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Abstract 

In this paper, the random Kuramoto-Sivashinsky equation with additive 
noise is studied numerically, using the finite difference method to simulate 
the effect of different amplitude of noise on the solitary wave. And numerical 
experiments show that the white noise does not affect the propagation of the 
solitary wave, but can increase the amplitude of the solitary wave. 
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1. Introduction 

In recent years, many scholars have studied deterministic k-s equations and 
made important achievements, but there are relatively few studies on stochastic 
Kuramoto-Sivashinsky equations, and studying the numerical solution of the 
equation is a new field. In general, there is no analytic solution to stochastic Ku-
ramoto-Sivashinsky equation, so numerical analysis becomes an important tool 
to develop its properties. Moreover, it has high computational efficiency, low 
computational complexity and good reliability. In this paper, its accuracy can be 
seen by comparing the numerical solution with the exact solution. Moreover we 
can also discover some phenomena about solution properties directly by numer-
ical analysis. 

We consider the following form of nonlinear evolution equation 

0t x xx xxxxu uu u uα β+ + + =                    (1.1) 

The coefficients of α  and β  are real constants, which are a number of im-
portant mathematical physics equations in many physical problems. The second 
and fourth order terms represent the dissipation and instability of the system 
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respectively, and the second one represents the convective nonlinear effect. Equ-
ation (1.1) is called the Kuramoto-Sivashinsky equation, hereinafter referred to 
as k-s equation; it is independently obtained in the analysis of Kuramotol [1] in 
dissipative structure of reaction diffusion system and Sivashinsky [2] in flame 
combustion and fluid dynamics instability. However, in practical situations, we 
must consider the effect of small irregular random factors, for example, adding a 
random force term to the right of the equation. 

Let’s think about the k-s equation with a random term 

( ),    ,t x xx xxxxu uu u u x t I Rα β λξ+ + + = ∈ ×             (1.2) 

Here λ  is the amplitude of the noise, ξ  is additive noise, and a real value 
gaussian process. Suppose that ( ),u x t  is defined in the region  

[ ] [ ]: , 0, .R L L t− ×  
The initial condition 

( ) ( )00, ,  ;u x u x L x L= − < <                  (1.3) 

and boundary condition 

( )0, 0,  0xu x t= >                      (1.4) 

The following is a mathematical definition of ξ . 
Setting ( )( ) 0t

W t
≥

 be a cylinder wiener process on ( )2 ,nL R R , for the arbi-
trary orthogonal basis ( )i i N

e
∈

 on the ( )2 ,nL R R  space, setting 

( ) ( )( ), ,     ,  0,i it W t e i N tβ = ∈ ≥  

so ( )i i N
β

∈
 is a column of independent random Brownian motion, the column 

of Brownian motion ( ), , ,i t t oβ ω ω≥ ∈Ω  is stochastic process which is de-
fined at random base ( )( )( )0

, , ,
t

P t
≥

Ω   , as long as t s≥  is t -measurable 
gaussian random independent variable of s  for each i, ( ) ( )i it sβ β− . There-
fore, W can be written as: 

( ) ( ) ( ), , , ,    0,  ,  .i i
i N

W t x t e x t x Rω β ω ω
∈

= ≥ ∈ ∈Ω∑          (1.5) 

Then the temporal and spatial white noise ξ  is the derivative of W to the 
time, that is: 

d
d t
W W
t

ξ = =                         (1.6) 

In the same way, we can also define space related noise, giving a kernel k and a 
linear operator Φ : 

( ) ( ) ( ) ( )2, d ,   ,n
n

R
f x k x y f y y f L RΦ = ∈∫              (1.7) 

defining the Wiener process W W= Φ , then its time derivative ξ  is the re-
lated noise of the time t sδ − , and its spatial correlation function c: 

( ) ( ) ( ), , , .nR
c x y k x z k y z= ∫  

In form, there are ( ) ( )( ) ( ), , , , .t sE x t y s c x yξ ξ δ −= 

   If ( ) ( ),k x y k x y= −  is a 
convolution kernel, noise is uniform in space namely ( ) ( ),c x y c x y= −  and 
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the noise is temporal and spatial white noise, then there are ( ), x yk x y δ −=  and 

dIΦ = , then the Equation (1.2) can be written in the form of the following 

( )d d dt xx xxxxu uu u u t Wα β λ+ + + =                 (1.8) 

Literature [3] proves that the Equations (1.8), (1.3) and (1.4) have a unique solu-
tion. In this paper, the finite difference method is used to simulate the solutions 
of Equations (1.8), (1.3) and (1.4), and the results of the numerical analysis will 
be obtained. 

