
Applied Mathematics, 2018, 9, 1299-1314 
http://www.scirp.org/journal/am 

ISSN Online: 2152-7393 
ISSN Print: 2152-7385 

 
 
 

Random Attractors of Stochastic 
Non-Autonomous Nonclassical Diffusion 
Equations with Linear Memory on a Bounded 
Domain 

Ahmed Eshag Mohamed1,2*, Qiaozhen Ma1, Mohamed Y. A. Bakhet1,3 

1College of Mathematics and Statistics, Northwest Normal University, Lanzhou, China  
2Faculty of Pure and Applied Sciences, International University of Africa, Khartoum, Sudan 
3Department of Mathematics, College of Education, Rumbek University of Science and Technology, Rumbek, South Sudan  

 
 
 

Abstract 
In this article, we discuss the long-time dynamical behavior of the stochastic 
non-autonomous nonclassical diffusion equations with linear memory and 

additive white noise in the weak topological space ( ) ( )( )1 2 1
0 0,H L Hµ

+Ω × Ω ). 

By decomposition method of the solution, we give the necessary condition of 
asymptotic compactness of the solutions, and then prove the existence of 

-random attractor, while the time-dependent forcing term ( )( )2 2;bg L L∈ Ω  

only satisfies an integral condition.  
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1. Introduction 

In this article, we investigate the asymptotic behavior of solutions to the follow-
ing stochastic nonclassical diffusion equations driven by additive noise and lin-
ear memory: 
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where Ω  is a bounded domain in ( )3n n ≥ , the initial data ( )1
0 0u H∈ Ω , 

( ),u u x t=  is a real valued function of , x t∈Ω ∈ , ( ) ( )1 2
0h H H∈ Ω Ω , 

( )( )2 2;bg L L∈ Ω , 0λ >  and ( )W t  is the generalized time derivative of an 
infinite dimensional wiener process ( )W t  defined on a probability space 
( ), ,Ω  , where ( ) ( ){ }, : 0 0ω ωΩ = ∈ =  ,   is the σ-algebra of Borel 
sets induced by the compact topology of Ω ,   is a corresponding wiener 
measure on   for which the canonical wiener process ( )W t  satisfies that 
both ( )

0t
W t

≥
 and ( )

0t
W t

≤
 are usual one dimensional Brownian motions. We 

may identify ( )W t  with ( )tω , that is, ( ) ( ) ( ),W t W t tω ω= =  for all t ∈ . 
To consider system (1.1), we assume that the memory kernel satisfies  

( ) ( ) ( ) ( )2 , 0, 0, ,k s k s k s s+ +′∈ ≥ ≤ ∀ ∈             (1.2) 

and there exists a positive constant 0δ >  such that the function 
( ) ( )s k sµ ′= −  satisfies  

( ) ( ) ( ) ( ) ( )1 1 , 0, 0, 0.L s s s sµ µ µ δµ+ + ′ ′∈ ≤ + ≤ ∀ ≥       (1.3) 

And suppose that the nonlinearity satisfies as follows: 
( ) ( ) ( )1 2, , ,f x s f x u f x s= + , s∈  and for every fixed x∈Ω , 
( ) ( )1 , ,f x ⋅ ∈    satisfying 

( ) ( ) ( ) ( )
2

1 2
1 1 1 1, ,  ,

n
p nf x s s s x L Lα ψ ψ −≥ − ∈ Ω Ω         (1.4) 

( ) ( ) ( ) ( )1 2
1 1 2 2, ,  ,p qf x s s x L Lβ ψ ψ−≤ + ∈ Ω Ω         (1.5) 

and ( ) ( )2 , ,f x ⋅ ∈    satisfying  

( )2 2, ,pf x s s sα γ≥ −                     (1.6) 

( ) 1
2 2, ,pf x s sβ δ−≤ +                    (1.7) 

where ( ), 1,2 , , i i iα β γ δ=  and l are positive constants, and q is a conjugate ex-
ponent of p. 

In addition, we assume that for s∈  and 22
2

np
n

≤ ≤
−

, for 3n ≥ ; 2p > , 
for 1,2n = . 

We assume that the time-dependent external force term ( ),g x t  satisfies a 
condition  

( ) 2
e , d ,   for any ,s g s s sσ

Ω
⋅ < ∞ ∈∫               (1.8) 

and for some constant 0σ >  to be specified later. 
Equation (1.1) has its physical background in the mathematical description of 

viscoelastic materials. It’s well known that the viscoelastic material exhibit natu-
ral damping, which according to the special property of these materials to retain 
a memory of their past history. And from the materials point of view, the prop-
erty of memory comes from the memory kernel ( )k s , which decays to zero 
with exponential rate. Many authors have constructed the mathematical model 
by some concrete examples, see [1]-[7]. In [8] the authors considered the non-
classical diffusion equation with hereditary memory on a 3D bounded domains 
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for a very general class of memory kernels  ; setting the problem both in the 
classical past history framework and in the more recent minimal state one, the 
related solution semigroups are shown to possess finite-dimensional regular ex-
ponential attractors. Equation (1.1) is a special case of the nonclassical diffusion 
equation used in fluid mechanics, solid mechanics, and heat conduction theory 
(see [1] [4] [5]). In [1] Aifantis, Urbana and Illinois discussed some basic 
mathematical results concerning certain new types of some equations, and in 
particular results showing how solutions of some equations can be expressed at 
in terms of solutions of the heat equation, also discussed diffusion in general 
viscoelastic and plastic solids. In [4] Kuttler and Aifantis presented a class of 
diffusion models that arise in certain nonclassical physical situations and discuss 
existence and uniqueness of the resulting evolution equations. 

