has a good
portability to
client applica-

tions

Sever applications
are lack of trans-
parent.(Program

developer have to
rewrite interface of
the related objects)

DOORS
AQuA

even though some of its replicas fail, or as the processors
hosting some of its replicas fail [10].

This technology duplicates system resources and dis-
tributes them into hosts which locate in different places.
Certainly, the status and behavior of the replicas must
been maintaining the same, once a certain replica failed,
the back-up replicas could take over and continue to pro-
vide services. This process is transparent to the client
which is not aware of the server object weather has failed
or not since the back-up replicas still keep on proving
service to meet the client’s demand.

Some advantages of replication:
 Enhanced system available: Replicative resource

distribute in different hosts, the remaining replica could
keep on providing service when one certain host failed.
For example, suppose there are n hosts and the error
probability of each host is p, obviously, the available of
the resource could be expressed: 1-pn，it implies that the
more replicas it would be the stronger available.
 Fault-tolerant: it is described above.
Although replication has many advantages, the chal-

lenges resulted are also critical .One important issue is
how to ensure the consistency of the replicas. Besides,
there is no good solution to resolve network partition.
The FT-CORBA standard does not provide mechanism
to handle faults due to network partitioning [2].

In this paper we introduce CRVM to resolve the prob-
lem mentioned above: replica consistency and network
partition.

3. Related Works

Previous study on fault tolerance has made great help to
FT-CORBA standard which is shown as follows.

Electra [6] was developed at the University of Zurich,
as one of the earliest implementations in accordance with
fault tolerance CORBA standard, which adopted integra-
tion strategy to achieve maintaining replica consistency.
It contains a modified ORB core and the Hours toolkit

[11] which is exploited to provide reliable totally ordered
group communication mechanisms. In an Electura host, a
CORBA client can request a replicated server object for
operating with out caring about where is the server object
or the number of them, even if the server object exists.

Orbix+Isis [11] was developed by IONA technologies
which is similar to Electra, this product also modifies the
internals of the ORB in order to adjust to Isis toolkit [12]
which provides the reliable ordered multicast protocols.
Besides, Orbix+Isis is the first commercial product
which complies with the standard.

Distributed Object-Oriented Reliable System (DOORS)
[2] which was developed at Lucent technologies, pro-
vided a service strategy to manage the object groups and
replica objects. This product was absorbed in passive
replication which employs libraries for the transparent
checkpointing of applications and state recovery.

Eternal [8] which was developed at University of
California, Santa Barbara, adopted interception strategy
to support both active and passive replication styles. The
mechanism implemented in different parts of the Eternal
system together with its logging recovery mechanisms to
ensure strong replica consistency without modifying ei-
ther the application or the ORB.

4. Dynamic Voting Algorithm

Dynamic voting algorithm [13,14] proposed by two
scholars Sushil Jajodia and Dvid Mutchler is used to
control replication. The algorithm is designed for the
fault-tolerant of replicated database, its major purpose is
to maintain highly-consistency of the database and en-
hance system available. Actually, it has a good perform-
ance in fault-tolerant as well as in maintain consistency
of data.

In our algorithm, we assume that all of the hosts and
networks may go wrong, except for the Byzantium fault.
In other words, the host would stop running without
processing any order once the host failure occurred.
Since the property of replicated database itself can toler-
ate host fault or process fault, another contribution of the
algorithm is put forward FT strategy to resolve the net-
work partition problem.

It adopts majority decision to determine which part of
network contains more database, called majority partition,
can continue running. In comparison, the remaining da-
tabase should stop immediately to avoid two parts of
database running simultaneously without communicating
to update for consistency. The remaining database keep
on running may lead to inconsistent, which is illustrated
in Figure 1.

In simple terms, fault-tolerant of this algorithm is to
duplicate data, distribute them to different hosts, and
maintain data consistency through voting method. It
means before accessing to a replica data, a voting step
must be processed to insure the replica data is contained

Copyright © 2009 SciRes JSEA

A CORBA Replication Voting Mechanism for Maintaining the Replica Consistent 279

in the majority partition.
Some parameters are necessary to meet the demand of

the algorithm, which is needed when processing judg-
ment.
 Version Number (VN): an integer, expresses the

update times of the replica data;
 Site Cardinality (SC): an integer, expresses the

number of replica data, i.e. number of hosts that replica is
stored.
 Distinguished Site (DS): a replica data identifier,

which is assigned as primary one.
Client send request to a single replica data without be-

ing aware of how does the replica data communicate with
each other, it’s transparent to client. Since every replica
data can process the request from client, it also enhances
the system’s performance. The running diagram of dy-
namic voting algorithm is illustrated in Figure 2.

