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Abstract 
For every real number x, we define as integer part the biggest integer k so that 
k ≤ x and is expressed [x]. The difference of the number from its integral part 
is defined as decimal part of x and expressed with ( ) [ )0,1x ∈ . Consequently, 

for every x, the Kronecker’s orbit is defined, namely the set ( ){ }nx n∈ . 

Through Kronecker’s orbit, rational numbers are characterized as the num-
bers whose orbit is a bounded set, while irrational numbers are characterized 
as the numbers whose orbit is a dense set. Using this fundamental theoretical 
result and utilizing a computer, a didactic approach was established, initially 
referring to the definition of rational numbers as fraction equivalence classes 
and basically to the segregation of rational and irrational numbers. This di-
dactic approach also incorporates elements of ancient Greek mathematics 
history. The proposition was applied to students and was evaluated. 
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1. Introduction 

In 1881, Leopold Kronecker defined what is called the “rationality domain”, 
which is indeed a body of polynomials in modern terms. In 1893, Heinrich M. 
Weber gave the first clear definition of the abstract body. In 1910, Ernst Steinitz 
published a very important article on the Algebraische Theorie der Korper. In 
this article, he studied the properties of the domains and defined very important 
theoretical concepts, such as the prime field, perfect field and the field’s degree 
of transcendence. Emil Artin developed the relationship between the groups and 
the fields with great precision from 1928 to 1942 (Cohen, 2013). 
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With regard to Kronecker, whose theory is the basic idea and the basic con-
tent of this article, he begins his study with the word “Jugendtraum” as his guide, 
which is the German translation of the phrase “youthful dream”. Indeed, in his 
letter to Dedekind, Kronecker described as his youthful dream the finding of 
functions whose specific values could produce abelian extensions of random al-
gebraic fields of numbers. More specifically, he said: “It is the most coveted 
dream of my youth, namely to prove that abelian equations with explicit square 
roots date back to transformations of elliptic functions with particular moduli, 
just as in the case of reduction of integer abelian equations in cyclotomic equa-
tions” (Vlăduț, 1991). 

The Jugendtraum of Kronecker refers to achieving the construction of all ab-
elian extensions of a squared complex algebraic field of numbers, attaching spe-
cific values of certain transcendental functions on any algebraic fields of num-
bers (Cassels, 1992). When the chosen field is Q, the answer to this problem is 
the Kronecker and Weber theorem. This informs us that any abelian extension 
of Q is contained in a cyclotomic field. In other words, each abelian extension of 
Q is contained in a field resulting from attachment to Q of a specific value of the 
exponential function. 

The Jugendtraum is the generalization of the Kronecker and Weber theorem 
in the case where the algebraic field chosen is not Q, but a random squared 
complex number field. The effort to solve this problem has led to the develop-
ment of mathematical disciplines, such as complex multiplication theory and the 
class field theory (Charollois & Sczech, 2016). 

From the above, it becomes clear that the study of the Jugendtraum requires 
knowledge and manipulation of sophisticated mathematical concepts and gener-
ally theories. For this reason, the choice of analysis of concepts and the presenta-
tion of theory to students is not only aimed at achieving the goal of solving the 
Jugendtraum in the case of squared number fields but also in acquaintance with 
several attractive mathematics. This article is a reference to the characterization 
of rational numbers through the use of Kronecker’s theorem. The present article 
has a teaching aim and trend and through the sections that will follow this will 
not be the only to be explained, but also a thorough analysis of its dynamics at 
the teaching level will be made. 

The sections for the development of this refer to the literature approach of the 
concept under consideration, and also to the difficulties and constraints identi-
fied in rational-irrational numbers, making special reference to technology in 
education. The article will then refer to the teaching material and generally to 
the teaching process that should be developed in mathematical education for the 
better understanding of the present theoretical area, the applications and gener-
ally the data that characterize it. The article continues by linking of technology 
and mathematics to the teaching process. Finally, the article will show the use of 
Kronecker’s chosen model and related scenarios will be presented. Essentially, at 
the conclusion of the study, not only the theorem and the philosophy of Kro-
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necker will be explained, but also a complete picture of the teaching process that 
should be followed to understand this and its applications in mathematical 
science will be provided. 

