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Abstract 
This study is concerned with the problem of finite-time H∞ filter design for 
uncertain discrete-time Markov Jump stochastic systems. Our attention is 
focused on the design of mode-dependent H∞ filter to ensure the finite-time 
stability of the filtering error system and preserve a prescribed H∞ perfor-
mance level for all admissible uncertainties. Sufficient conditions of filtering 
design for the system under consideration are developed and the corres-
ponding filter parameters can be achieved in terms of linear matrix inequali-
ties (LMI). Finally, a numerical example is provided to illustrate the validity 
of the proposed method. 
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1. Introduction 

Since Markov Jump systems is important class of stochastic dynamic systems, it 
has drawn a lot of attention. Many contributions for Markov Jump systems have 
been reported in the literature. Robust stability and stabilization control, H∞ 
control, H∞ filtering design, passive control and so on have been widely studied 
[1]-[9]. Robust stabilization problem and H∞ control for Markov Jump Linear 
Singular Systems with Wiener Process was studied in [1]. The problems of sta-
bility and robust stabilization for stochastic fuzzy systems were addressed in [2], 
which designed a robust stochastic fuzzy controller with H∞ performance for a 
class of Markov Jump nonlinear systems. Some results on delay-dependent H∞ 
filtering for discrete-time singular Markov Jump systems were reported in [3]. 
The authors investigated delay-dependent robust stability and corresponding 
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control problems for Markov Jump linear systems in [4]. In [5] [6] [7] [8] [9], 
some methods of H∞ filtering design for Markov Jump systems or switched sys-
tems were proposed. 

As well known, Lyapunov asymptotic stability theory focuses on the steady-state 
behavior of plants over an infinite-time interval. But in many practical systems, 
it is only required that the system states remain within the given bounds. This 
motivated the introduction of finite-time stability or short-time stability, which 
has received considerable attention [10]-[19]. The authors investigated the 
sufficient conditions of finite-time stability for a class of stochastic nonlinear 
systems in [10]. The problem of robust finite-time stabilization for impulsive 
dynamical linear systems was investigated in [11]. In [12] fuzzy control method 
was adopted to solve finite-time stabilization of a class of stochastic system. A 
robust finite-time filter was established for singular discrete-time stochastic sys-
tem in [13]. Some related works for finite-time problems were discussed in 
[14]-[19]. To the best of the author’ knowledge, the problem of robust finite-time 
filtering for discrete-time Markov Jump stochastic systems has not been fully 
investigated. This motivates us to investigate the present study. One application 
of these new results could be used to detect generation of residuals for fault di-
agnosis problems. 

In this paper, we introduce the definition of finite-time stochastic stable (FTSS) 
into a class of discrete-time Markov Jump stochastic systems with parametric 
uncertainties. The main purpose of this research is to construct a detection filter 
such that the resulting filter error augmented system is FTSS. A central problem 
that we consider is the design of a detection filter that generates a residual signal 
to estimate the fault signal and detect failure. Sufficient conditions for FTSS of 
the filter error system is established by applying the Lyapunov-Krasovskii func-
tional candidate combined with LMIs. The desired FTSS filter can be received by 
solving a set of LMIs. A numerical example is given to demonstrate the applica-
bility and validity of the proposed theoretical method. 

The structure of the paper is organized as follows. Some preliminaries and the 
problem formulation are introduced in Section 2. In Section 3, a sufficient con-
dition for FTSS of the corresponding filtering error system is established and the 
method to design a finite-time filter is presented. Section 4 presents a numerical 
example to demonstrate the effectivity of the mentioned methodology. Some 
conclusions are drawn in Section 5. 

We use nR  to denote the n-dimensional Euclidean space. The notation 
X Y>  (respectively, X Y≥ , where X and Y are real symmetric matrices, means 

that the matrix X Y−  is positive definite (respectively, positive semi-definite). 
I and 0 denote the identity and zero matrices with appropriate dimensions. 