Algorithm processes and procedures are described as
follows:

1) Set synchronous control: We assume that replica S
receives request operation, it would send Concur-
rency_Request to remaining replicas at first. This part
achieves synchronous control by using time stamp, thus,
ensure there is only one replica is updated at a certain
time. Bernstein [10] had ever advanced an algorithm to
achieve mutual exclusion in distributed system which is
described in detail as below:

Assume that process Pi wants to enter a critical section,
a new time stamp (TS) would be generated and then (Pi,
TS) would be dispatched to all processes. How does Pi
reply to (Pi, TS), assent or delay depends on the three
factors as showed below:

Figure 1. The network partition fault

Figure 2. The communication among replicated DBs

1).If Pj is just alive in the critical section, it will chose to
delay the response;

2) If Pj is not interested in the critical section, it will reply
immediately;

3) If Pj also wants to enter the critical section, it will com-
pare its TS with Pi’s, obviously if TSj > TSi，send reply
immediately, otherwise delay the reply.

The algorithm mentioned above has several features:
Obtain mutual exclusion function, never get dead lock or
starvation for whether process could enter the critical
section obeys to the value of TS which ensures process
served by FCFS.

2) Send Vote_Request: S execute Lock_Request after
finishing Concurrency_Request, if lock successfully, S
then send Vote_Request to remain replica data, supposed
as Si, otherwise, S must execute termination protocol,
and then do Lock_Request again, if still failed, the op-
eration would be ended.

With executing termination protocol, S would send
Decision_Request (contain DS and request identifier) to
all remaining replica data. The replicas which receive
request then reply whether update operation has finished,
if finished, S then executes Realese_Lock.

3) Return status: Si will lock itself at first when re-
ceives Vote_Request, if locked successfully, returns VN
SC DS to S, otherwise, executes termination protocol,
later locks again, if still failed, returns null to S.

4) Determine majority partition: S collects all status
replied by Si, and then executes Is_Distinguished to de-
termine whether the network S is contained in the major-
ity partition which is shown as follows:

m = number of replicas
 M = max{VNi: 1≤i≤m} (an integer)
 I = {i: VNi =M, 1≤i≤m } (a replica set)
 N = {SCi: i∈I} (an integer)

 If | I | > 2

N

or (| I | = 2

N

and DS exists) then
 Do_Update
 else
 end

If S doesn’t belong to majority partition, the update
request has to abort. Firstly, S executes Release_Lock
and sends message “Abort” to Si, and then Si would
execute Release_Lock once receives “Abort”.

If S belongs to majority partition, determines whether
the status of S is the latest first. If negative, S should ask
Si for it through message”Catch_Up”.

5) Response the request and deliver out latest status: S
updates firstly and then executes Do_Updata: VNi+=1,
SCi=m. After that, S delivers message “Commit” (con-
tain Request identifier and status) to Si. Finally, S replies
the result to client.

6) Si will update status once receives “Commit” and
then executes Release_Lock request.

Copyright © 2009 SciRes JSEA

A CORBA Replication Voting Mechanism for Maintaining the Replica Consistent 280

5. CRVM for FT-CORBA

Despite the dynamic voting algorithm is not designed
especially for CPRBA object fault-tolerant, however,
there are many similarities between replicated database
and replicated object. Our research indicates that dy-
namic voting algorithm is proper to maintain consistency
of replicated object, resolve network partition, crash fail-
ure etc. Thus in this paper we propose a new CORBA
Replication voting mechanism (CRVM) for FT-CORBA.
Figure 3 illustrates the CRVM working graph.

The same as original algorithm, we have to set some
parameters to satisfy judgment demand, which is ex-
pressed as follows:
 Object State (OS): an integer used to signify update

time of the object.
 Object Cardinality (OC): an integer used to indicate

how many replica objects exist which maintain the same
status.
 Distinguished Object (DO): an IOR related to an

identified object which is used when CRVM wants to
judge whether current object belongs to the majority par-
tition.