2. Literature Review Regarding the Difficulties in  
Understanding the Difference between Rational-Irrational 
Numbers and Usage of Technology in Education 

Students experience obstacles in understanding real numbers and rational num-
bers in particular (Smith et al., 2005). These problems still remain among stu-
dents of schools of mathematics (Hart &Sinkinson, 1988; Fischbein, Jehiam, & 
Cohen, 1995) but also among mathematic teachers. Students do not comprehend 
the concept of rational numbers and believe that they have nothing to do with 
real numbers (Moseley, 2005). 
• The problem of understanding rational numbers 

Rational numbers, as a creation of human thought is a difficult notion 
(Pitkethly & Hunting, 1996). Students, having created an impression on num-
bers (being taught the natural numbers), find it hard to understand rational 
numbers (Ni & Zhou, 2005). 

Rational and natural numbers present similarities which are only superficial. 
As a result, students believe that natural numbers’ properties are also applied on 
rational numbers (Kollias et al., 2004; Voskoglou & Kosyvas, 2012). This student 
difficulty is reinforced by the fact that they come into contact for the first time 
with new mathematical symbolisms, which they must understand but also learn 
to use (Ni & Zhou, 2005).  

Fractions trouble particularly students, who cannot understand that a fraction 
is a mathematical entity and not two different numbers, they are being taught 
fractions as part of the whole, and therefore, in the course of their mathematical 
knowledge, cannot comprehend their further meanings. 

Multiple representations of real numbers have a negative effect on their com-
prehension and students fail to understand that different representations may 
represent the same number. However, school books do not emphasize on this 
matter (Voskoglou & Kosyvas, 2012). 

Studies conducted among school and university students (aged 18 - 19 years 
old, i.e. university students whose mathematical knowledge is limited to what 
was acquired at school) showed that many of them believe that a number can be 
rational and irrational, a number may be neither rational nor irrational, a num-
ber may not have a decimal representation, a number is real if it has a finite 
number of decimal digits (otherwise it is not a real number) and that there are 
real numbers which do not have a decimal representation (Giannakoulias, 
Souyoul, & Zachariades, 2007). Students who have not understood rational 
numbers cannot identify irrational ones, as they believe that fractions are ration-
al while roots are irrational numbers (Voskoglou & Kosyvas, 2012). These stu-
dies showed a general weakness in multiple representations and in the recogni-
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tion of real, rational and irrational numbers (Giannakoulias, Souyoul, & Zacha-
riades, 2007; Voskoglou & Kosyvas, 2012). Moreover, it was ascertained that age, 
along with the depth of mathematical knowledge affect comprehension of these 
difficult concepts (Giannakoulias, Souyoul, & Zachariades, 2007).  
• How to tackle the problem 

Several opinions have been expressed about the ways through which this dif-
ficult matter of number comprehension, and particularly rational numbers, can 
be dealt with. These opinions are based on observed problems but also on the 
way in which the human mind faces these mathematical concepts. In order to 
introduce students to these new notions, a radical change of the “number con-
cept” is required (Carpenter et al., 1999). This can be achieved through the con-
tribution of the professor, who, among others, must take into consideration that 
they are addressing children and not adults, and must therefore follow a corres-
ponding teaching and pedagogical approach. Professors must have full know-
ledge of real numbers and their subsets, and be equipped with perseverance and 
patience, emphasizing on solving the students’ problems. Also, positive impact 
could be observed when approaching these concepts with “tangible”, representing 
examples, which are connected with real life.  

According to Keiren (1976), when rational numbers are represented on the 
numbers’ line, then it is easier to understand that rational numbers are a subca-
tegory of the real numbers. Furthermore, students are in a position to under-
stand more easily rational numbers, if they learn and become familiar with mul-
tiple representations (Kieren, 1980, 1993). For this reason, the teacher can focus 
on multiple representations using many examples and exercises, exercises which 
will be done during class by students, working in groups, but also exercises 
which will be given to students to be solved, so that they also practice at indi-
vidual level, realising themselves their difficulties and questions. Professors must 
encourage open discussion to track students’ problems and adjust their teaching 
according to the needs of their class concerned (Voskoglou, 2009).  