( )max Rλ  and ( )min Rλ  denotes the maximum and the minimum of the eigen-
values of a real symmetric matrix R. The superscript T denotes the transpose for 
vectors or matrices. The symbol * in a matrix denotes a term that is defined by 
symmetry of the matrix. 
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2. Model Descriptions and Preliminaries 

We shall consider the following uncertain discrete-time Markov Jump stochastic 
system: 

( ) ( ) ( ) ( )1k k k k k k kx A A x B B vη η η η+    = + ∆ + + ∆             (1a) 

( ) ( ) ( ) ( )k k k k k k ky C C x D D vη η η η   = + ∆ + + ∆             (1b) 

( )k k kz L xη=                         (1c) 

( ) 00 nx x R= ∈                        (1d) 

where n
kx R∈ , m

ky R∈  are the state vector and the measurement or output 
vector, q

kz R∈  is the controlled output, and kv  is a one-dimensional zero-mean 
process which satisfies [ ] 20, 0, ,k i j kv v v i j v α  Ξ = Ξ = ≠ Ξ =    , which is assumed 
to be independent of the system mode { }kη . Ξ  is the expected value. Here 

0α >  is a known scalar. 
The random form process { }kη  is a discrete-time Markov process taking 

values in a finite set { }1,2, ,ˆS s=  . The set S comprises the operation modes of 
the system. The transition probabilities for the process { }kη  are defined as 

( )1Prob |ij k kp j iη η+= = =                      (2) 

where 0ijp >  is the transition probability rate from mode i to mode j, for 
, , 1ij

j S
i j S p

∈

∀ ∈ =∑ . 
For each possible value of ,k i i Sη = ∈  in the succeeding discussion, we de-

note the matrices with the ith mode by 

( )ˆi kA A η= , ( )ˆi kB B η= , ( )ˆi kC C η= , ( )ˆi kD D η= , ( )ˆi kL L η= , 

( ) ˆk iA Aη∆ = ∆ , ( ) ˆk iB Bη∆ = ∆ , ( ) ˆk iC Cη∆ = ∆ , ( ) ˆk iD Dη∆ = ∆  

where , , , ,i i i i iA B C D L  for any i S∈  are known constant matrices of appropri-
ate dimensions , , ,i i i iA B C D∆ ∆ ∆ ∆  are matrices that represent the time-varying 
parameter uncertainties and are assumed to be of the form: 

1 1

2 2

i i
k

i i

A H G
F

C H G
∆     

=     ∆     
, 3 3

4 4

i i
k

i i

B H G
F

B H G
∆     

=     ∆     
.           (3) 

The matrices 1 2 3 4 1 2 3 4, , , , , , ,i i i iH H H H G G G G  are known and provide the struc-
ture of the uncertainty. kF  is arbitrary except for the bound on kF  which satis-
fies T

k kF F I< . 
Where , 1 , , 1 , 1 , 2 , , ,, , , , , , ,i k i k i k i k i k i k i k i kA A B B D D C D  for any i S∈  and k N∈  are 

known constant matrices of appropriate dimensions. 
We now summarize several needed results from the literature. 
Definition 1 ([20]) The discrete-time Markovian Jump stochastic system (1) 

is said to be finite-time stochastic stable (FTSS) with respect to ( )1 2, , ,c c P N , 
where 1 20,0P c c> < <  and N is a positive integer, if { }T

0 0 1x Px cΞ <  implies 

{ }T
2k kx Px cΞ <  for all 1, 2, ,k N=  . 