2. Derivation of the Difference Scheme 

Assuming that ( ),u x t  is defined on region [ ] [ ]: , 0,R L L t− × , the following 
partition is made to R 

0 1 1 ,J JL x x x x L−− = < < ⋅ ⋅ ⋅ < < =  

0 1 10 ,N Nt t x x t−= < < ⋅ ⋅ ⋅ < < =  

remember ( ),n
ju u jh nτ= , then in point ( ),jh nτ  there are 

[ ] ( ) [ ] [ ]
1

2 21
2

n nn n n
t xx xxxx jj j jx j

u u u u fα β γ
+ + + + =             (2.1) 

First considering the above equation as the form of the K-S equation, replacing 
the [ ]nt j

u  with the first order difference, and replace the ( )2
n

x j
u 

   [ ]nxx j
u  and 

[ ]nxxxx j
u  with the center difference, so that 

( ) ( ) [ ] [ ]( )
[ ] [ ]( )

1 11 2 2

1

4 2

0
2

n n n nn n
j j xx xxj jx xj j

n n
xxxx xxxxj j

u u u u u u

u u

τ τα

τβ

+ ++

+

    − + + + +     

+ + =
      (2.2) 

If the partial derivative of (2.2) with respect to x is simply substituted by the dif-
ference quotient, the problem of solving nonlinear equations will be encountered, 
in order to overcome this difficulty, we did Taylor expansion for nonlinear 
terms. 

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1
2 2 2 2

2 2

1
2 2

2 1 2

2

2

2

n n n

x x txj j j

n n

t x jx j

n nn j jn
jx j

x
n

n n n
j j jx xj

u u u o

u uu o

u u
u u o o

u u u u o

τ τ

τ τ

τ τ τ
τ

τ

+

+

+

     = + +     

   = + +  

  − = + + +        

   = + − +  

 

thus 

( ) ( ) ( ) ( ) ( ) ( )
( )

( )

1
2 2 1 2 2

1 2

1 1
1 1 1 1 2

2 2

2

n n n
n n n
j j jx x xxj j j

n n
j j x

n n n n
j j j j

u u u u u u o h

u u o h

u u u u
o h

h

+
+

+

+ +
+ + − −

      + = − + +      

 = + 

−
= +

   (2.3) 

https://doi.org/10.4236/jamp.2018.611198


P. Gao et al. 
 

 

DOI: 10.4236/jamp.2018.611198 2366 Journal of Applied Mathematics and Physics 

 

You can get the following difference scheme 
1 1 1 1 2
2 1 1 2

n n n n n n n n
j j j j j j j jau b u eu c u au d+ + + + +
− − + ++ + + + =              (2.4) 

among 

14 2 4

2,  ,
42 2

n n
j ja b u

hh h h
τβ τα τβ τ

−= = − −  

14 2 2 4
3 21 ,  ,

42
n n
j je c u

hh h h h
τβ τα τα τβ τ

+= + − = − +  

2 14 2 4 4 2

1 22 4 4

2 31
2 2

2 , 0,1, , ,  0,1, , .
2 2

n n n n
j j j j

n n
j j

d u u u
h h h h h

u u n N j J
h h h

τβ τα τβ τβ τα

τα τβ τβ

− −

+ +

   = − − − + − +   
   

 − − − = = 
 

 

 

For the difference scheme (2.4), the value of each node is required, we need to 
solve a large linear system of linear equations with a matrix order of J at every 
step of time t, according to the supposition of the boundary conditions, 

1 0 1u u u− = =  and 2 1J J Ju u u+ += = . 

And the 
1
2

n

jf
+

 of (2.1) can use the following formula to approximate 

1
1
2

1
2

1 d d ,    0, , .n

n

j h t

tj h
s x j J

h
ξ

τ
+

 + 
 
 − 
 

=∫ ∫ 

  

Substituting the previous (1.4) and (1.5) into the above equation, we can get 

( ) ( )

( ) ( ) ( )( )

1

1

11
22

1
2

1
2

11
2

1 d d

1 d

n

n

n

n

j hn t
j i itj h i N

j h t
i i n i ntj hi N

f e x s x
h

e x x t t
h

β
τ

β β
τ

+

+

 ++  
 
 −  ∈ 

 + 
 

+ − ∈  

=

 
 = −
 
 

∑∫ ∫

∑ ∫ ∫
 

if the orthogonal basis ( )i i N
e

∈
 on ( )2 ,L L L−  is taken as the following form 

1 1,
2 2

1 1 ,   1, , 1j
j h j h

e j J J
h     − +    

    

= = − + −  

1 1, ,
2 2

1 11 ,   1 ,
2 2J J

Jh J h J h Jh
e e

h h−       − − + −      
      

= =  

then through orthogonalization, ( )
1
2

1
2

d 0
j h

i
j h

e x x
 + 
 
 − 
 

=∫  if  

, 0, , ,i j j J i N≠ = ∈ . Further 

( ) ( )( )
1
2

1
1 ,    1, , 1,

n

j i n i nf t t j J J
h

β β
τ

+

+= − = − + −  

( ) ( )( ) ( ) ( )( )
1 1
2 2

1 1
1 1,   

2 2

n n

J J n J n J J n J nf t t f t t
h h

β β β β
τ τ

+ +

− − + − += − = −  

Due to ( ) ( )( )1j n j nt tβ β τ+ −  is independent random variable and obeys  
the standard normal distribution ( )0,1N , selecting ( )1 2

0, , ,

n
j n j J J

χ +

≥ =− 

 is a  
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random variable that obeys the standard normal distribution. So for each time 
increment, 

1
2

n
f

+
 can use the vector ( )1 2 1 2, ,n n

J Jχ χ+ +
− ⋅ ⋅ ⋅  to simulate. 

