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Abstract 
An efficient and clean preparation of acylals from aromatic aldehydes in the 
presence of synthetic phosphates (flourapatite and hydroxyapatite doped with 
ZnCl2 and ZnBr2) and acetic anhydride was achieved easily in high yields 
(86% - 97%) at room temperature under solvent-free conditions. Deprotec-
tion of the resulting acylals has also been attained by using the same catalysts 
under microwave irradiation. This method consistently has advantage of ex-
cellent yields (82% - 96%) and a short reaction time (3 - 4 min). 
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1. Introduction 

There has been an increasing emphasis among researchers from both academia 
and industry to design synthetic strategies keeping in view the principles of 
“Green Chemistry” [1]. Adopting the principles of green chemistry means to 
reduce or eliminate the generation and use of hazardous substances. In recent 
years, replacement of hazardous solvents with environmentally benign solvents 
[2] [3] or development of solvent-free syntheses [4] [5] [6] is one of the major 
focus areas of Green Chemistry. In other cases, the use of heterogeneous cata-
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lysts under solvent-free conditions is becoming very popular as it has many ad-
vantages: reduced pollution, reusability, high selectivity, low cost, and simplicity 
in process and in handling. These factors are especially important in industry. 

The 1,1-diacetates (acylals) have been introduced as a suitable protection 
group for aldehyde because of their remarkable stability to neutral and basic 
conditions [7]. In addition, they can be converted into other useful functional 
groups by reaction with appropriate nucleophiles [8] and used as carbonyl sur-
rogates for asymmetric synthesis [9]. 1,1-Diacetates, on the other hand, are am-
bident substrates containing two types of reactive carbon centres, the carbon 
atom of the protected aldehyde function and the carbonyl group in the ester 
moieties [10]. The relative acid stability of 1,1-diacetates is another interesting 
feature of such 1,1-diacetates in the field of protection-deprotection chemistry 
[11]. 

The synthesis of acylals is usually achieved via the reaction of an aldehyde 
with acetic anhydride (AC2O) in the presence of a protic acid [12] [13] [14], 
Lewis acids [15]-[23], or heterogeneous catalyst [24]-[30]. Many of reported 
methods, however, involve strongly acidic or oxidizing conditions, corrosive 
reagents, high temperature, high catalyst loading, longer reaction time and 
cumbersome procedures. In view of these, the search for finding a cost-effective, 
mild and simple protocol for synthesis of acylals from aldehydes is still relevant.  

In recent years, we have used the synthetic phosphates (hydroxyapatite (HAP) 
and fluorapatite (FAP)) alone, doped and modified by metal salts as the hetero-
geneous catalysts for several reactions, such as Knoevenagel condensation [31] 
[32], Friedel-Crafts alkylation [33] [34] [35], Michael addition [36] [37], hydra-
tion of nitriles to amides [38], and Cross aldol Condensation [39]. In this work, 
we wish to report a mild, convenient and green methodology for the synthesis 
and deprotection of acylals from aromatic aldehydes using ZnCl2/FAP, 
ZnBr2/FAP, ZnCl2/HAP and ZnBr2/HAP. 
 

 

2. Results and Discussion 

The catalytic activity of the materials prepared has been evaluated in the protec-
tion of aromatic aldehydes. First of all, we have tested the apatite (FAP or HAP) 
alone in the catalysis of the synthesis of acylals (Table 1). The yields obtained are 
poor. To enhance the activity of apatite (FAP or HAP), the later was doped with 
different Lewis acids. For an initial evaluation of the activity of ZnBr2/apatite 
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different experiments were carried out using varying values of catalyst weight in 
the protection of benzaldehyde with acetic anhydride (Table 1). The yield of 
product 2a increased as weight of catalyst increased. This result indicate the pos-
itive effect of the catalyst in this transformation, we have chosen 0.1 g of the cat-
alyst for further study. 

To explore the scope of this methodology the protection of different substrates 
was investigated. To appreciate the important enhancement of the activity of the 
doped materials, we have carried out synthesis of acylals with ZnCl2/FAP, 
ZnBr2/FAP, ZnCl2/HAP and ZnBr2/HAP in the same condition (Table 2). The 
positive effect of doped solid catalysts can be observed in all cases. The yields 
obtained are high (86% - 97%) at room temperature except for the product re-
quired relatively longer reaction time (entry 2e) at 70˚C, possibly owing to the 
strong electron-withdrawing nitro substituent (see Table 2). Meanwhile, the 
presence of electron-donating groups (entry 2b, 2d, 2g, Table 2) increases the 
yields, demonstrating the participation of both the aldehydes and the acetic an-
hydride in the rate controlling step of the reaction. Furthermore, α, β-unsatured 
aldehydes, such as cinnamaldehyde (Table 2, product 2f) and acid sensitive al-
dehydes, such as furfural (Table 2, product 2c) reacted well without any de-
composition or polymerization under the selected reaction conditions. 