The next two Lemmas will play a key role in what follows. 
Lemma 1 ([21]) Let M, N and F be matrices of appropriate dimension, and 
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TF F I≤ . Then for any scalar 0ε > , T T T T 1 TMFN N F M MM N Nε ε −+ ≤ + . 
Lemma 2 (Schur complement [22] [23]) 
Given a symmetric matrix 11 12

21 22

φ φ
φ

φ φ
 

=  
 

, the following three conditions are 
equivalent to each other: 

1) 0φ < ; 
2) 11 0φ <  and T 1

22 12 11 12 0φ φ φ φ−− < ; 
3) 22 0φ <  and 1 T

11 12 22 12 0φ φ φ φ−− < . 
We now consider the following filter: 

1ˆ ˆk fi k fi kx A x B y+ = +                      (4a) 

ˆˆk fi kz L x=                          (4b) 

where ˆ n
kx R∈  is the filter state, and matrices , ,fi fi fiA B L  are filter parameters 

with compatible dimensions to be determined. It is assumed that fiA  is non-
singular. Define ( ) [ ]TT ˆk k kt x xξ = , ˆk k ke z z= − . Then the filtering error system 
is 

( ) ( )1k i i k i i kA A B B vξ ξ+ = + ∆ + + ∆                   (5a) 

k ke Lξ=                             (5b) 

where, 
0i

i
fi i fi

A
A

B C A
 

=  
 

,  

1 1

2 2

0 0 0
0 0 0

i i
i k i k

fi i fi i

A H G
A F H F G

B C B H G
∆     

∆ = = =     ∆     
, 

3 3

4 4

i i
i k i k

fi i fi i

B H G
B F H F G

B D B H G
∆     

∆ = = =     ∆     
 , i

f

B
B

B D
 

=  
 

, fL L L = −  (6) 

Then the problem to be presented in this paper can be summarized as follows. 
Given a scalar 0γ > , design a filter (4) for the system (1), such that 
1) the filtering error system (5) is FTSS, 
2) the filtering error 

ke satisfies 
T 2 2
k k ke e vγ   Ξ ≤ Ξ    ,                     (7) 

where the prescribed value γ  is the attenuation level. 

3. Robust H∞ Filter Design 

In this section we address the problems of admissibly finite-time stochastic sta-
bility analysis and the filter design of the discrete-time Markov Jump stochastic 
system. A sufficient condition of the filter existence and the design technique is 
proposed in the following theorems. 

Theorem 1: The error system in (5) is robust FTSS with respect to 

( )1 2, , ,c c P N  and (7) is satisfied if there exist scalars 1 0ε > , 2 0ε > , 1µ > , 
0γ >  and symmetric positive-definite matrix , iP Q , i S∈  so that if 

1 1
2 2

i iR P Q P=  the following condition holds: 

[ ] 0Θ = Φ Ψ <                        (8) 

https://doi.org/10.4236/jamp.2018.611201
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where Θ  is 

11

22
1

1
T

1

T

* * *
0 * *

0 *
0 0
0 0 0

0 0 0
0 0 0
0 0 0

0 0

i i i

i i

i fi

G I
H R A I

G
G

H R B
G

L C

ε
ε

−

Θ
 Θ
 −


−
Φ =





 −







 

( )

( )

1 T
max

1
2

2

1 T
max

* * * * *
* * * * *
* * * * *
* * * * *

* * * *

0 * * *
0 0 * *

0 0 0 *

0 0 0 0

i i i

i i i

H R H I

I
I

H R H I

I

λ

ε
ε

λ

−

−

−







−Ψ = 
−


− 


− 
− 

 

     (9) 

where T
11 i i i iA R A RµΘ = − , T 2

22 i i iB R B I Iµ γΘ = − −  and  

( )
( )

max 1 1
2

min

NN k
i k

i

Q c
c

Q
µ λ µ α

λ
=

+
≤∑ . 

Proof: Let us consider the following Lyapunov function candidate for system 
(5): 

( ) T,i k k i kV V i Rξ ξ ξ= = .                    (10) 

Then, we compute that 

( ) ( ) { }
( ) ( )

( ) ( )