The CRVM is expressed as follows:

Figure 3. CRVM between replicas

[status transfer]
if status == active
send Concurrency_Request to all alive_obj
 status = voting
if status == voting
if (!Lock_Request)
 send Decision_Request to all alive_obj
 if (Lock_Request)
 send Vote_Request to all alive_obj
 if (majority partition)
 store request and result in Request Record
 status = commit
 else
 status = abort
if status = commit
 send Commit and object states to all alive_obj
status = idle
if status = abort
 send Abort to all alive_obj
 status = idle

[request processing]
receive (“Request”,req,ts), req ∈ R, ts ∈ T
if req not in RequestRecord
 status = active
else
 return request-record(ts)
receive(“Concurrency_Request”,ts), ts ∈ T
 if not conform to Berdtein’s algorithm
 waiting
 else
 return
receive (“Decesion_Request”,ts), ts ∈ T
 if ts found in LockRecord
 return false
 else
 return true
receive (“Vote_Request”,ts), ts ∈ T
 if (!Lock_Request)
 send Decision_Request to all objects
 if (Lock_Request)
 LockedTimeStamp = ts
 store ts in LockRecord
 return OS, OC, DO
else

return null
receive (“Commit”,obj),obj ∈ S
lock = false
setup object state
receive (“Abort”)
 lock = false

6. Implementation

FT-CORBA uses redundancy mechanism to achieve
fault-tolerance, replication itself can tolerate process fault
and host fault, our voting mechanism focus on maintain-
ing consistency of replicated object and network partition
fault.

[Illustrate]
cur_ser_obj: the current server object which link to

client and raise voting;
alive_obj: the objects reply voting request from

cur_ser_obj;
T: the objects’ time stamp formed by IOR and system

time;
R: client request;
S: status of object.
OM: object management;

OS, OC and DO initiated by OM

status {∈ null, active, voting, commit, abort}, initially null
lock ∈ {true, false}, initially false
LockedTimeStamp ∈ T, initially null
TimeStamp ∈ T, initially null
RequestList, a table store request and result

Copyright © 2009 SciRes JSEA

A CORBA Replication Voting Mechanism for Maintaining the Replica Consistent 281

Figure 4. CRVM voting processing

The process of our voting mechanism is illustrated in
Figure 4.

1) Firstly Client sends a request to server, OM then
chooses a object（maybe a replicated object）to serve it,
for instance we can make it through pinging the fastest
object;

2) The object who receives the request would start
voting mechanism, if the request has been severed then
returns null, if not it sends Concurrency_Request to A2
A3 for synchronous control;

3) Send Voting_Request. A1 executes Lock_Request
itself after finishing Concurrency_Request, case lock
operation successfully, A1 then sends Vote_Request to
A2 A3, otherwise, A1 must execute termination protocol,
and then do Lock_Request again, if still failed, the op-
eration would end this time;

With executing termination protocol, A1 would send
Decision_Request (contain DS and request identifier)to
A1 A2 who receive request then reply whether update
operation has finished, if finished, A1 then execute
Realese_Lock;

A2 A3 would lock itself through Lock_Request when
receive Vote_Request, case lock successfully, return its
VN SC DS to S, otherwise, execute termination protocol,
later lock again, if still failed, return null to A1;

4) Determine majority partition: A1 collects all status
replied by A2 A3, and then executes Is_Distinguished to
determine whether the network A1 contained in the ma-
jority partition. According to the result, it decides to send
Commit () or Abort ().

5) A1 returns the result.
The following is an example of CRVM process. We

simulated the ATM depositing and withdrawing money
operation to show how to ensure the consistency of rep-
licated object and resolve network partition fault, IDL
file is shown as follows:

interface atmOperate
{
 float inquiry (); // balance inquiries
 void deposit(in float num); // depositing money
 void withdraw(int float num); // withdrawing money
}

We define three operations: inquiry () deposite (in float
num) and withdraw (in float num). The server-side object
is responsible for deposits withdraws and inquiries busi-
ness, in order to achieve fault-tolerance, server-side starts
three replicated objects A1 A2 and A3, their status can be
expressed by balance which we set it as S in following
figures. For simplicity, we set an account with its balance
$300.00 and had operated 5 times, the distinguished ob-
ject is A1. So the initial status of A1 A2 and A3 is illus-
trated in Figure 5.

When a network partition fault occurred between A1
A2 and A3, after being requested by the operation de-
posit (500.00), A2 gets synchronous with A1 through
CRVM while A3 remains constant which is illustrated in
Figure 6.

