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Abstract 

The Lienard-Wiechert 4-potential depends on local coordinates and on re-
tarded coordinates of a charge at the source. Therefore, the 4-potential of in-
coming radiation fields (namely, a photon) cannot be written as a 4-vector 

( ),A tµ x  which satisfies the locality requirement of fields of a Lagrangian 

density. This unsolvable problem is the underlying reason for the extremely 
unusual phenomenon where respectable textbooks make contradictory 
statements concerning whether the electromagnetic 4-potential ( ),A tµ x  is a 

4-vector. Moreover, an analysis of well-established experimental data proves 
that radiation fields and bound fields are inherently different physical objects. 
These results indicate that the present form of quantum electrodynamics 
should be revised. It is further proved that in both cases the 4-potential is not 
a fundamental element of electrodynamics but an auxiliary quantity. For this 
reason, there are problems with some specific theoretical ideas that pertain to 
the 4-potential, like gauge transformations, the Dirac monopole theory and 
the Aharonov-Bohm effects.  
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1. Introduction 

A given physical theory has a mathematical structure that is derived from some 
expressions and principles. These expressions and principles are regarded as 
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postulates that are used for the construction of the entire theory. The goodness 
of such a theory is determined by a comparison of its predictions with 
well-established experimental data that belong to the theory’s domain of validity. 

Once the postulates of a given theory are determined, the rest of the theory is 
derived from an application of mathematical laws. This general structure of 
physical theories demonstrates the crucial role of mathematics in the human ef-
fort aiming to correctly describe and predict the behavior of physical systems [1]. 
The present work adheres to this approach. It uses mathematics and experimen-
tal data for an examination of the structure of the 4-potential of electromagnetic 
fields ( ),A tµ x  and of relativistic 4-vector requirements. 

The variational principle is regarded as a fundamental element of field theo-
ries [2] [3] [4] [5]. Another support of this approach states that the variational 
principle is “the foundation on which virtually all modern theories are predi-
cated” (see [6], p. 353). This principle is adopted here. For the main purpose of 
this work, let us examine the Lagrangian density of electromagnetic fields (see 
[2], p. 75 or [7], p. 596)  

1 ,
16πEM F F j Aµν µ

µν µ= − −                  (1) 

where Aµ  is the fields’ 4-potential, F µν  is the fields tensor which is the 4-curl 
of the 4-potential (see [2], p. 65 or [7], p. 550)  

, ,F A Aµν ν µ µ ν= −                      (2) 

and jµ  is the 4-current of an electric charge. In this work units where 
1c= =  are used. Therefore, just one dimension is required and the dimension 

of length [L] is used. The Minkowski metric is diagonal and its entries are (1, −1, 
−1, −1). Relativistic expressions are written in the standard form. The acronym 
VE denotes the electrodynamic theory that is constructed on the basis of the 
variational principle. 

One can distinguish between two different classical theories of Maxwellian 
electrodynamics. The first theory takes the differential equations of Maxwellian 
fields and the Lorentz law of force as the primary expressions of the theory. The 
acronym MLE denotes this theory. On the other hand, the well-known textbook 
[2] proves that MLE can be derived from VE. These theories are not identical. 
For example, the primary expressions of MLE, namely Maxwell equations and 
the Lorentz law of force are independent of the 4-potential. Hence, in MLE the 
4-potential is an auxiliary mathematical expression whereas in VE it belongs to 
the theory’s fundamental expression (1). 

The first term of (1) describes the fields and its second term describes the in-
teraction of the 4-potential with the 4-current of electric charge. This Lagrangian 
density demonstrates that the 4-potential is a part of the primary expression of 
VE. The distinction between the two terms of (1) are analogous to that of the 
philosopher E. Kant who has argued that natural objects have attributes that 
pertain to “things in themselves” whereas our experience of things has pheno-
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menological features [8]. As stated above, the present work examines properties 
of the fields F µν  and of their 4-potential Aµ . This examination relies on ma-
thematical laws of electrodynamics and on well-known experimental data. 