The long-time behavior of Equation (1.1) without white additive noise and 
0µ ≡  has been considered by many researchers; on a bounded domain see, e.g. 

[9] [10] [11] [12] [13] and the references therein. In [10] the authors proved the 
existence and the regularity of time-dependent global attractors for a class of 
nonclassical reaction-diffusion equations when the forcing term ( ) ( )1g x H −∈ Ω  
and the nonlinear function satisfies the critical exponent growth. In [11] Sun 
and Yang proved the existence of a global attractor for the autonomous case 
provided that the nonlinearity is critical and ( ) ( )1g x H −∈ Ω . The researchers 
in [12] obtained the Pullback attractors for the nonclassical diffusion equations 
with the variable delay on a bounded domain, where the nonlinearity is at most 
two orders growth. As far as the unbounded case for the system (1.1) the 
long-time behavior of solutions is concerned, most recently, by the tail estimate 
technique and some omega-limit compactness argument, for more details (see 
[14] [15] [16] [17] [18]). In [14] Ma studied the existence of global attractors for 
nonclassical diffusion equations with the arbitrary order polynomial growth 
conditions. By a similar technique, Zhang in [16] obtained the Pullback attrac-
tors for the non-autonomous case in ( )1H 

 , where the growth order of the 
nonlinearity is assumed to be controlled by the space dimension N, such that the 
Sobolev embedding 1 2 2pH L −→  is continuous. However, it is regretted that 
some terms in the proof of [16] Lemma 3.4 are lost. Anh et al. [17] established 
the existence of pullback attractor in the space ( ) ( )1 pH L 

  , where the 
nonlinearity satisfied an arbitrary polynomial growth, but some additional as-
sumptions on the primitive function of the nonlinearity were required. And the 
case of 0µ ≠  with additive noise on a bounded domain, Cheng used the de-
composition method of the solution operator to consider the stochastic non-
classical diffusion equation with fading memory. For the case of 0µ ≡ , Zhao 
studied the dynamics of stochastic nonclassical diffusion equations on un-
bounded domains perturbed by a -random term “intension of noise”. (For 
more details see [2] [19] [20] [21] [22]). 

To our best knowledge, Equation (1.1) on a bounded domain in the weak 
topological space and the time-dependent forcing term has not been considered 
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by any predecessors. 
The article is organized as follows. In Section two, we recall the fundamental 

results related to some basic function spaces and the existence of random at-
tractors. In Section three, firstly, we define a continuous random dynamical sys-
tem to proving the existence and uniqueness of the solution, then prove the ex-
istence of a closed random absorbing set and establish the asymptotic compact-
ness of the random dynamical system finally prove the existence of -random 
attractor.  

2. Preliminaries 

In this section, we recall some basic concepts and results related to function 
spaces and the existence of random attractors of the RDSs. For a comprehensive 
exposition on this topic, there is a large volume of literature, see [2] [3] [19] 
[23]-[29]. 

Let A = −∆ , with the domain ( ) ( ) ( )1 2
0D A H H= Ω Ω , and fractional  

power space 2
r

D A
 
  
 

, r∈ , the ( ) 2( )
, r

D A
⋅ ⋅ , 2( )

r

D A⋅  is the inner product and 

norm, respectively. For convenience, we use 2
r

r D A
 

=   
 

 , the norm 

2( )
r

r D A⋅ = ⋅


, and ( )2
0 L= Ω , ( )1

1 0H= Ω . 

Similar to [3], for the memory kernel ( )µ ⋅ , we denote ( )2 ; rLµ
+   the Hil-

bert space of function : rφ + →  , endowed with the inner product and norm 
respectively,  

( ) ( ) 2
1 2 1 2, ,0 0
, , d ,  = d .

r r r r
s s s s

µ µ
φ φ µ φ φ φ µ φ

∞ ∞
= ∫ ∫   

    (2.1) 

Define the space  

( ) ( ) ( ) ( ){ }1 2; | , ;r s rH s s Lµ µφ φ φ+ += ∂ ∈    

with the inner product  

( ) ( ) ( ) ( ) ( )11 2 1 2 1 2; 0 0
, , d , d ,

r r r
s sH s s s s s s

µ
φ φ µ φ φ µ φ φ+

∞ ∞
= + ∂ ∂∫ ∫   

 

and the norm  

( ) ( ) ( )1 2 2
2 2 2

; ; ; .
r r rH L Lµ µ µ

φ φ φ+ + +′= +
    

 

We also introduce the family of Hilbert space ( )2 ;r r rLµ
+= ×    , and 

endow norm  

( ) ( )22 2 2

,

1, .
2r r rr

z u u
µ

υ υ= = +
  

 

In the following of this article, we denote 2 2

, ,:
r rµ µ

⋅ = ⋅


. See [2] [3] [23] for 
more details. 