Finally, we should refer to the opinions according to which rational numbers 
must be taught at a younger age, even before students form an idea on what a 
number actually is. When an opinion has been completed, it is very difficult to 
change the attempt in the future (Voskoglou & Kosyvas, 2012). 

“Question: Why did you answer that 5
2

−  is a rational number? 

Answer: Because it is a fraction. 
In this case we have a classical misinterpretation of the definition of rational 

numbers. The student focused her attention on the symbol of fraction without 
realizing that, in order to be rational number, its terms must be integers, with 
non-zero denominators. 

Question: Why did you answer that 4−  is an irrational number? 
Answer: Because it has the root. 
Here the student identifies the symbol of the root with an irrational number. 

He does not think that the given number is equal to −2, which is an integer. Dis-
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tinction among several types of numbers remains muddy in general, each time 
depending on their semiotic representations” (Voskoglou & Kosyvas, 2012). 

This represents a very usual student opinion: fractions are rational numbers 
and roots are irrational numbers. 
• Conclusions 

Many researches and studies on students’ difficulty in understanding rational 
numbers have been carried out. Incomplete knowledge of real numbers and their 
subsets was ascertained from those studies. Also, weakness is observed in recog-
nizing rational-irrational numbers and in using multiple representations. School 
books are responsible for this, too, as they do not delve into these concepts and 
therefore, the professor’s contribution is crucial for dealing with these difficul-
ties, by him insisting on these problems and “listening” to their students, pro-
moting discussion in class.  
• The proof 

Teaching proofs is a difficult part of mathematics. Students cannot compre-
hend proofs and believe that there is no substantial reason for their obligatory 
teaching. 
• The contribution of technology 

Technology can help students change their attitude regarding these problems, 
particularly by re-defining their opinions on geometry and geometrical proof. 
Since 1980, software of Dynamic Geometry, known as DGS, has been created, 
aiming to understand Geometry and geometry proofs. These programs may help 
students comprehend the above and make them realize the importance of 
proofs, and also be used as an alternative proposition to their approach. 

DGS are programs of geometrical visualisation (Cabri, Sketchpad, EukliDraw, 
a.o.). Through this software, students become active members of knowledge, 
understand geometry better, are leaded to conclusions, express questions and 
conjectures. 

Studies have shown that DGS can help students understand the need for 
proofs and intervene to their transition from the intuitive to the theoretical level 
(Jones, 2000). Of course, there are critics against these programs, who believe 
that there is a possibility that the teacher’s role is lost due to DGS. 

There are many students who present difficulties in using rulers and com-
passes, and DGS solve this problem, as the user can easily construct geometric 
shapes and confirm their correct or wrong construction. 

Basic characteristics of DGS are geometric shapes, geometric relations which 
characterise geometric shapes and dragging as one of the DGS’ most important 
properties (Cabri, Sketchpad). Through dragging, the user, when creating a con-
struction, can move certain elements of the shape and observe how the shape 
responds to these changes. It is an observable action, which can lead students to 
express conjectures and also revise them. Moving and reshaping shapes by pre-
serving the basic relations and properties is possible in DGS (Laborde et al., 
2006).  
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Students create, change and observe, cease being passive knowledge receivers, 
become active members and knowledge producers. Calculation and dragging 
possibilities provide analyses and also properties’ discoveries. Students can for-
mulate and revise conjectures through DGS, based on image and numeric data 
changes; they can revise relations but also work on constructions which copy 
real-life problems (Kordaki & Mastrogiannis, 2006).  
• Conclusions 

DGS use when teaching Geometry and geometric proofs may contribute posi-
tively in changing the students’ attitude across those matters and also help them 
express conjectures. The professors who will include DGS in their lesson can 
create a research laboratory environment, integrating students in groups, acting 
as their partner, exciting in this way their students’ interest. They will guide the 
students and will provide the scientific verification of their results. 

3. The Role of Technology in Teaching and Understanding  
Mathematical Concepts 

There are numerous advantages in using technological means both for students 
and for teachers. 