The following simple argument proves the need for the 4-potential in VE. The 
action has the dimension of  . Hence, in the units used herein it is a dimen-
sionless quantity. It follows that all terms of the Lagrangian density (1) must 
have the dimension [L−4]. In the units used herein charge is dimensionless. 
Hence, the dimension of charge density is [L−3]. Moreover, charge density is the 
0-component of the 4-current jµ  of (1) (see [2], p. 75). It follows that the inte-
raction term of the Lagrangian density must be a product of charge density and a 
quantity whose dimension is [L−1]. This is the dimension of the 4-potential. 
Furthermore, the fact that the Lagrangian density is a Lorentz scalar means that 
the 4-current jµ  must be contracted with a 4-vector. These arguments explain 
why the 4-potential is used. The following article [9] contains a historical review 
of differences between scientific opinions concerning the role of the 4-potential 
in electrodynamics. 

The second section discusses the significance of the two terms of the electro-
magnetic Lagrangian density (1) and shows quotations from respectable text-
books that make conflicting statements concerning relativistic properties of the 
4-potential. These inconsistencies motivate the analysis presented in this work. 
The third section proves that bound fields and radiation fields do not represent 
the same physical entity and points out intrinsic problems with the physical in-
terpretation of the Lienard-Wiechert 4-potential. The fourth section contains a 
proof of the multi-charge property of radiation fields. The fifth section shows 
other kinds of problems of the 4-potential. The sixth section discusses results 
that are derived from the system’s Lagrangian density. The seventh section 
presents problems of theoretical ideas that are connected to the 4-potential: 
gauge transformation, the Dirac monopole theory and the Aharonov-Bohm (AB) 
effects. The last section summarized this work. 

2. Problems with the Electromagnetic 4-Potential 

Experimental evidence can be used in an evaluation of the meaning of physical 
quantities. Let us take the two terms of the electromagnetic Lagrangian density 
(1), where the first term depends on the fields F µν  and the second term de-
pends on the 4-potential Aµ . These terms are used in an examination of a pho-
ton emitted from a source at the Andromeda galaxy and measured on planet 
earth. This photon traveled freely for about one million years. It means that 
during this time interval the second term of (1) was irrelevant to the photon’s 
motion. 

Another issue is the calculation of the energy-momentum tensor of electro-
magnetic fields (see [2], pp. 86-89 or [7], pp. 601-608). This calculation is based 
on the first term of (1) and ignores the second term which depends on the elec-
tromagnetic 4-potential. 
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These arguments indicate that the electromagnetic fields F µν  play a more 
significant role in electrodynamics, because there are cases where the fields are 
needed whereas the 4-potential can be ignored. Therefore, problematic issues of 
the 4-potential may have a secondary effect on the consistency of the theoretical 
structure of electrodynamics. 

Let us see what some respectable textbooks say on relativistic attributes of the 
electromagnetic 4-potential ( ),A tµ x  and derive self-evident conclusions from 
this information. The main issue is to see if textbooks make equivalent state-
ments on the following problem: is the 4-potential ( ),A tµ x  of electromagnetic 
fields a genuine 4-vector? Evidently, a definition of a 4-vector is needed for this 
end. A well-known textbook (see [2], p. 15) says about this issue: 

“A set of four quantities 0 1 2 3, , ,A A A A  which transform like the components 
of the radius four-vector xµ  under transformations of the four-dimensional 
coordinate system is called a four-dimensional vector (four-vector) Aµ .” 

This statement is called below the 4-vector definition. It is used in the exami-
nation of the 4-potential ( ),A tµ x . 

The following quotations from respectable textbooks illustrate the problem 
with the electromagnetic 4-potential that are related to the 4-vector definition. 
(Equation numbers are the same as those of the quoted textbooks.)  

1) One textbook says: Obviously, Lorentz covariance requires that the poten-
tials Φ  and A form a 4-vector potential  

( ),Aα ′′= Φ A                       (11.132) 

(see [7], p. 549). Later, this textbook treats the 4-potential (11.132) as a genuine 
4-vector. 

2) Another textbook says: Thus the action function of a charge in an electro-
magnetic field has the form  

d d .
b

a

eS mc s A x
c

µ
µ

 = − − 
 ∫                   (16.1) 

The three space components of the four-vector Aα  form a three-dimensional 
vector A called the vector potential of the field. The time component is called the 
scalar potential; we denote it by 0A = Φ . Thus 

( ),Aα ′′= Φ A                        (16.2) 

(see [2], p. 48). 
3) A third textbook makes the following statement: “In short,  

( ),Aµ = Φ A  

is a four-vector. What we call the scalar and vector potentials are really different 
aspects of the same physical thing. They belong together. And if they are kept 
together the relativistic invariance of the world is obvious. We call Aµ  the 
four-potential” (see [10], p. 25-8). 