When the fault is removed and a withdraw(300.00)
request is sent to A1, since CRVM would find all normal
objects to participate voting, A3 can re-join voting group
and get synchronous with A1 which is illustrated in Fig-
ure7.

Figure 5. Initial status

Figure 6. The status after operation deposit (500.00)

Figure 7. The status after operation withdraw (300.00)

Copyright © 2009 SciRes JSEA

A CORBA Replication Voting Mechanism for Maintaining the Replica Consistent

Copyright © 2009 SciRes JSEA

282

Figure 8. The status after operation withdraw (100.00)

Sending a withdraw (100.00) request to A1 while A3
gets a crash fault, the result is illustrated as Figure 8.

7. Conclusions

Since distributed applications development, fault-tol-
erance requirement has become more complex. The ex-
isted fault-tolerant technology is facing great challenges,
for example, how to maintain the consistency of the ob-
ject replication, how to control concurrent implementa-
tion and how to resolve network partition etc.

Despite FT-CORBA standard has been adopted by
OMG, there is still a long way to improve it. The
real-world applications is more complex and requires
more stringent, current standard only provide a frame-
work for fault-tolerance and can only be used for very
simple applications. Thus FT-CORBA can not provide a
ready solution for complicated applications now.

In this paper we design the CRVM to maintain the
consistency of replicated object and resolve network par-
tition problem, we will do further study and improvement
on it next step.

8. Acknowledgements

This work is supported by National Fundamental Re-
search Program of China under Grant NO.A1420080190.

REFERENCES
[1] Object Management Group, “Common Object Request

Broker Architecture: Core Specification Version 3.0.2 ”
OMG Technical Committee Document date formal/02
−12−02.

[2] B. Natarajan, A. Gokhale, S. Yajnik, and D. C. Schmidt,

“Doors: Towards high-performance fault-tolerant
CORBA,” Proc. Second Int'l Symp. Distributed Objects
and Applications (DOA ’00), pp. 39−48, February 2000.

[3] P. Felber and P. Narasimhan, “Experiences, strategies and
challenges in building fault-tolerant CORBA Systems,”
IEEE Transactions on Computers, Vol. 53, No. 5, May
2004.

[4] S. Mullender, ed., Distributed Systems, Addison-Wesley,
1993.

[5] P. Narasimhan, “Transparent fault tolerance for CO-
RBA,” Ph.D.dissertation, University of California, Santa
Barbara, December 1999.

[6] S. Maffeis, “Adding group communication and fault-tol-
erance to CORBA,” Proc. Object-Oriented Technologies,
June 1995.

[7] Kenneth Birman, Robbert, and van Renesse, “Reliable
distributed computing with the Isis Toolkit,” IEEE Com-
puter Society Press, Los Alamitos, 1994.

[8] P. Narasimhan, L. E. Moser, and P. M. Melliar Smith,
“Eternal-a component-based framework for transparent
fault-tolerant CORBA,” Software -Practice and Experi-
ence, pp. 771–788, 2002.

[9] M. Cukier, J. Ren, C. Sabnis, W. H. Sanders, D. E. Bakken,
M. E. Berman, D. A. Karr, and R. E. Schantz, “AQUA: An
adaptive architecture that provides Dependable Distributed
Objects,” IEEE Symposium on Reliable and Distributed
Systems (SRDS), pp. 245−253, October 1998.

[10] P. Narasimhan, L. E. Moser, and P. M. Melliar Smith,
“Strong replica consistency for fault-tolerant CORBA ap-
plications,” Object-Oriented Real-Time Dependable Sys-
tems, 2001. Proceedings, Sixth International Workshop,
pp. 10−17, January 2001.

[11] R. van Renesse, K. P. Birman, and S. Maffeis, “Horus: A
flexible group communication system,” Comm. ACM,
Vol. 39, No. 4, pp. 76−83, April 1996.

[12] K. P. Birman and R. V. Renesse, “Reliable distributed
computing with the Isis toolkit,” IEEE Computer Society
Press, March 1994.

[13] S. Jajodia and D. Mutchler, “Dynamic voting,” ACM
SIGMOD International Conference on Management of
Data, San Francisco, pp. 227−238, 1987.

[14] S. Jajodia and D. Mutchler, “Dynamic voting algorithms
for maintaining the consistency of a replicated database,”
ACM transactions on Database Systems, Vol. 15, No. 2,
pp. 230−280, June 1990.

	6. Implementation
	7. Conclusions
	8. Acknowledgements