Students: 
• Gain access in various sources, information, knowledge from all over the 

world. 
• Are more easily led to create conjectures and they participate actively in the 

lesson’s course. 
• Can evaluate themselves. 
• Do not feel that they are being judged because the computer is impersonal, 

and therefore they take initiatives and control their knowledge. 
• Can seek distance help. 

Teachers: 
• Can present images and material with great accuracy in shapes or simulate 

experiments. 
• Can easily have access in a variety of pre-written exercises, e.g.  

http://digitalschool.minedu.gov.gr/. 
Finally, the computer environment is more attractive and easy-to-use for both 

groups than the traditional paper and pencil.  
However, there are also disadvantages. The most important is that students 

tend to consider the computer’s answer as proof. Also, their high acquisition 
cost is the main cause for the lack of equipment and software in schools. Lastly, 
the intensification of the alienation due to lack of human contact is also a disad-
vantage. 

Students usually believe that when a computer presents a geometrical space in 
a geometrical problem or gives a numeric solution to an algebraic problem, this 
is automatically proven. This must be taken into consideration and we have to 
explain that the computer is used to help us make a conjecture, but proof is 
achieved only when carried out based on mathematical principles and proce-
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dures. The creation of conjectures and the development of intuition are useful 
tools when trying to find the solution to a problem. Often, if students get the 
answer-solution through the computer, they can also more easily find the strict 
proof. The phrase of Professor P. Spyrou in his class is characteristic: “the visua-
lization of the solution (shape) is like the plane’s auxiliary wheels; while they are 
not doing anything during flight, they are necessary for take-off”. There comes 
the moment when the teacher must point out that mathematics are based on 
deductive inference and are built only by strict proofs, because intuition can be 
misled many times. 

4. Characterization of Rational-Irrational Numbers Using  
Kronecker’s Orbit 

Definition: Consider x∈ . The set ( ){ }xO nx n= ∈  where ( ) [ ] x x x= −  
we symbolize the number’s fraction part. 

Proposition 1 
Consider x∈ . Then xx O∈ ⇔  is a finite subset of [0, 1) 
Proof 

 Consider ( ), , , , 1kx k l k l
l

= ∈ ∈ =  . Then ( ) ( )0 0kx = = , therefore  

( ) ( ){ }0, ,xO x kx=   is finite. 

 Vice versa, if xO  is finite, then ( ) ( ), , :m n m n mx nx∃ ∈ < = . So,  

nx mx k− = ∈  therefore kx
n m

= ∈
−

  

Proposition 2 
Consider x∈ . Then  irrational xx O⇔  is a dense subset of [0, 1) 
Proof 

 If xO  is a dense subset of [0, 1) then it is infinite, so from the previous 
proposition  irrationalx . 

 Vice versa, consider irrational . I will show that for any y of [0, 1) there is an 
element of xO  which is close to y. That is, for  

[ ) ( ) ( )10,1 ,0  
2 x

yy e with nx O so that nx y eν−
∈ < < ∃ ∈ ∈ − < . I choose  

1 1
e
 Μ = + ∈  

 . I divide [0, 1) in M equal intervals and I take the first M + 1  

elements of xO  from 0, namely ( ) ( )0, , ,x x… Μ . Using the pigeonhole prin-
ciple since I have M + 1 elements and M intervals, this means that at least two 
elements (kx), (lx) with 0 < k < l < M belong to the same interval and therefore  

their distance is less than ( ) ( )1 1: kx lx− <
Μ Μ

. Since x is irrational, then  

( ) ( )kx lx≠  and I put [ ] [ ]0  and r l k l j lx kx< = − ≤ ≤ Μ = − . We have 

( ) ( ) 1 ,rx j kx lx e j− = − < < ∈
Μ

 . So, [ ] [ ] rx j or rx j= − = −  and  

( ) ( ) rx e or rx e< − < . So, there is an ( ) ( )( ): 1stx y s tx∈ ≤ < + . Therefore, 
( )stx y e− < . 
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5. Scenario Presentation 

Our goal is to create an alternative scenario which will offer a new perspective in 
the topic of rational numbers using the computer, based on the history and the 
problems we mentioned above in the literature review. The scenario consists of 
four papers which are given to the students consecutively, ages: 14 - 16. 