4) By contrast, a fourth textbook examines the 4-potential of a photon and 
states that “the fact that 0A  vanishes in all Lorentz frames shows vividly that 
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Aµ  cannot be a four-vector” (see [3], p. 251).  
5) Similarly, another textbook analyzes the 4-potential of electromagnetic 

fields and states that “we lose manifest Lorentz and gauge covariance” (see [4], p. 
73). 

As a matter of fact, the textbooks [3] [4] show how particular gauge transfor-
mations of the 4-potential can be used for amending the problem. However, the 
above mentioned 4-vector definition proves that these transformations only 
show how one can proceed in spite of the fact that the 4-potential ( ),A tµ x  is 
not a 4-vector. 

The foregoing quotations clearly demonstrate that well-known textbooks 
make inconsistent statements concerning the problem of whether the electro-
magnetic 4-potential ( ),A tµ x  is a genuine 4-vector. This state of affairs stimu-
lates an adequate analysis of this issue. The rest of this work is dedicated to this 
objective. The arguments presented below adhere to the two fundamental ele-
ments of theoretical physics: they abide by mathematical laws and rely on rele-
vant experimental data. 

3. Radiation Fields and Bound Fields 

The following analysis examines the data of the hydrogen atom and proves that 
radiation fields and bound fields are different physical entities. It is well known 
that quantum mechanics properly describes atomic systems. Therefore, this 
theory is used below as a reliable description of the data (see [11], pp. 60-90). 

Let us take the 1s ground state of the hydrogen atom. Properties of this state 
are time-independent, and they are derived from an analysis of the electron’s 
quantum state. The stability of the ground state means that it is an eigenfunction 
of the Hamiltonian. The spatial angular momentum and the parity of the 1s 
ground state are 0+. 

Now let us consider the interaction of the hydrogen atom ground state with 
an incoming photon whose energy equals the difference between the energy of 
the 2p state and the 1s state of this atom. This interaction induces a transition 
from the 1s ground state to the 2p state (see [11], p. 264). The spatial angular 
momentum and the parity of the 2p state are 1−. It follows that the spin and the 
parity of the photon are 1jπ −=  (see also the photon data here [12]). 

A calculation of the spin and parity of each quantum state of the hydrogen 
atom is based on the electronic state of the atom whereas electromagnetic bound 
fields make no contribution to this calculation (see [11], pp. 60-90). Hence, if 
bound fields represent a quantum particle then the spin and the parity of such a 
particle are 0+. This is inconsistent with the photon data. Now, radiation fields 
are associated with a photon, which is a well-known quantum particle. These 
conflicting spin and parity values prove that whether or not bound fields 
represent a genuine quantum particle, radiation fields and bound fields are in-
herently different physical entities (see also [13]). 

The same results are obtained from an examination of the system’s energy. 
Indeed, let us slightly modify the opening statement of the previous paragraph. 
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A calculation of the energy of each quantum state of the hydrogen atom is based 
on the electronic state of the atom whereas electromagnetic bound fields make 
no contribution to this calculation (see [11], pp. 60-90). Hence, the energy of 
bound fields vanishes. It means that the spin, parity and energy of bound fields 
are the same as the corresponding quantities of the vacuum. 

This result shows another difference between MLE and VE. Indeed, in MLE 
the energy-momentum tensor represents the fields energy (see [2], pp. 86-89 or 
[7], pp. 601-608). It indicates that in this theory the fields energy does not vanish 
whereas in VE, atomic bound fields have no energy. 

Let us find out how this conclusion affects the meaning of the electromagnetic 
4-potential. The Lienard-Wiechert 4-potential Aµ  of a pointlike charge e is 
(see [2], p. 174; [7], p. 656)  

.
v

A e
R v

µ
µ α

α

=                           (3) 

Here Rµ  denotes the 4-vector from the retarded position of the charge to the 
measurement point, and vµ  denotes the charge’s retarded velocity. This 
4-potential yields bound fields as well as radiation fields (see [2], p. 175; [7], p. 
657). The following argument proves that these attributes of the 4-potential (3) 
mean that it cannot represent a genuine quantum particle. 