3. Numerical Simulation 

Although our purpose is to simulate the solution of K-S equation and study its 
properties, there is a very important problem that we need to verify whether the 
format described above is effective. First in the interval [ ] [ ]0,1 5,5I R× = × −  
we simulate the initial value problem (1.1), and the initial condition is 

( ) ( )2 3 3
0

60 38 tanh 120 tanh
19

cu x k k kx k kx
k

β α β= − + − + +       (3.1) 

among 11
76

k α
β

= , this problem has the following solitary wave solution [4] 

( ) ( ) ( ) ( )2 3 360, 38 tanh 120 tanh
19

cu x t k k kx ct k kx ct
k

β α β= − + − + + + +  (3.2) 

Taking 0.1, 0.1α β= = , space step 0.1h = , and time step 0.01τ = , Figure 1 
below shows an image of a numerical solution and an exact solution, Table 1 
and Table 2 show the absolute error between different numerical solutions and 
exact solutions. The obtained numerical solution can well reflect the solution of 
the equation, indicating that the format described in this paper is valid. 

Now we have the numerical simulation Equation (1.7), using the methods de-
scribed above and the initial conditions. 

When the amplitude of noise is small, 310λ −= , as shown in Figure 2(a) 
made a time t in the interval [ ]0,3  image, the other parameters are the same as 
before, it can be seen that the solitary wave is not destroyed, and the noise does 
not stop the propagation of the wave. We can see the same phenomenon by 
choosing different noise tracks. 

In order to further study the stability of the solitary wave, we increase the am-
plitude of the noise, 20.5 10λ −= × , the impact will be strengthened. The initial 
conditions are the same as before, As shown in Figure 2(b), it can be seen that 
the solitary wave is not destroyed, but it can be seen that the amplitude 

 

 
Figure 1. The comparison of the numerical solution (a) and the exact solution (b), here 

0.1, 0.1, 1cα β= = = . 
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Figure 2. (a) 0.001λ = , (b) 0.005λ = , (c) 0.01λ = , the contour curves of ( )d u . 

( 0.1, 0.1, 1cα β= = = ). 

 
Table 1. The absolute error data table between the numerical solutions and the exact so-
lutions, here 0.1, 0.1, 1cα β= = = . 

t\x −5 −4 −3 −2 −1 

0.2 1.795014E−03 1.528259E−03 1.463254E−03 1.117276E−03 1.017013E−03 

0.4 2.379896E−03 2.459518E−03 2.538881E−03 2.617961E−03 2.696738E−03 

0.6 2.650232E−03 2.584384E−03 2.546679E−03 2.455604E−03 2.339724E−03 

0.8 5.060148E−03 5.174104E−03 5.415453E−03 5.793879E−03 5.324566E−03 

1.0 6.568193E−03 6.504965E−03 6.490092E−03 7.487003E−03 7.521187E−03 

 
Table 2. The absolute error data table between the numerical solutions and the exact so-
lutions here 0.1, 0.1, 1cα β= = = . 

t\x 1 2 3 4 5 

0.2 1.015736E−03 1.128104E−03 1.448107E−03 1.721008E−03 1.920104E−03 

0.4 2.795016E−03 2.028257E−03 2.463255E−03 2.117272E−03 2.017014E−03 

0.6 3.450235E−03 3.684386E−03 3.146678E−03 3.855605E−03 3.839722E−03 

0.8 5.060142E−03 5.174102E−03 5.415453E−03 5.793874E−03 5.824569E−03 

1.0 6.168193E−03 6.204967E−03 7.290094E−03 7.427002E−03 7.621184E−03 
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increases through the propagation of the solitary wave, which makes it clear that 
the noise will enhance the amplitude of the wave. 

Increasing the amplitude of the noise again, 0.01λ =  as shown in Fig-
ure2(c), in this case, the whole solitary wave is still intact, in order to further 
study this phenomenon, we use another representation method to represent the 
image of the solution, as shown in Figure 2(d), we draw the contour curves of 
solutions, we observed that although the amplitude of the noise is very high, we 
can clearly see that the amplitude of the wave increases during the propagation 
of solitary waves. We believe that this is the effect of the energy injected by the 
noise, which increases the amplitude of the solitary wave. 

4. Conclusion 

In this paper, the finite difference method is used to carry out numerical expe-
riments on the solution of the random K-S equation. The results show that the 
noise does not affect the propagation of the solitary wave, but it can enhance the 
amplitude of the solitary wave. This is similar to the phenomenon observed in 
random Kdv equations [5]. 
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