To evaluate the influence of the metal halide in the activity of the doped ma-
terial, we have compared the yields obtained in the synthesis of product 2a using 
ZnCl2/HAP, ZnBr2/HAP, ZnCl2/FAP and ZnBr2/FAP. Thus the kinetic curves of 
these reactions as shown in Figure 1, indicate clearly the promoting effect of 
Lewis acids, ZnBr2/HAP appear to be somewhat the more active catalyst. Reuse 
of ZnBr2/HAP was studied in the synthesis of product 2a. The yields obtained 
were 94%, 76% and 69% using the fresh catalyst and reused for the first and the 
second time, respectively. The decrease of the yields can be explained by the ac-
cumulation of organic substrates over the active sites of the catalyst. 
 

 
Figure 1. Kinetic curves of product 2a synthesis using HAP and FAP doped 
with ZnCl2 and ZnBr2. 
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Table 1. Effect of the weight of ZnBr2/HAP and ZnBr2/FAP in the synthesis of product 2a. 

Weight of catalyst (g) 
Catalyst Yield (%) [time (min)] 

ZnBr2/HAP ZnBr2/FAP 

0.05 53 (75) 56 (105) 

0.1 94 (75) 93 (105) 

0.2 95 (75) 96 (105) 

0.5 95 (75) 96 (105) 

 
Table 2. Preparation of 1,1-diacetates from aldehydes. 

Entry Producta Catalyst Yields (%)b [time] 

2a CH

O

O

C

C

O

O

CH3

CH3

 

HAP 
ZnCl2/HAP 
ZnBr2/HAP 

FAP 
ZnCl2/FAP 
ZnBr2/FAP 

15 (48 h) 
96 (90 min) 
94 (75 min) 

11 (48 h) 
90 (120 min) 
93 (105 min) 

2b CH

O

O

C

C

O

O

CH3

CH3

H3C

 

HAP 
ZnCl2/HAP 
ZnBr2/HAP 

FAP 
ZnCl2/FAP 
ZnBr2/FAP 

17 (48 h) 
97 (90 min) 
96 (75 min) 

16 (48 h) 
94 (120 min) 
95 (105 min) 

2c CH
O

O

O

C

C

O

O

CH3

CH3

 

HAP 
ZnCl2/HAP 
ZnBr2/HAP 

FAP 
ZnCl2/FAP 
ZnBr2/FAP 

24 (48 h) 
90 (20 min) 
92 (15 min) 

18 (48 h) 
87 (25 min) 
92 (25 min) 

2d CH

O

O

C

C

O

O

CH3

CH3

H3CO

 

HAP 
ZnCl2/HAP 
ZnBr2/HAP 

FAP 
ZnCl2/FAP 
ZnBr2/FAP 

13 (48 h) 
93 (40 min) 
95 (30 min) 

14 (48 h) 
91 (50 min) 
89 (45 min) 

2ec CH

O

O

C

C

O

O

CH3

CH3
O2N  

HAP 
ZnCl2/HAP 
ZnBr2/HAP 

FAP 
ZnCl2/FAP 
ZnBr2/FAP 

46 (48 h) 
95 (5 h) 
96 (4 h) 
41 (48 h) 
93 (7 h) 
96 (6 h) 

2f CH CH CH

O

O C

C

O

O

CH3

CH3

 

HAP 
ZnCl2/HAP 
ZnBr2/HAP 

FAP 
ZnCl2/FAP 
ZnBr2/FAP 

19 (48 h) 
94 (30 min) 
92 (20 min) 

12 (48 h) 
86 (35 min) 
91 (35 min) 

2g CH

O

O

C

C

O

O

CH3

CH3

Cl

 

HAP 
ZnCl2/HAP 
ZnBr2/HAP 

FAP 
ZnCl2/FAP 
ZnBr2/FAP 

14 (48 h) 
90 (40 min) 
92 (30 min) 

9 (48 h) 
88 (50 min) 
86 (45 min) 

aAll 1,1-diacetates were identified by their 1H NMR, 13C NMR spectra. bIsolated yield. cThe reaction mixture was stirred at 70˚C. 