Indeed, it should be pointed out that Wigner’s analysis of the unitary repre-
sentations of the inhomogeneous Lorentz group proves that a massive quantum 
particle has a well-defined mass and spin whereas a massless quantum particle 
has two components of helicity [14] [15]. This evidence means that the expres-
sion of the Lienard-Wiechert 4-potential (3) cannot be consistently related to a 
physical object, because the energy and the spin values of bound fields and of 
radiation fields that are derived from this Aµ  take contradictory values. 

4. Multi-Charge Properties of Radiation Fields 

Consider the two radiating systems of Figure 1. Figure 1(a) shows a single 
charge q that moves uniformly along a circle which is embedded in the ( ),x y  
plane and its center coincides with the origin of coordinates. The point p lies on 
the z-axis at the radiation zone. The circular motion of the charge q proves that  
 

 
Figure 1. Two radiating systems. (a) A charge q moves uniformly along a cir-
cle; (b) Two charges, q±  move uniformly along a circle. See text. 
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it accelerates towards the center of the circle. This acceleration a indicates that 
radiation fields do not vanish at point p (see [2], p. 175; [7], p. 657). 

Let us examine the radiation fields E, B at point p and compare the fields of 
Figure 1(a) with those of Figure 1(b). In Figure 1(b) there are two charges q± , 
which are located at two antipodal points of the circle. These charges move along 
the circle with the same velocity as that of the charge q of Figure 1(a). For point 
p, the retarded time of the charge +q is the same as that of the charge −q. Well 
known formulas of radiation fields prove that, at point p, the electric field and 
the magnetic field of the charge +q are the same as those of the charge −q (see 
[2], p. 175; [7], p. 657). It means that at point p, the radiation fields E, B of Fig-
ure 1(b) are twice as strong as those of Figure 1(A). Now, the Poynting vector 
(see [2], p. 81 or [7], p. 237)  

4π= ×S E B                          (4) 

describes the energy current of electromagnetic fields. This vector proves that at 
point p, the energy current of Figure 1(b) is four times greater than that of Fig-
ure 1(a). Furthermore, since the same frequency holds for the fields of the two 
cases, one concludes that at the vicinity of point p, the number of photons of 
Figure 1(b) is four times greater than the number of photons of Figure 1(a). It 
means that the actual radiation emitted by a system of charges is not the sum of 
radiation emitted by individual charges. The foregoing example proves the fol-
lowing important conclusion: 

The radiation emitted from a system of charges is a multi-charge effect. 
It is shown below that this conclusion is relevant to the problem of the elec-

tromagnetic 4-potential ( ),A tµ x . 

5. Further Inconsistencies of the 4-Potential 

Section 3 proves the existence of problematic issues of the 4-potentials. A gener-
al rule says that if a theory contains one inconsistent element then it is likely that 
other inconsistencies can be found in that theory. The following lines prove that 
the 4-potential belongs to this case. 

Let us examine the electromagnetic Lagrangian density (1). The general 
structure of a Lagrangian density of a field function Ψ  is  

( ) ( )( ), ,x x xµΨ ∂Ψ ∂                     (5) 

where x denotes the four space-time coordinates ( ),x t≡ x . This form indicates 
local properties of the functions on which the Lagrangian density depends. As 
stated in the following textbook, this is a general attribute of presently accepted 
field theories: “all field theories used in current theories of elementary particles 
have Lagrangians of this form” (see [3], p. 300). Hereafter this form is called the 
locality of the Lagrangian density. The generalization of (5) to the case of several 
kinds of independent fields is straightforward (see [4], p. 15). Let us compare 
this form of the Lagrangian density with mathematical properties of the elec-
tromagnetic fields and of their 4-potential. 
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The electromagnetic fields satisfy Maxwell equations which are partial diffe-
rential equations with respect to the four space-time coordinates ( ),t x . A 
unique solution is obtained for any appropriate initial/boundary value problem 
[7]. Therefore, these fields satisfy the locality of the Lagrangian density. On the 
other hand, the Lienard-Wiechert 4-potential (3) is a 4-vector which depends on 
the local four space-time coordinates ( ),t x  and on the charge’s retarded coor-
dinates as well. Hence, it is inconsistent with the locality of the Lagrangian den-
sity. In particular, radiation fields carry energy and the principle of energy con-
servation shows that these fields are derived from a 4-potential that depends on 
accelerating charges at the radiating source. 