Let ( ) ( ){ }, : 0 = 0ω ωΩ = ∈   , f is the Borel σ-algebra on Ω , and   is 
the corresponding Wiener measure. Define  
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( ) ( ) ( ) ,  , .t t t tθ ω ω ω ω⋅ = ⋅+ − ∈Ω ∈  

Then ( )t
θ θ

∈
=   is the measurable map and 0θ  is the identity on Ω , 

t s t sθ θ θ+ =   for all ,s t ∈ . That is, ( )( ), , , t t
θ

∈
Ω   is called a metric dy-

namical system. 
Definition 2.1. ( )( ), , , t t

θ
∈

Ω   is called a metric dynamical system if 
:θ ×Ω→Ω  is ( )( ),×   -measurable, 0θ  is the identity on Ω , 

t s t sθ θ θ+ =   for all ,s t ∈  and tθ =   for all t ∈ . 
Definition 2.2. A continuous random dynamical system (RDS) on X over a 

metric dynamical system ( )( ), , , t t
θ

∈
Ω   is a mapping  

( ) ( ): , , , , , ,X X t x t xφ ω φ ω+ ×Ω× → →  

which is ( ) ( ) ( ),X X+ × ×    -measurable and satisfied, for -a.e. ω∈Ω , 
1) ( )0, ,φ ω ⋅  is the identity on X; 
2) ( ) ( ) ( ), , , , , ,st s t sφ ω φ θ ω φ ω+ ⋅ = ⋅ ⋅  for all ,t s +∈ ; 
3) ( ), , :t X Xφ ω ⋅ →  is continuous for all t +∈ . 
Definition 2.3. A random bounded set ( ){ }B B

ω
ω

∈Ω
=  is a family of non-

empty subsets of X is called tempered with respect to ( )t t
θ

∈  if for P-a.e. 
ω∈Ω , for all 0β > ,  

( )( )lim e 0,t
tt

d Bβ θ ω−

→∞
=  

where ( ) supx B Xd B x∈= . 
Definition 2.4. Let   be the collection of all tempered random sets in X. A 

set ( ){ };K K ω ω= ∈Ω ∈  is called a random absorbing set for RDS φ  in 
 , if for every B∈  and P-a.e. ω∈Ω , there exists ( ) 0Bt ω >  such that for 
all ( )Bt t ω≥ ,  

( )( ) ( ), , .t tt B Kφ θ ω θ ω ω− − ⊆  

Definition 2.5. Let   be the collection of all tempered random subsets of X. 
Then φ  is said to be asymptotically compact in X if for P-a.e. ω∈Ω , the se-
quence ( ){ }

1
, ,

nn t n n
t xφ θ ω

∞

−
=

 has a convergent subsequence in X whenever  

nt →∞ , and ( )nn tx B θ ω−∈  with ( ){ }B
ω

ω
∈Ω

∈ . 

Definition 2.6. (See [30], [31], [32]) Let   be the collection of all tempered 
random subsets of X and ( )A

ω
ω

∈Ω
∈ . Then ( )A

ω
ω

∈Ω
 is called a -random 

attractor for φ  if the following conditions are satisfied, for P-a.e. ω∈Ω , 
1) ( )A ω  is compact, and ( )( ),d x Aω ω  is measurable for every x X∈ ; 
2) ( )A

ω
ω

∈Ω
 is invariant, that is, ( )( ) ( ), , tt A Aφ ω ω θ ω= , 0t∀ ≥ ; 

3) ( )A
ω

ω
∈Ω

 attracts every set in  , that is, for every  

( ){ } ( )( ) ( )( ),    lim , , , 0,t tt
B B d t B A

ω
ω φ θ ω θ ω ω− −∈Ω →∞

= ∈ =  

where d is the Hausdorff semi-metric given by  

( ), supinf Xy Yz Z
d Z Y z y

∈∈
= −  

for any Z X⊆  and Y X⊆ . 
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Theorem 2.1. Let φ  be a continuous random dynamical system with state 
space X over ( )( ), , , t t

θ
∈

Ω  . If there is a closed random absorbing set ( )B ω  
of φ  and φ  is asymptotically compact in X, then ( )A →  is a random attrac-
tor of φ , where  

( ) ( ) ( )0
, ,  .

t t
A Bτ ττ
ω φ τ θ ω θ ω ω− −≥ ≥

= ∈Ω
 

 

Moreover, ( ){ }A ω  is the unique random attractor of φ . 
As mentioned in [23], we can define a new variable to reflect the memory 

kernel of (1.1)  

( ) ( )
0

, , d ,   0.
st x s u x t r r sη = − ≥∫                 (2.2) 

Hence,  

,   0.t t
t s u sη η+ = ≥                        (2.3) 

Therefore, we can rewrite (1.1) as follows.  

( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( )
( ) ( ) ( ) ( )

0

0

0
0 00

d , , ,

, , , ,

, 0,   , 0,   , , 0,

,0 ,0 ,   ,

, , , d ,  , ,

t
t t

t t
t s

t

s

u u u s s s u f x u g x t hW

x s u x t x s

u x t x s x t t

u x u x x

x s x s u x r r x t

µ η λ

η η

η

η η

∞

+

+

 − ∆ −∆ − ∆ + + = +

∂ = −∂
 = = ∈∂Ω× ≥
 = ∈Ω


= = − ∈Ω×

∫

∫







  (2.4) 

where ( ), 0u x s =  satisfies that there exist two positive constant C and k, such 
that  

( ) 2
00

e d .ks u s s C
∞ − ∇ − ≤∫                    (2.5) 

Lemma 2.1. ([3] [33]) Assume that ( ) ( )1 1Lµ + +∈    is a nonnegative 
function, and there exists 0s +∈ , such that ( )0 0sµ = , then ( ) 0sµ =  holds 
for all 0≥s . Moreover, for three Banach space 0 1,B B  and 2B , 0B  and 1B  
are reflexive and  

 0 1 2 ,B B B  
where, the embedding  0 1B B  is compact. Let ( )2

1;K L Bµ
+⊂   satisfy 

1) K in ( ) ( )2 1
0 2; ;L B H Bµ µ

+ +
  ; 

2) ( )
1

2
sup K B

s Nη η∈ ≤ , a.s. For some 0N ≥ . 
Then K is relatively compact in ( )2

1;L Bµ
+ . 