Activity Analysis 

Part one: reminders-additions 
Prerequisites: 
Firstly, we will discuss about the fraction part. Here we will remember the 

Euclidean division and we will define the integer and decimal or fraction part 
relating it with mixed numbers which students learnt in primary school. Using 
specific examples, students practice alone in finding numbers’ fraction parts. In 
this activity each one will work in their notebook for about 15 minutes. 

After that, a Discussion about representing numbers in the line will be done. 
They have been already taught this topic, but we will give them some examples 
to make sure that there will be no mistakes due to this in the questions of page 2. 
Completion will be done in pairs under the teacher’s supervision. We do not ex-
pect students to face particular difficulties. 

Afterwards, the students will complete the first page (Table 1). The first col-
umn has the numbers “a”, in the second one “2a” we write number a’s double 
and in the third one “(2a)” we write 2a’s fraction part as already completed as an 
example. 

Completing Table 1 
Part two: The orbit’s concept 
Having completed the table, we ask students to circle fraction parts on the 

page. “Is there any pattern they are following? How do you believe it would con-
tinue if we wrote more multiples?” Here we expect them to find out that fraction 
parts are repeated. There we will give the name “orbit”. We will remind them, if 
necessary, that in a set we only write once each element. “Which is the orbit for 
every number of the table?” This question leads us to the second page (Figure 
1). Here the orbit is represented in the rectilinear part after being defined as a 
set. 
 
Table 1. First page of the scenario. Finding the fraction part. 

a 2a (2a) 3a (3α) 4a (4a) 5a (5a) 6a (6a) 7a (7a) 8a (8a) (9a) (10a) 

1/2 2/2 0 3/2              

1/3 2/3                

3/4              0   

1/5      4/5           

2/3                 

2           14      

3/6                 
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Figure 1. Second page of the scenario. Finding Kronecker’s orbit. 

 
We start by completing the orbit’s elements, i.e. the second column. The first 

one is already completed as an example. Once again, students work in pairs. 
From here we begin our steps to characterize rational numbers. I ask “Of how 
many elements does the set consist? Write the number of elements next to each 
set. What do you observe?” Here I want them to correlate the quantity with the 
denominator. If they do not realise that, I act as follows: I ask “tell me the frac-
tion of the first column” and immediately afterwards “how many elements does 
the orbit have” and I repeat that in all elements except for the last one. There, the 
connection is made as soon as they listen to the numbers. It is a bit guiding but it 
may be necessary. “So, where are we led? To what is this quantity related for 
each number? Make a conjecture”. Here, I expect them to tell me that the quan-
tity of the orbit is equal to the denominator. Then, I bring the last orbit of 3/6 
and I ask them if it also applies here. Can you find the particularity of this frac-
tion compared to the other ones? That is, to make them see it is not a fraction in 
lowest terms. “Transform it into a fraction in lowest terms. Now, does the pre-
vious conjecture apply?” Then, I ask them to change appropriately their conjec-
ture in order to include all cases. We discuss for a while the fractions’ equiva-
lence. It is obvious that equivalent fraction will have the same orbit. The reverse 
does not apply. I want them to realize that and that’s why I have put 1/3 and 2/3 
which have the same sets as orbits. We conclude to the final conjecture: “If we 
have a fraction in lowest terms k/l, then the orbit consists of l elements”. I ask 
them to write it down. “Your conjecture is correct and thus the implication is 
double but to make it a proposition we need proof. This can be done later so that 
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we do not spoil the lesson’s course now. For the time being, accept it because I 
say to you that I have proved it”. The proof is not difficult but in my opinion 
requires a familiarisation with the concepts we’ve just learnt and could cause 
agitation if mentioned altogether. Mentioning that there is a proof is necessary. 

Afterwards, the graphical representation of the table’s elements follows, in the 
page’s third column. There, the [0, 1) can be done with separation in as many 
equal parts as many elements the set has, or with the traditional representation. 

We proceed to Page 3 (Figure 2) which is matching. The definition of rational 
numbers is: “the numbers which can be written as fractions of integers”. This 
“can” is page 3’s main goal. 