The Lienard-Wiechert formula for the 4-potential (3) proves that in the case 
of radiation fields, the retarded coordinates may be very far away from the rele-
vant spatial region at the vicinity of ( ),t x . For example, consider a laboratory 
that contains an electron of a hydrogen atom. This electron interacts with a 
photon that has been radiated from a source at the Andromeda galaxy. In this 
case, the distance between the hydrogen’s electron and the photon’s source is of 
the order of 1032 times the relevant size of the hydrogen atom. This is yet another 
indication showing that the Lienard-Wiechert 4-potential (3) is inconsistent 
with the locality of the Lagrangian density (5). 

It is shown above that the Lienard-Wiechert 4-potential (3) is inconsistent 
with the local form ( ),A tµ x  which is required for the electromagnetic Lagran-
gian density (5). Furthermore, section 4 proves that radiation is a multi-charge 
effect. Hence, the actual number of independent variables of the photon’s 
4-potential is much larger than the 4 coordinates ( ),t x  used in (5). It follows 
that the problem is uncorrectable and a 4-vector of the form ( ),A tµ x  cannot 
be used in a reliable mathematical expression for the 4-potential of an incoming 
radiation. 

6. Discussion 

The analysis presented in Section 3 proves that radiation fields and bound fields 
do not represent the same physical entity. Therefore, these fields should be 
treated separately. One element of this issue applies to the important case of the 
Lagrangian density of a system of an electrically charged Dirac particle and elec-
tromagnetic fields (see [4], p. 84, [5], p. 78).  

( ) 1 .
16π

i eA m F Fµ µν
µ µ µνψ γ ψ = ∂ − − −                 (6) 

This is a quantum expression which is an extension of (1). It contains additional 
terms that represent the charged matter. Here the interaction of a charged par-
ticle with an incoming radiation and the interaction of a charged particle with 
the fields of other charged particles of the same system should be treated sepa-
rately. The following discussion briefly shows some aspects of this issue. 

Let us examine the interaction of the system’s charges with an incoming radi-
ation. It is proved in sections 3 and 5 that the 4-potential of radiation fields 
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( ),A tµ x  cannot be used in a physically acceptable Lagrangian density. It fol-
lows that contrary to a fundamental requirement, the interaction term of the La-
grangian density (1)  

Int j Aµ
µ= −                            (7) 

is unacceptable. The same is true with the interaction term of (6). This problem 
can, however, be settled if the fields term of the Lagrangians (1) and (6)  

1
16πFields F Fµν

µν= −                        (8) 

is regarded as the radiation’s primary expression and the 4-potential of the inte-
raction term is treated as an auxiliary quantity. As pointed out in Section 5, elec-
tromagnetic fields satisfy the locality of the Lagrangian density. In this case the 
right form of the 4-potential can be reconstructed in every frame on the basis of 
the Lorentz transformation of the fields [16]. It is interesting to point out that 
this procedure has the important advantage of directly yielding a 4-potential 
whose form is required by quantum electrodynamics (QED), namely  

0 0, 0A = ∇ ⋅ =A                        (9) 

(see [4], p. 73). It means that the correct result is obtained without resorting to 
gauge transformation (see below subsection 7.1). 

Let us turn to bound fields. It is proved in Section 3 that the spin and the par-
ity of these fields are 0jπ +=  and that they do not contribute to the system’s 
energy. These attributes are the same as those of the vacuum. It follows that 
bound fields cannot represent a physical particle altogether. And indeed, the 
Darwin Lagrangian shows that bound fields of a system of charges can be re-
placed by a mechanical-like expression where the coordinates and the velocities 
of each pair of charges take their instantaneous value and ijn  denotes a unit 
vector from the position of the ith particle to that of the jth particle  

( )( ), 2
j i j i

Darwin int j i j ij i ij
j i j j i jij ij

e e e e
L

R R> >

 = − + ⋅ + ⋅ ⋅ ∑∑ ∑∑ v v v n v n      (10) 

(see [2], pp. 179-182, [7], pp. 593-595). This expression is independent of the 
electromagnetic fields and of their 4-potential. In the quantum case of Dirac 
particles, this expression boils down to the Breit interaction (see [17], pp. 170, 
195). Here the velocity operator α  of a Dirac particle (see [18], p. 11) replaces 
the particle’s velocity v. The equal time attribute of the Breit interaction is con-
sistent with the standard quantum mechanical practice of atomic state calcula-
tions [17]. Indeed, atomic state calculations determine the Hamiltonian’s eigen-
functions. These eigenfunctions can be written in the form of the 
time-independent Heisenberg picture (see [4], pp. 5-8). 