3. The Random Attractor 

In this section, we prove that the stochastic nonclassical diffusion problem (2.4) 
has a -random attractor. First, We convert system (2.4) with a random pertur-
bation term and linear memory into a deterministic one with a random parame-
ter ω . For this purpose, we introduce the Ornstein-Uhlenbeck process taking 
the form  

( ) ( ) ( )( )0
: e d , ,s

t tz t z s s tθ ω θ ω
−∞

= = − ∈∫   
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where ( ) ( )t W tω =  is one dimensional Wiener process defined in the intro-
duction. Furthermore, ( )z t  satisfies the stochastic differential equations  

( )d d d    for all .z z t W t t+ = ∈                   (3.1) 

It is known that there exists a tθ -invariant set Ω ⊆ Ω  of full P measure such 
that ( )tt z θ→  is continuous for every ω∈Ω , and the random variable 
( )tz θ  is tempered, see, e.g., [2] It is easy to show that  

( ) ( )d dz h W t∆ =                          (3.2) 

where ∆  is the Laplacian with domain ( ) ( )1 2
0H HΩ Ω . Using the change of 

variable ( ) ( ) ( )tt u t zυ θ ω= − , ( )tυ  satisfies the equation (which depends on 
the random parameter ω )  

( ) ( ) ( )( ) ( )( )
( ) ( )

( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( )

0

0 0

0 00

d ,

, ,

,

,0 : ,0 ,

,0 0,  , , , d ,

, 0,  , 0,    , ,  0.

t
t t t t

t

t t
t s t

st o

t

s s s z f x z

g x t z

z

x x u x z

x x s x s x r r

x t x s x t t

υ υ υ µ η λ υ θ ω υ θ ω

θ ω

η η υ θ ω

υ υ ω

η η η υ

υ η

∞

+

 −∆ −∆ − ∆ + + + +

= + ∆

 + = +


= = −


= = = −


= = ∈∂Ω× ≥

∫

∫


 (3.3) 

By the Galerkin method as in [34], under assumptions (1.2)-(1.8), for P-a.e. 
ω∈Ω , and for all ( )0 0 0 1,z υ η= ∈ , problem (3.3) has a unique solution 

( ), tz υ η=  in 1 , satisfying ( ) [ )( ) [ )( )0 1 1, , 0, ; 0, ;z z Lω ∞⋅ ∈ ∞ ∞   . 
Throughout this article, we always write  

( ) ( ) ( )0 0, , , , .tu t u t u zω υ ω θ ω= +                (3.4) 

If u is the solution of problem (1.1) in some sense, we can define a continuous 
dynamical system  

( ) ( ) ( ) ( )0 0 0, , , , , , .tt u u t u t u zω ω υ ω θ ωϒ = = +          (3.5) 

In order to prove the asymptotic compactness and the existence of global at-
tractor, we give the following results. 

Lemma 3.1. ([23]) Set [ ]0,I T= , 0T∀ > . Let the memory kernel ( )sµ  
satisfy (1.3), then for any ( )( )2; ;t

rI L Hµη +∈  , 0 3r< < , there exists a con-
stant 0δ > , such that  

2

, ,
, .

2r r

t t t
s µ µ

δη η η≥
 

                   (3.6) 

We first show that the random dynamical system ϒ  has a closed random 
absorbing set in  , and then prove that ϒ  is asymptotically compact. 

Lemma 3.2. Assume that ( ) ( )1 2
0h H H∈ Ω Ω  and (1.2)-(1.8) hold. Let 

( ){ }B B
ω

ω
∈Ω

= ∈ . Then for P-a.e. ω∈Ω , there is a positive random function 
( )1r ω  and a constant ( ), 0T T B ω= >  such that for all t T≥ ,  

( ) ( )
1 1

22
0 0 0, ,t tz Bυ θ ω η θ ω− −= ∈
 
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the solution of (3.3) has the following uniform estimate  

( )( ) ( )( )
( )( ) ( )

2 2

0 0

2

0 11,

, , , ,

, , .

t t

t
t

t t

t r
µ

υ θ ω υ ω υ θ ω υ ω

η θ ω υ ω ω

− −

−

+ ∇

+ ≤
             (3.7) 

Proof. Taking the inner product of the first equation of (3.3) with ( )2Lυ ∈ Ω , 
we have  

( ) ( ) ( )( )
( )( )( ) ( ) ( )( )

2 2 2 2

0

1 d , d
2 d

, , , , .

t

t t

s s s
t

f x z g x t z

υ υ υ λ υ µ η υ

υ θ ω υ θ ω υ

∞
+ ∇ + ∇ + − ∆

= − + + + ∆

∫
      (3.8) 

From (2.2) and (2.3), we obtain  

( ) ( )( )
( ) ( )( ) ( ) ( ) ( )( )

( ) ( ) ( )( )

0

0 0

2

01, 1,

, d

, d , d

1 d , , d .
2 d

t

t t t t
t s t

t t t t
s t

s s s

s s s s s z s

s s z s
t µ µ

µ η υ

µ η η η µ η θ ω

η η η µ η θ ω

∞

∞ ∞

∞

− ∆

= − ∆ + + ∆

= + − ∇ ∇

∫

∫ ∫

∫

    (3.9) 

Hence, we can rewrite (3.8) as follows  

( )
( ) ( ) ( )( )

( )( )( ) ( ) ( )( )

2 22 2 2 2

1, ,1

0

1 d
2 d

, d

, , , , .