This is obvious from the choice of forms that are not fractions of integers and 
the fraction line is next to them. It requests to be completed with the appropriate 
form which will allow them to apply the proposition they discovered. Of course, 
through this page I also want to ensure that they can apply correctly the proposi-
tion (e.g. in equivalent fractions) and find out the matches without making op-
erations with the fraction parts (Always in pairs). 

Part three: the PC 
I now explain that through a program we can see orbits for all numbers (I 

present images) (Figure 3). 
“We now turn on the PC. Let’s see what you have done … Firstly, we will con-

firm some of your results”. After we ascertain the correspondence of their results 
with those of the program, we proceed to the next step. 

Now we give them the final page (Figure 4) where the geometrical construc-
tion of numbers is presented, and we will check their orbits. Here, we will come 
to infinite orbits for the numbers we described before as irrational, 2− ,  

 

 
Figure 2. Third page of the scenario. Matching numbers to orbits. 
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Figure 3. Examples of Kronecker’s orbits for rational numbers using Geogebra. 

 

1 5
2
± , the golden ratio, the ratio of the circumference to the diameter and of  

the side to the diagonal of a square. “We have learnt in Junior high School that 
the ratio of the circumference to the diameter gives us?” π = 3.14159 … «The 
Pythagorean Theorem states that the ratio of a diagonal to a square’s side equals 
to 1.414 …” and with a trinomial like that of the school book of the third grade 
of Junior High School we know that the golden ratio is the ratio 1.618 …  

“If we wanted to see those numbers’ orbits, it would be impossible with paper 
and pencil. Here comes to help us the program we saw before to represent in [0, 
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1) in the orbit of those numbers. Let’s see”. 
I indicatively present the image for pi (Figure 5).  
I zero the cursor and start raising multiples up to 200 which are more than 

enough in all three cases to complete with dense dots [0, 1). 
Part four: irrational numbers 
“How many elements does the orbit have here?” ∞  infinite. 
“Let’s remember the proposition we found before. Find it there where we 

wrote it to see it”. If we have a fraction in its lowest terms k/l, then the orbit con-
sists of l elements and vice versa, if the number’s orbit consists of l elements then 
the number is written as a fraction in its lowest terms with denominator l. And 
here lies the big question: 

“Could they be written as a fraction and, if yes, with which denominator?” 
I expect through conversation with the whole team to conclude finally that no, 

they couldn’t. Students may try to make operations using infinity as if it were a 
real number. This appears to be another delicate point which must be clarified to 
students. Finally, create the definition and an extra characterization of rational 
numbers. 
 

 
Figure 4. Final page of the scenario. Introducing assymetry from 
known geometrical theorems. 
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Figure 5. Example of Kronecker’s orbit for irrational numbers using Geogebra (Dense). 
 

The typical proof follows. 
 Definition 
Consider x∈ . The set ( ){ }0x nx n= ∈  where (x) = x – [x] we represent 

the number’s fraction part, it is called Kronecker’s orbit.  
 Proposition (characterization of rational numbers) 
Consider x∈ . Then 0x x∈ ⇔  is an finite subset of [0, 1) 
Proof 

 Consider ( ), , , , 1kx k l k l
l

= ∈ ∈ =  . Then ( ) ( )0 0lx = = , therefore 

( ) ( ){ }0, ,xO x kx= …  is finite. 

 In reverse, if xO  is finite, then ( ) ( ), , :m n m n mx nx∃ ∈ < = . Therefore,  

nx mx k− = ∈  so kx
n m

= ∈
−

 .  

6. Continuation 

It is very important that students understand through ancient problems the 
concept of asymmetry qualitatively, that is, the non-existence of a common 
measure and not simply through definitions. In Euclid’s Elements, the rational 
numbers were characterized with a method called anthyferesis and there was 
proof that the square roots of 2, 3 … 17 were irrational. 

7. Discussion 

Firstly, students get a picture for the concept of irrationality through different 
representations for the first time. We believe that this will help students in un-
derstanding more profoundly rational and irrational numbers. Also, it is very 
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important for students to make assumptions, which is the first step when learn-
ing a new concept. 
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