The mechanical-like Lagrangian of Darwin and Breit proves that bound fields 
and their 4-potentials are auxiliary mathematical quantities, because one can 
write a Lagrangian of the system that is independent of these quantities. 

An important attribute of the Breit interaction is that this expression takes a 
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symmetric form with respect to a pair of interacting electrons. This kind of ex-
pression enables a consistent calculation of states of atomic electrons, where the 
electronic function takes an antisymmetric form which abides by the Pauli ex-
clusion principle. The symbolic form of a general 2-electron interaction is  

† ˆ .Int ij
i j

H O
>

= Ψ Ψ∑                      (11) 

Here Ψ  denotes an antisymmetric state of several electrons and ˆ
ijO  is a 

symmetric operator which operates on the ij pair of electrons (see [19], p. 172). 
The derivation of the electromagnetic energy-momentum tensor from the 

fields’ Lagrangian density demonstrates another aspect of this issue. Here an ap-
plication of the tensor F µν  of (1), which is a sum of all kinds of electromagnet-
ic fields, yields an unacceptable non-symmetric expression (see [2], pp. 86-87, 
[7], pp. 601-605). It is also shown in these textbooks how this erroneous result 
can be corrected by a mathematical trick. The unsatisfactory aspect of this ap-
proach has already been recognized [20] [21]. For example, the correction trick 
is based on a principle which states that it is legitimate to apply a procedure that 
arbitrarily alters local energy-momentum density. Obviously, such a procedure 
is inconsistent with general relativity. 

It is proved in this work that radiation fields and bound fields represent dif-
ferent physical entities. Therefore, the calculation of the energy-momentum 
tensor from the sum of radiation fields and bound field is wrong. Moreover, it is 
shown above that bound fields do not represent an objective physical entity. 
Therefore, in order to derive the right expression for the energy-momentum 
tensor, one should use radiation fields only. It turns out that this calculation 
yields directly the correct expression [21]. This outcome demonstrates that if the 
starting point is correct then the result is correct and no further manipulations 
are required. The specific case discussed herein is that the separation of electro-
magnetic fields to radiation fields and bound fields is a fundamental attribute of 
the system, because it relies on experimental evidence. The correct form of the 
energy-momentum tensor which is described above provides another illustration 
of the generally valid opinion stating that consistent mathematics can correctly 
describe physical properties [1]. 

The claim that QED should be reconstructed may be regarded at odds with 
the standard approach that thinks that QED as an excellent theory. The follow-
ing example of this opinion is taken from a textbook: “On the evidence pre-
sented in this table, QED is the most stringently tested—and the most dramati-
cally successful—of all physical theories” (see [5], p. 198). 

It turns out that eminent theoretical physicists have already asserted very se-
rious qualms concerning the validity of such a statement. They refer to a funda-
mental QED process called renormalization. Feynman stated that renormaliza-
tion is “a dippy process” (R. P. Feynman in [22], p. 128). P. A. M. Dirac has de-
scribed it as a procedure of an “illogical character” [23]. He continued and said: 
“I am inclined to suspect that the renormalization theory is something that will 
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not survive in the future, and that the remarkable agreement between its results 
and experiment should be looked on as a fluke”. This approach is also men-
tioned in a textbook that makes the following statement: “In the quantum theory, 
these divergences do not disappear; on the contrary, they appear to get worse, 
and despite the comparative success of renormalisation theory the feeling re-
mains that there ought to be a more satisfactory way of doing things” (see [24], p. 
390). 

It is interesting to note that it is now recognized that experimental evidence 
denies the QED’s accuracy reputation [25]. Here the amazing QED precision of 
seven or more decimal digits dramatically deteriorates to just one decimal digit. 
This QED experimental failure indicates that Dirac was right with his negative 
opinion concerning the present structure of QED. 