t t

t
t

t t

t

s s z s

f x z g x t z

µ µ
υ υ η υ λ υ δ η

µ η θ ω

υ θ ω υ θ ω υ

∞

+ ∇ + + ∇ + +

− ∇ ∇

= − + + + ∆

∫       (3.10) 

By Young inequality and Lemma 3.1, we get  

( ) ( ) ( )( ) ( )
2 2

0 1,

1, d .
2 2

t t
t ts s z s z

µ

δµ η θ ω η θ ω
δ

∞
∇ ∇ ≤ + ∇∫     (3.11) 

From the first term on the right hand side of (3.8) 1 2f f f= + , First we esti-
mate 1f . By (1.4)-(1.5) and using a similar arguments as (4.2) in [35], we have  

( )( )( )
( ) ( )( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( )

1

1 1 1

2 21
1 21

, ,

, , = , , , ,

.
2

t

t t

pp
t tp p

f x z

f x u u z f x u u f x u z

u c z z c

υ θ ω υ

θ ω θ ω

α θ ω θ ω ψ ψ

+

= − −

≥ − + − +

     (3.12) 

By using (1.6)-(1.7), we arrive at  

( )( )( ) ( ) ( )( )
( ) ( )

2 2

1
2 2

, , , ,

d d d d .

t t

p p
t t

f x z f x u u z

u x x u z x z x

υ θ ω υ θ ω

α γ β θ ω δ θ ω−

Ω Ω Ω Ω

+ = −

≥ − − −∫ ∫ ∫ ∫
   (3.13) 

By the young inequality, and using assumption (1.6), we see that  

( ) ( )1 2
2 d d d ,

2
pp p

t tu z x u x c z xαβ θ ω θ ω−

Ω Ω Ω
≤ +∫ ∫ ∫        (3.14) 

( ) ( )
2

2
d d .

4t tz x z x δδ θ ω θ ω
Ω Ω

≤ +∫ ∫              (3.15) 

where ( )2 2, ,c c pα β= . Then, it follows from (3.13)-(3.15) that  
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( )( )( ) ( ) ( )( )22
2 , d .

2
pp

t t tp p
f z u x c z z cαυ θ ω υ θ ω θ ω+ ≥ − + −    (3.16) 

On the other hand, we have  

( ) ( ) 22 1, .
2 2

g g tλυ υ
λ

≤ +                    (3.17) 

From the last term of (3.8), we obtain  

( )( ) ( ) 2 21 1, .
2 2t tz zθ ω υ θ ω υ∆ ≤ ∇ + ∇               (3.18) 

Then, we substituting (3.11), (3.12) and (3.16)-(3.18) into (3.10) we conclude 
that  

( )
( ) ( )( ) ( )

( ) ( )( )
( ) ( ) ( )

2 22 2 2 2

1, 1,

2 21
1 21

22

2 2 2 2

1,

1 d 1
2 d 2 2

2

d
2

1 1 1 ,
2 2 2 2

t t
s

pp
t tp p

pp
t tp

t
t t

t

u c z z c

u s c z z

z g t z

µ µ

µ

λυ υ η υ υ δ η

α θ ω θ ω ψ ψ

α θ ω θ ω

δ η θ ω θ ω
δ λ

Ω

+ ∇ + + ∇ + +

+ − + − +

+ − +

≤ + ∇ + + ∇

∫
 

then we have  

( ) ( )

( ) ( ) ( ) ( )( )

2 22 2 2 2
1 21, 1,

2 2 2

1 d 1 1
2 d 2 2 2 2

1 .
2

pt t
s p

p
t t tp

u
t

g t C z z z C

µ µ

λ δυ υ η υ υ η α α

θ ω θ ω θ ω
λ

+ ∇ + + ∇ + + + +

≤ + + + ∇ +
 (3.19) 

Furthermore, let  

{ }max 1, , .σ λ δ=                          (3.20) 

Then (3.19)-(3.20), it implies  

( ) ( )
( ) ( )( ) ( )

2 22 2 2 2

1, 1,

2 2

d
d

11 .
2

t t

p
t t

t

C Y Y g t

µ µ
υ υ η σ υ υ η

θ ω θ ω
λ

+ ∇ + + + ∇ +

≤ + + +
        (3.21) 

According to Grnowall's Lemma, we obtain  

( )( ) ( )( ) ( )( )
( ) ( ) ( )
( ) ( ) ( )( ) ( ) ( )

2 2 2

0 0 0 1,

2 2 22
0 0 0 1,

2 22 2

0 0

, , , , , ,

e

1e 1 d e d .
2

t

t

t tpt s t s
s s

t t t

C Y Y s g s s

µ

σ
µ

σ σ

υ ω υ ω υ ω υ ω η ω η ω

υ ω υ ω η ω

θ ω θ ω
λ

−

− −

+ ∇ +

≤ + ∇ +

+ + + +∫ ∫

  (3.22) 

Substituting ω  by tθ ω− , then from (3.22), we have that  

( )( ) ( )( ) ( )( )
( ) ( ) ( )

( ) ( )( ) ( )

2 2 2

0 0 0 1,

2 2 22
0 0 0 1,

0 02 22 2

, , , , , ,

e

1e 1 d e d .
2

t
t t t t t t

t
t t t

pr r
r rt t

t t t

C Y Y r g r r

µ

σ
µ

σ σ

υ θ ω υ θ ω υ θ ω υ θ ω η θ ω η θ ω

υ θ ω υ θ ω η θ ω

θ ω θ ω
λ

− − − − − −

−
− − −

−

− −

+ ∇ +

≤ + ∇ +

+ + + +∫ ∫

 (3.23) 
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Recalling that ( ) ( )
1 1