T T T T
1 1 1

TT

T

T T T

T

T

, ,

0

0

0
0

0 0

k k k k k i k k i k k k

i i i i i ik k

k ki i i i i

k i i i i i
i i

k i i i

i

V i V i v v R R v v

A A R A A R

v vB B R B B I

A R A R A R A
v B R B I

A

ξ µ ξ µ ξ ξ µξ ξ µ

µξ ξ

µ

ξ µ
µ

+ + + Ξ − − = Ξ − − 
 + ∆ + ∆ −    =         + ∆ + ∆ − 

   −  ∆  = +      −     

+
TT TT T

T

T T
TT T

T T

0
0 0 0

0 0

0 0
0 0

i i
i i i i i

i

k k k
i i i i

i i k k k

A AR R A R B
B

B R R B
B B v

ξ ξ ξ
ν ν

     ∆ ∆     + ∆ +          ∆    
            + + ∆ = Θ            ∆ ∆         

(11) 

Note that 
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( )
T T

T
max0 0

0 0
i

i i i i i
A G

R A H R H Gλ
   ∆

   ∆ ≤      
   

          (12) 

( )T
maxT T

0 0
0 0i i i i i

i

R B H R H G
B G

λ
      ∆ ≤      ∆   

 



.          (13) 

Then by two applications of Lemma 2, we have 
TT TTT T

T T T
1 T

1 1

0 0
0 0

0 0
0 0

i i
i i i i

i i i
i i i

A AR A A R

G A R HG H R Aε ε −

   ∆ ∆   +      
   

   
  ≤ +      

   

           (14) 

and 
T

T T
T T

1
2 2 T T TT

0 0
0 0

00
0 0

T
i i i i

i i

i i i
i i i

R B B R
B B

G H R B
B R HG

ε ε −

      +      ∆ ∆   
      ≤ +         

 

 

.            (15) 

Applying the Schur Complement, the condition (8) contains the following 
inequality: 

( )

( )

T T T T
1 T

1 1T

T
T 1

max 2 2 T T TT

T
max T

0
0 0

0 0 0

00
0 0 0

0

0
0 0

i i i i i i i
i i i

i i i

i i i i i i
i i i

i i i

A R A R G A R HG H R A
B R B I

GH R H G G H R B
B R HG

H R H G
G

µ
ε ε

µ

λ ε ε

λ

−

−

     −
  + +        −     

         + + +            
   + <    

 

 

 



 

Then 

0Θ < .                          (16) 

With the conditions (10) and (11), it then also follows that 

( ) ( )T T
min,k k i k i k kV i R Q Pξ ξ ξ λ ξ ξ    Ξ = Ξ ≥ Ξ      .          (17) 

Proceeding in an iterative fashion, we obtain the following inequality: 

( ) ( )

( )

( )

T
1 1 1

T
max 0 0

1

max 1
1

, ,k k k k

N
k k

i
k

N
N k

i
k

V i V i v v

Q P

Q c

ξ µ ξ µ

µ λ ξ ξ µ α

µ λ µ α

− − −

=

=

  Ξ ≤ Ξ +   

 ≤ Ξ + 

≤ +

∑

∑

 

Thus we have that 

( )
( )

max 1T 1
2

min

NN k
i k

k k
i

Q c
P c

Q
µ λ µ α

ξ ξ
λ

=
+

 Ξ ≤ ≤ 
∑ .          (18) 

Obviously, (8) indicates that 

( ) ( ) T T 2 T
1, , 0k k k k k k k kV i V i v v e e v vξ µ ξ µ γ+ Ξ − − + − ≤  .        (19) 
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Then we can conclude that (7) holds. 
Theorem 2 The filtering error system (5) is FTSS with respect to 

( )1 2, , ,c c P N  and the error signal satisfies (7), if there exist positive definite 

matrix iQ  and matrices 1 2 3, ,i i iΩ Ω Ω , 1

2

0
0

i

i

R
R

R
 

=  
 

, 
1 1
2 2

i iR P Q P= , i S∈  

satisfying: 

0Θ = Φ Ψ <                       (20) 

where Ψ  is from (8) and Φ  is the same as Φ  in (8) except that 
T T T

1 2 2 2 2 1
11 T T T

1 2 1 2 1

i i i i i i i i

i i i i i

A R A R
R−

 + Ω Ω Ω Ω
Φ =  

Ω Ω Ω Ω 
, 

T T T T 1 2
22 1 2 2 2i i i i i i i i iB R D C R C D I Iµ γ− − Φ = Ω Ω − −   

T T T
41 1 1 2 2 2 2 1i i i i i i i iH R A H R H Φ = + Ω Ω   and 1

72 3 1 4 2 2i i i i i i iH R B H R C−Φ = + Ω  (21) 