The analysis presented in this work proves new theoretical QED inconsisten-
cies. These new results support the above mentioned negative opinions of emi-
nent physicists concerning the present QED structure.  

7. Problems Related to the 4-Potential 

The foregoing analysis proves that the electromagnetic 4-potential ( ),A tµ x  is 
not a consistent 4-vector. In particular, this 4-potential cannot represent a fun-
damental physical entity. This state of affairs casts doubt on the validity of elec-
tromagnetic theoretical structures that are based on a 4-potential. Each of the 
following subsections contains a discussion of a specific case of this kind. 

7.1. Gauge Transformations 

Evidently, if the 4-potential does not represent a genuine physical entity then its 
gauge transformation cannot have a more profound meaning. And indeed, it has 
already been proved that gauge transformations contain many physical incon-
sistencies [26] [27] [28]. The following lines briefly describe few examples of this 
issue. 

The primary justification of gauge transformation relies on the Dirac Lagran-
gian density (6). By definition, a gauge transformation uses a gauge function 
( )xΛ  which is an arbitrary function of the four space-time coordinates 
( ),x t≡ x  (see [3], p. 342, [29], [30]). This transformation is defined as follows 

(see [3], p. 345, [5], p. 78,)  

( ) ( ) ( ) ( ) ( )( ) ( ), , exp ,A x A x x x ie x xµ µ µ ψ ψ→ +Λ → − Λ         (12) 

where the symbol e in the exponent denotes the electronic charge. A 
straightforward substitution of (12) into (6) proves that the Dirac Lagrangian 
density is invariant under this gauge transformation. Indeed, ψψ  is a real 
quantity which is independent of the phase. Furthermore, the change of the 
4-potential Aµ  is canceled out by the corresponding quantity obtained from 
the partial derivative i µ∂  of (6). 

The consistency of the gauge transformation (12) is analyzed below. This 
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analysis relies on the following theorem: 
Theorem A: If a Lagrangian function is invariant under a certain transforma-

tion then the entire theory which is derived from this Lagrangian function is in-
variant under that transformation, provided the Lagrangian function and the 
transformation are free of mathematical contradictions. 

The following points show two fundamental errors of the gauge transforma-
tion (12). 

1) The power series expansion of the exponential function of (12) is  

( )( ) ( )exp 1ie x ie x− Λ = − Λ +                  (13) 

A basic law of physics says that all terms of a physically valid expression must 
have the same dimension. Furthermore, in the case of a relativistic expression, 
these terms must also undergo the same Lorentz transformation. The first term 
on the right-hand side of (13) is the pure number 1, which is a dimensionless 
Lorentz scalar. The same is true for the imaginary number i, and in the units 
used herein also the electric charge e is a dimensionless Lorentz scalar. It follows 
that the gauge function ( )xΛ  must be a dimensionless Lorentz scalar. This 
constraint is violated by the intrinsic arbitrariness of the gauge function used by 
gauge theories (see [3], p. 342, [29], [30]). Moreover, it can be proved that a 
gauge function that is a dimensionless Lorentz scalar must be a numerical con-
stant [26]. 

2) The de Broglie principle defines the relation between the wave length of a 
quantum particle and its momentum (see [31], p. 52)  

.=k p                           (14) 

It follows that an application of the quantum momentum operator i= − ∇p  to 
the exponential factor of (12) proves that in order to abide by the momentum 
value of the particle, the gauge function must be independent of the spatial 
coordinates. This result is inconsistent with the intrinsic arbitrariness of the 
gauge function used by gauge theories (see [3], p. 342, [29], [30]). In particular, 
[27] proves that contrary to experimental data, a gauge transformation destroys 
an interference pattern of an electronic beam. 

The foregoing arguments hold for the domain of quantum mechanics. The 
following quotation proves that it also holds for quantum field theory (QFT). 
“First, some good news: quantum field theory is based on the same quantum 
mechanics that was invented by Schroedinger, Heisenberg, Pauli, Born, and oth-
ers in 1925-26, and has been used ever since in atomic, molecular, nuclear and 
condensed matter physics” (see [3], p. 49). 

This discussion proves that erroneous elements of gauge transformation exist 
in VE in general and in quantum theories in particular. Theorem A means that 
due to these errors, the invariance of the Lagrangian density (6) under a gauge 
transformation has no physical merit. As pointed out above, more details of 
problematic aspects of the gauge idea have already been published [26] [27] [28]. 