22
0 0 0,t tz Bυ θ ω η θ ω− −= ∈
 

 is tempered such that  

( ) ( ) ( )( )2 2 22
0 0 0 1,

lim e 0.t
t t tt

σ
µ

υ θ ω υ θ ω η θ ω−
− − −→+∞

+ ∇ + =    (3.24) 

Note that ( )sY θ ω  is the tempered, and ( ) ( )1
t tz hYθ ω θ ω−= ∆ ,  

( ) ( ) ( )1 2
0h x H H∈ Ω Ω , we can choose  

( ) ( ) ( )( ) ( )0 02 22 2
1

1= 2 e 1 d e d .
2

pr r
r rr C Y Y r g r rσ σω θ ω θ ω

λ
−

−∞ −∞
+ + +∫ ∫  (3.25) 

Then ( )1r ω  is the tempered since ( )sY θ ω  has at most linear growth rate at 
infinity, now the proof is completed. 

To prove the asymptotic compactness of the solution, we decompose the solu-
tion ( ) ( )( ), tx t u t η=  of (3.3) as follows [3] [23]:  

( ) ( ) ( ) ( ) ( ) ( )1 2 1 2 1 2,    ,    ,t t tx t x t x t u t u t u t η η η= + = + = +  

where ( ) ( )( ) ( ) ( )( )1 1 1 2 2 2, , ,t tx t u t x t u tη η= =  satisfy the following problems, re-
spectively  

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

1 1 1 1 1 1 10

1 1

1 1 1

1 1

1 0 1

0
1 0

d ,

, , ,

, , , ,

, 0,   , 0,   , , 0,

,0 ,0 ,   ,

, , ,    , ,

t
t t

t t
t s

t

u u u s s s u f x u

g x t g x t h h W

x s u x t x s

u x t x s x t t

u x u x z x

x s x s x t

µ η λ

η η

η

ω

η η

∞

+

+

 − ∆ −∆ − ∆ + +

= − + −

∂ = −∂

 = = ∈∂Ω× ≥


= − ∈Ω


= ∈Ω×

∫







       (3.26) 

and  

( ) ( ) ( ) ( )
( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( )
( ) ( )

2 2 2 2 2 1 10

1 1

2 2 2

2 2

2 1

0
2

d , ,

, ,

, , , ,

, 0,   , 0,   , , 0,

,0 ,      ,

, 0,      , ,

t
t t

t t
t s

t

u u u s s s u f x u f x u

g x t hW

x s u x t x s

u x t x s x t t

u x z x

x s x t

µ η λ

η η

η

ω

η

∞

+

+

 − ∆ −∆ − ∆ + + −

= +

∂ = −∂

 = = ∈∂Ω× ≥


= ∈Ω


= ∈Ω×

∫






  (3.27) 

here the nonlinearity 1 2f f f= +  are satisfies (1.4)-(1.7). The drifting term 
( ) ( )1 2

1 0,h h H H∈ Ω Ω  and the forcing term satisfies a condition as in (1.8), 
( ) ( )( )2 2

1 , ;bg x t L L∈ Ω , for any 0> , such that  

( )21 1,       .Hg g h h
Ω

− < − <                 (3.28) 

Set ( ) ( )1 1t tz hYθ ω θ ω∆ = , we find that  

( )1 1 1 1d d d d .z h Y z t h W∆ = = −∆ +               (3.29) 

Let ( ) ( ) ( ) ( )1 1 1, , t tt u t z zυ ω ω θ ω θ ω= − + , where ( )1 ,u t ω  satisfies (3.26), and 
( ) ( ) ( )2 2 1, , tt u t zυ ω ω θ ω= − , ( )2 ,u t ω  is the solution of (3.27). Then for 
( )1 ,tυ ω  and ( )2 ,tυ ω  we have that  
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( ) ( ) ( )( )
( ) ( )( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( )

1 1 1 1 10

1 1 1 1 1

1 1 1 1

1 10 0 1

0
1 10 1 10 00

1 1

d

, , , ,

, , ,

,0 : ,0 ,0 ,

,0 : 0,    , , , ,

, 0,  , 0,    ,

t
t t t

t t t t

t t
t t s

st t

t

s s s z

f x z z g x t g x t z z

x t z x t

x x u x z z

x x s x s u x r dr

x t x s x

υ υ υ µ η λ υ θ ω

υ θ ω θ ω θ ω θ ω

η υ θ ω η

υ υ ω ω

η η η η

υ η

∞
−∆ −∆ − ∆ + +

+ + − = − + ∆ −

∂ = − −∂

= = − +

= = = = −

= =

∫

∫
( ) ,  0,t t+












∈∂Ω× ≥ 

 (3.30) 

and  

( ) ( ) ( )( ) ( )( )
( ) ( )( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

2 2 2 2 20

1 1 1 1 1

2 2 1 2

2 20 1

0
2 20 2 20

2 2

d ,

, , ,

, , ,

,0 : ,0 ,

,0 : 0,    , , 0,

, 0,  , 0,    , ,  0

t
t t t t

t t t t

t t
t t s

t t

t

s s s z f x z

f x z z g x t z z

x t z x t

x x z

x x s x s

x t x s x t t

υ υ υ µ η λ υ θ ω υ θ ω

υ θ ω θ ω θ ω θ ω

η υ θ ω η

υ υ ω

η η η η

υ η

∞

+

− ∆ −∆ − ∆ + + + +

− + − = + ∆ +

∂ = + −∂

= = −

= = = =

= = ∈∂Ω× ≥

∫

 .