Moreover, the suitable filter parameters , ,fi fi fiA B L  in system (4) can be 
given by 

1 1
2 1 2 3, ,fi i i fi i i fi iA R B C C− −= Ω = Ω = Ω .              (22) 

Proof: By Theorem 1, the terms in (9) can be rewritten as follows: 
T T T T T

1 2 1 2T
T T

2 2 2

i i i i fi i fi i i i fi i fi
i i i

fi i fi i fi i fi i

A R A C B R B C R C B R A
A R A

A R B C A R A R
µ

µ
 + −

=  
−  

, 

T T T T
1 2i i i i i i fi i fi iB R B B R D B R B D =    

 

and T T T T
1 1 2 2 2 2i i i i i i i fi i i i fiH RA H R A H R B C H R A = +  , 

while 
T

3 1 4 2i i i i i i i i fi iH R B H R B H R B D= + . 

Let 1 21 2 21 3, ,i fi i fi i fiR A R B LΩ = Ω = Ω = , then the condition (8) is equivalent to 
(20). 

4. Numerical Example 

We now give a numerical example to illustrate the proposed approach. In this 
example, we choose the following coefficients for the discrete-time Markov 
Jump stochastic system in the form of (1): 

1

1 0.8
0.9 2

A
− 

=  − 
, 2

1 0.6
0.8 1.8

A
− 

=  − 
, 1

0.2
0.1

B  
=  − 

, 2

0.3
0.3

B  
=  − 

, 

[ ]1 0.4 0.2C = − , [ ]2 0.1 0.3C = − , 1 0.2D = , 2 0.1D = , ( ) [ ]T0 0.2 0.1x = , 

( )2 0.1kω Ξ =   and use the Matlab LMI Toolbox. 

11

0.02
0.03

H  
=  − 

, 21 0.02H = − , 12

0.04
0.01

H  
=  − 

, 22 0.05H = , 

31

0.04
0.02

H
− 

=  
 

, 41 0.01H = , 32

0.03
0.04

H  
=  − 

, 42 0.03H =  
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[ ]1 0.03 0.02G = − − , [ ]2 0.02 0.01G = − − , [ ]3 0.02 0.02G = − − , 

[ ]4 0.02 0.05G = − − , [ ]1 0.03 1.2L = − , [ ]2 0.02 1.5L = − . 

Suppose 1.04µ = , 3.2γ = , { }1.2,1.2P diag= , 0.01α = , 1 0.7c = , 

2 2.4c = , 20N = , 1 0.3ε = , 2 0.2ε =  and apply Theorem 1, we find that LMIs 
(5) is feasible. Thus the system is finite-time stochastic stable with respect to 
( )0.7, 2.4, , 20P  for all N. Moreover, applying Theorem 2, we can obtain the 
corresponding filter parameters as follows: 

1

0.7435 0.3269
0.3269 0.4336fA  

=  
 

, 1

2.4634
0.6429fB  

=  − 
, [ ]0.1036 0.0264fiL = − , 

2

0.6844 0.4758
0.4758 0.2927fA  

=  
 

, 2

2.8547
0.7341fB  

=  − 
, [ ]2 0.0074 0.0159fL = − . 

The necessary LMI’s are solved in MATLAB using the LMI capabilities of the 
Robust Control Toolbox. 

5. Conclusion 

In this paper, we have investigated the H∞ filtering problems for discrete-time 
Markov Jump stochastic systems. Stochastic Lyapunov function method is adopted 
to establish sufficient conditions for the FTSS of the filter error system. The de-
sign of H∞ filter is constructed in a given finite-time interval in the form of LMIs 
with some fixed parameters. An example is given to demonstrate the validity of 
the proposed method. 
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