https://doi.org/10.4236/gsc.2018.84023


F. Bazi et al. 
 

 

DOI: 10.4236/gsc.2018.84023 338 Green and Sustainable Chemistry 
 

Recently, microwave-assisted solvent-free synthesis in organic reactions has 
been of growing interest as an efficient, economic and clean procedure (“green 
chemistry”) [6] [39] [40] [41] [42]. For these reasons, we have tried the 
method for deprotection of geminal-diacetates catalyzed by same supports 
FAP, HAP, ZnBr2/FAP, ZnCl2/FAP, ZnBr2/HAP and ZnCl2/HAP). The results 
are summarized in Table 3. The reaction were completed within 3 min for  

 
Table 3. Regeneration of aldehydes from 1,1-diacetates. 

Entry Substrate Product Catalyst Yields (%) [time (min)] 

2a CH

O

O

C

C

O

O

CH3

CH3

 

CHO

 

HAP 
ZnCl2/HAP 
ZnBr2/HAP 

FAP 
ZnCl2/FAP 
ZnBr2/FAP 

50 (10) 
92 (3) 
96 (3) 
48 (10) 
91 (4) 
93 (4) 

2b CH

O

O

C

C

O

O

CH3

CH3

H3C

 

CHO

H3C  

HAP 
ZnCl2/HAP 
ZnBr2/HAP 

FAP 
ZnCl2/FAP 
ZnBr2/FAP 

52 (10) 
93 (3) 
94 (3) 
46 (10) 
86 (4) 
91 (4) 

2c CH
O

O

O

C

C

O

O

CH3

CH3

 

O CHO

 

HAP 
ZnCl2/HAP 
ZnBr2/HAP 

FAP 
ZnCl2/FAP 
ZnBr2/FAP 

46 (10) 
82 (3) 
87 (3) 
42 (10) 
74 (4) 
77 (4) 

2d CH

O

O

C

C

O

O

CH3

CH3

H3CO

 

CHO

H3CO  

HAP 
ZnCl2/HAP 
ZnBr2/HAP 

FAP 
ZnCl2/FAP 
ZnBr2/FAP 

58 (10) 
90 (3) 
95 (3) 
44 (10) 
90 (4) 
92 (4) 

2e CH

O

O

C

C

O

O

CH3

CH3
O2N  

CHO

NO2  

HAP 
ZnCl2/HAP 
ZnBr2/HAP 

FAP 
ZnCl2/FAP 
ZnBr2/FAP 

65 (10) 
93 (3) 
97 (3) 
49 (10) 
92 (4) 
94 (4) 

2f CH CH CH

O

O C

C

O

O

CH3

CH3

 

CH CH CHO
 

HAP 
ZnCl2/HAP 
ZnBr2/HAP 

FAP 
ZnCl2/FAP 
ZnBr2/FAP 

54 (10) 
91 (3) 
94 (3) 
41 (10) 
88 (4) 
93 (4) 

2g CH

O

O

C

C

O

O

CH3

CH3

Cl

 

CHO

Cl  

HAP 
ZnCl2/HAP 
ZnBr2/HAP 

FAP 
ZnCl2/FAP 
ZnBr2/FAP 

56 (10) 
94 (3) 
96 (3) 
46 (10) 
89 (4) 
90 (4) 
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ZnX2/apatite (P = 300 W) and high yields (82% - 96%) of regeneration of alde-
hydes. Whereas, similar reaction in the presence of apatite alone (P = 500 W) 
afforded moderate yields of product (49% - 63%) within 10 min of irradiation 
time. 

It was noticed that there was no reaction under microwave without catalyst, 
and to what was observed in traditional heating without solvent. This shows a 
certain synergy between catalyst and the microwave. It is thus completely rea-
sonable to think that the effect of the temperature is a determining factor to 
promote this transformation. Unfortunately, domestic microwave was used and 
therefore it was impossible to measure the exact temperature during the reac-
tion. 

In conclusion, we have developed a clean and easy method for the synthesis of 
geminal-diacetates from aldehydes in solvent free conditions, and regeneration 
of aromatic aldehydes from the corresponding acylals in microwave irradiation 
using metal halides doped apatite (HAP or FAP) as heterogeneous catalysts. The 
positive effect of doping the apatite with ZnCl2 and ZnBr2 has been observed, 
and the comparison of these materials indicates that ZnBr2/HAP is the best cat-
alyst for this reaction. The use of metal halides doped apatite offers diverse ad-
vantages including simplicity of operation due to the heterogeneous nature of 
reaction, easy workup and high yields. 