 (3.31) 

The same of the problem (3.3), we also have the corresponding existence and 
uniqueness of solutions for (3.30) and (3.31). For the convenience, we obtain the 
solution operators of (3.30) and (3.31) by ( ){ }1 0t

S t
≥

 and ( ){ }2 0t
S t

≥
 respec-

tively. Then, for every 0 1z ∈ , we get  

( ) ( ) ( ) ( )0 1 0 2 0, ,   0.z t S t z S t z S t z tω = = + ∀ ≥  

Next, we give some Lemmas to prove the asymptotic compactness. 
Lemma 3.3. Assume that the condition on 1 2 1, , , ,f f f g g  hold. Let  

( ){ }B B
ω

ω
∈Ω

= ∈ . Then for P-a.e. ω∈Ω , there is a constant ( )2 2 , 0T T B ω= > , 
0∀ > , if  

( ) ( )
1 1

22
10 10 10, ,t tz Bυ θ ω η θ ω− −= ∈

 
 

then for all 2t T≥ , the solution of (3.30) satisfies the following uniform estimate  

( ) ( ) ( )
1

2 22
1 10 10 1e ,tS t z z rσω ε ω−≤ +


            (3.32) 

where the positive random function ( )1r ω  is defined in Lemma 3.2. 
Proof. From (3.10) we substituting ( ), , tf g z θ ω  by  

( ) ( )1 2 1 1, , , t tf f g g z zθ ω θ ω− − , respectively. Similar to the proof the Lemma 3.2, 
we compute  

( )( ) ( )( ) ( )( )
( ) ( ) ( )

( ) ( )( ) ( )

2 2 2

1 10 1 10 1 10 1,

2 2 22
10 10 10 1,

0 02 22 2

, , , , , ,

e

1e 1 d e d .
2

t
t t t t t t

t
t t t

pr r
r rt t

t t t

C Y Y r g r r

µ

σ
µ

σ σ

υ θ ω υ θ ω υ θ ω υ θ ω η θ ω η θ ω

υ θ ω υ θ ω η θ ω

θ ω θ ω
λ

− − − − − −

−
− − −

− −

+ ∇ +

≤ + ∇ +

+ + + +∫ ∫

 

(3.33) 

Since ( ) ( )
1 1

22
10 0 0,t tz Bυ θ ω η θ ω− −= ∈

 
, ( )sY θ ω  are tempered, we can 

choose 2 0T > , 2 t T∀ > , such that (3.32) is satisfied. 
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Lemma 3.4. Assume that the condition on 1 2 1 1, , , , , ,f f f g g h h  hold. Let 
( ){ }B B

ω
ω

∈Ω
= ∈ . Then for P-a.e. ω∈Ω , there is a positive random function 
( )1r ω  and  

( ) ( )
1 1

22
10 0 0, ,t tz Bυ θ ω η θ ω− −= ∈

 
 

such that for every given 0T ≥ , the solution of (3.31) has the following uniform 
estimates  

( )( ) ( )
1

2

2 0 2, ,
l

S T z rω ω
+
≤


                  (3.34) 

where ( )( ){ }min 1, 2 2 2l n p n= − − . 
Proof. Multiplying (3.31) by 2

lAυ  and integrating over Ω , we can get  

( ) ( )( ) ( )( )( )
( ) ( )( )( )

( ) ( ) ( )( )

2 2 2 21 1
2 2 2 2

2 2 2 2

2 2 20

1 1 1 2

1 1 2

1 d
2 d

, d , ,

, ,

, , .

l l l l

t l l
t

l
t t

l
t t

A A A A
t

s s A s f x z A

f x z z A

g x t z z A

υ υ λ υ υ

µ η υ υ θ ω υ

υ θ ω θ ω υ

θ ω θ ω υ

+ +

∞

 
 + + +
 
 

− ∆ + +

− + −

= + ∆ +

∫        (3.35) 

From (2.2) and (3.31), we obtain  

( ) ( )( )
( ) ( ) ( ) ( ) ( )( )( )

( ) ( ) ( )( )

2 20

2 2 2 10

2

2 2 2 2 101 , 1 ,

, d

, d

1 d , , d ,
2 d

t l

t l t t
t s t

t t t t l
s tl l

s s A s

s s A s s z s

s s A z s
t µ µ

µ η υ

µ η η η θ ω

η η η µ η θ ω

∞

∞

∞

+ +

− ∆

= − ∆ + −

= + + ∇

∫

∫

∫

   (3.37) 

hence  

( ) ( ) ( )( ) ( )
21

2
2

2 1 2 10 1 ,
, d ,

l
t l t

t tl
s s A z s C A z

µ
µ η θ ω ε η θ ω

+
∞

+
∇ ≤ +∫  

and  

2 2

2 2 1, 1, 1,
, .

2 2
t t t t

s µ µ µ

δ δη η η η− ≤ − ≤  

By 1 2, ,f f f  and the mean value theorem, we have  

( )( )( ) ( ) ( )( )( )
( ) ( )( )( )
( ) ( )

2 1 1 1 2

2 1 1 2

1
2 1 1 2

, , , ,

, ,

d .

l l
t t t

l
t t

p l
t t

f x z A f x z z A

f x z z A

z z A x

υ θ ω υ υ θ ω θ ω υ

υ θ ω θ ω υ

β υ θ ω θ ω υ δ
−

Ω

+ − + −

= + −

= + − + Ω∫

 (3.38) 

Using the embedding theorem, we have  

( ) ( )

( ) ( ) ( )

( ) ( )