3. Experimental 
3.1. Preparation and Characterization of the Catalysts 
3.1.1. Preparation and Characterization of HAP 
The synthesis of hydroxyapatite [33] is carried out by reaction between diam-
monium phosphate and calcium nitrate in presence of ammonia. An amount of 
250 ml of aqueous solutions containing 7.92 g of diammonium phosphate, 
maintained at a pH greater than 12 by addition of ammonium hydroxide (70 
ml), were dropped under constant stirring into 150 ml of a solution containing 
23.6 g of calcium nitrate (Ca(NO3)2H2O). The suspension was refluxed for 4 h. 
Distilled water (DW) was used to prepare the solutions. The obtained hydrox-
yapatite was filtered, washed with DW, dried overnight at 80˚C and calcined in 
air at 800˚C for 1 h before use. 

The structure of the obtained hydroxyapatite was confirmed by X-ray diffrac-
tion, infrared spectroscopy and chemical analysis. The hydroxyapatite crystal-
lized in the hexagonal system with the space group P63/m. The lattice parame-
ters of the prepared HAP are in excellent agreement with standard data: a = 
6.883 A˚ and c = 9.422 A˚. Surface area of the calcined HAP was determined by 
the BET method from the adsorption-desorption isotherm of nitrogen at its liq-
uid temperature (77 K), and was found to be S = 35 m2·g−1. 

3.1.2. Preparation and Characterization of FAP 
FAP was prepared by the co-precipitation method as previously reported [34]. 
The structure of the obtained FAP was confirmed by X-ray diffraction, infrared 
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spectroscopy and chemical analysis. The fluorapatite crystallized in the hex-
agonal system with the space group P63/m. The lattice parameters of the pre-
pared FAP are in excellent agreement with standard data: a = 9.364 A˚ and c = 
6.893 A˚. Surface area of the calcined FAP was determined by the BET method, 
and was found to be S = 15 m2·g−1. 

3.2. Preparation of ZnX2/Apatite (ZnX2/HAP or ZnX2/FAP)  
[X = Br, Cl] 

The preparation of ZnX2/apatite was as follows: 10 mmol of ZnX2 and 10 g of 
apatite (FAP or HAP) were mixed in 100 mL of water and then evaporated to 
dryness and dried for 2 h at 150˚C before use. 

The XRD patterns of ZnX2/apatite are similar to that of apatite [34] [35] [36]. 
The modification of the apatite by ZnX2 impregnation does not change the crys-
talline structure of the solid material. The intensity of typical diffraction peaks 
did not significantly change indicating no disorganization of the crystalline 
structure of apatite. It should be noted that no ZnX2 phases were detected on the 
doped materials in all cases, indicating that ZnX2 was highly dispersed in the 
solid apatite. 

3.3. Procedure for the Preparation of 1.1-Diacetates 

A typical procedure for the preparation of 1,1-diacetates is a follows: the alde-
hyde (3 mmol) and acetic anhydride (9 mmol) were placed in a two-necked flask 
with stirring at room temperature. The catalyst (200 mg of apatite (HAP or FAP) 
or 100 mg of (ZnX2/FAP or ZnX2/HAP) was added and obtained mixture was 
maintained at room temperature (only for entry 2e a temperature at 70˚C was 
needed) for the appropriate time (see Table 2). After the completion of the 
reaction was monitored by TLC (hexane/ethyl acetate 5% - 20%), Et2O was 
added to the mixture and filtered, and then the catalyst was again washed with 
Et2O and collected for reuse. Evaporation of the solvent followed by column 
chromatography on silica gel afforded the pure compound corresponding to 
1,1-diacetates. 

3.4. Procedure for Deprotection of 1.1-Diacetates  

A typical procedure for the regeneration of aldehydes from 1,1-diacetates is a 
follows: 0.5 g of synthetic phosphates were placed, at 500 w for (HAP or FAP) or 
350 w for (ZnX2/FAP or ZnX2/HAP) in a domestic microwave oven, for the ap-
propriate time (Table 3). After the completion of the reaction was monitored by 
TLC (hexane/ethyl acetate 5% - 20%), Et2O was added to the mixture and fil-
tered. Evaporation of the solvent followed by column chromatography on silica 
gel afforded the pure compound corresponding to aldehydes. 
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