2 1
2 2

1
2 1 1 2

1
21 1 2
2 2

1
1 2

1 1 2

d

,

n p
n l

p l
t t

p l
nt t

n lL

l
p

t t

z z A x

C z z A

C z z A

β υ θ ω θ ω υ δ

υ θ ω θ ω υ δ

υ θ ω θ ω υ δ

−
+ −

−

Ω

−

+ −

+
−

+ − + Ω

≤ + − + Ω

≤ ∇ + − + Ω

∫
        (3.39) 
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where we have used inequality ( )( )2 1
1

2 2
n p
n l
− −

≤
+ −

, so ( )2 2 2
2 2

n p n n
n

− −
≤

−
 and 

the embedding theorem  

( ) ( )
2 221 1 1
2 1 2 122 2 2

1 1 1,  ,  .
n nn l l

n l n ln
l lD A L D A L D A L

+ −
− + − −−

+ −

     
= → = → = →          

     
    

Note that  

( ) ( ) ( )( )

( ) ( ) ( )( )
1 1 2

21
2 2 2 2

1 1 2

, ,

, .

l
t t

l

t t

g x t z z A

C g x t z z Aε

θ ω θ ω υ

θ ω θ ω ε υ
+

+ ∆ +

≤ + ∆ + +
     (3.40) 

Thanks to Lemma 3.1, the property of the solution of (3.3) and (3.26), and 
(3.36)-(3.40), we conclude that  

( ) ( )( )

( ) ( ) ( )( )

2 21
2

2 2
2 2 2 1 ,

2 2
2

2 2
2 2 2 1 ,

2 2
1

2 2
2

2 2
2 2 2 1 ,

2 2 2
1 1

1 d
2 d

2

1

1 ,

l l
t

l

l l l
t

l

t t

l l l
t

l

t t

A A
t

A A

C z z

A A

C z z g t

µ

µ

µ

υ υ η

δυ λ υ ε η

θ ω θ ω

β υ υ η

θ ω θ ω

+

+

+

+

+

+

 
 + +
 
 

 ≤ + + + 
 

+ + ∆ +

 
 ≤ + +
 
 

+ + ∆ + +

          (3.42) 

where { }min 2,2 , 2β λ δ ε= + .  

( )

( ) ( ) ( )

( ) ( )( ) ( ) ( )
( ) ( )( ) ( ) ( )

1

2 21
22 2 2

2 2 2 2 1 ,

2 21
22 2 2

20 20 20 1 ,

2 22 2
10 0

2 22 2
10 0

,

e

e 1 d e d

e 1 d e d .

l

l l
t

l

l l
t t

l

t tt s t s
s

t tt s t s
s

z t A A

A A

C Y s C g s s

C Y s C g s s

µ

β

µ

β β

β β

ω υ υ η

υ ω υ ω η ω

θ ω

θ ω

+

+

+

+

+

− −

− −

≤ + +

 
 ≤ + +
 
 

+ + +

≤ + +

∫ ∫

∫ ∫



       (3.43) 

Thus, for every given 0T > , we get  

( )( ) ( )
1

2

2 0 2, ,
l

S T z rω ω
+
≤


                  (3.44) 

where ( ) ( ) ( )( ) ( ) ( )2 22 2
2 10 0

= e 1 d e d
T Tt s t s

sr Y s g s sβ βω θ ω− −+ +∫ ∫  is a random 
function. 

The proof is complete. 
Since ( ) ( )

0
, , d , 0

st x s u x t r r sη = − ≥∫  and (3.31), it follows  

( )
( )

( )
20

2

20

d ,   0 ,
,

d ,   ,

s

t
t

u t r r s t
x s

u t r r s t
η

 − < ≤= 
 − >

∫

∫
             (3.45) 
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for more information on ( ),t x sη , see [23], we have 
Lemma 3.5. Let ( ) ( )2 2

1 1 1: , ,L Lµ µ
+ +Π = × →     is a projection operator, 

setting ( )( )2 2 0: ,T S T B ωΓ = Π , ( )0B ω  is a random bounded absorbing set from 
Lemma 3.4, ( )2 ,S T ⋅  is the solution operator of (3.31), and under the assump-
tion of Lemma 3.4, there is a positive random function ( )3r ω  depend on T, 
such that 

1) 2
TΓ  is bounded in ( ) ( )2 2

1 1, ,lL Lµ µ
+ +

+    ; 
2) ( ) ( )

12

2
3sup T s r

η
η ω

∈Γ
≤


. 

Proof. By the random translation, (3.44) and Lemma 3.4, we can prove this 
Lemma. 

Therefore, Lemma 2.1 implies that 2
TΓ  is relatively compact in ( )2

1,Lµ
+

  . 
And use the compact embedding 1 1l+ →  , we have that 

Lemma 3.6. Let ( )2 ,S t ⋅  be the corresponding solution operator of (3.31), 
and the assumption of Lemma 3.4 and 3.5 hold, then for any 0T > , 

( )( )2 0,S T B ω  is relatively compact in 1 . 
Now we are on a position to prove the existence of a random attractor for the 

stochastic nonclassical diffusion equation with linear memory and additive white 
noise. 

Theorem 3.1. Let ( ){ } 0t
S t

≥
 be the solution operator of equation (3.3), and 

the conditions of the lemma 3.6 hold, then the random dynamical system ϒ  
has a unique random attractor in 1 . 

Proof. Notice that ϒ  has a closed absorbing set ( ){ }B B
ω

ω
∈Ω

= ∈  by 
Lemma 3.2, and is relatively compact in 1  by Lemma 3.3 and Lemma 3.6. 
Hence the existence of a unique -random attractor follows from Theorem 2.1 
immediately. 
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