It is explained above why gauge transformations have no profound physical 
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meaning. It is also pointed out in the Introduction that the 4-potential is not a 
part of MLE. Hence, in MLE the 4-potential and its gauge transformations are 
auxiliary quantities which can be used in mathematical procedures that aim to 
solve Maxwell equations. The following article presents a historical review of the 
development of gauge transformation ideas [32]. 

7.2. The Dirac Monopole Theory 

The fundamental difference between an electric charge e and a magnetic mono-
pole (called briefly monopole) g stems from the fact that an electric charge has 
been found in experiment whereas a corresponding monopole has not been 
found yet. Therefore, the monopole issue is a subject of theoretical work. Evi-
dently, the first assignment is to define a theoretical expression for monopole. 
The following duality transformation of electromagnetic fields  

, ,→ → −E B B E                       (15) 

together with this charge-monopole transformation  

,e g g e→ → −                         (16) 

are used for a monopole definition (see [7], pp. 251-252, [33], p. 1363). The 
transformations of the electromagnetic fields (15) can be put in a tensorial form  

, ,F F F Fµν µν µν µν∗ ∗→ → −                  (17) 

where F Fµν µναβ
αβ

∗ =   and µναβ  is the completely antisymmetric unit tensor 
of the fourth rank. The transformations (15) and (16) are sometimes called dual-
ity rotations by π/2 (see [7], p. 252). 

An application of the duality transformations (15) and (16) to the ordinary 
Maxwellian electrodynamics of a system that comprises electric charges and 
electromagnetic fields yields a dual theory of a system that comprises monopoles 
and electromagnetic fields. It means that the resultant theory holds for systems 
that contain no electric charge. Evidently, like the ordinary Maxwellian electro-
dynamics, the dual theory is regular at space-time points that are free of point-
like particles. Clearly, this outcome explains the monopole definition issue. 

The next problem is to construct a unified charge-monopole theory of a sys-
tem that comprises electric charges, monopoles and electromagnetic fields. This 
theory must satisfy the following requirements: 

1) For systems of charges without monopoles, it must agree with the ordinary 
Maxwellian electrodynamics. 

2) For systems of monopoles without charges it must agree with the dual 
theory which is described above.  

A monopole theory has been constructed by Dirac [34] [35]. His theory relies 
on the idea that one and the same 4-potential is used for electromagnetic fields 
associated with charges and for electromagnetic fields associated with mono-
poles. A fundamental property of his theory are irregularities on strings of 
space-time points that are connected to every monopole. This outcome is incon-
sistent with the above mentioned regularity of the dual system of monopoles 
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without charges. Hence, the Dirac theory violates requirement 2. 
This theoretical contradiction is accompanied by a persistent failure of a very 

long list of experimental searches for a Dirac monopole. Indeed, the official PDG 
site recently published a review of monopole search and concludes: “To date 
there have been no confirmed observations of exotic particles possessing mag-
netic charge” [36]. This systematic failure is yet another example of the inherent 
relations between consistent mathematics and experimental evidence [1]. 

The following issue pertains to the discrepancies of the Dirac monopole 
theory. Wikipedia is a well-known source of information. According to its prin-
ciples, it describes ideas that are consistent with the current consensus. Thus, the 
electric charge Wikipedia item describes properties of one kind of physical ob-
jects (which can be either positive or negative). This evidence together with the 
above mentioned duality transformations (15), (16) prove that one kind of mo-
nopole should exist. By contrast, the Wikipedia monopole item describes several 
and different kinds of monopoles. This state of affairs shows that the opinion of 
the present community is yet unsettled with respect to the Dirac monopole con-
cept. 

It is interesting to point out that a very long time ago scientific articles have 
already predicted the failure of the quest for a Dirac monopole [37] [38]. The 
foregoing PDG monopole report proves that as of today, these predictions are 
correct. The mathematical problems of the Dirac monopole theory support the 
expectation that no genuine Dirac monopole will be found in experiment. 

7.3. The Aharonov-Bohm Effects 

The original AB article [39] presents two quantum mechanical effects called the 
electric AB effect and the magnetic AB effect. These authors discuss a system of 
an electron (called herein the traveling electron) that interacts with a macros-
copic source of a 4-potential. The beam of the traveling electron splits into two 
sub-beams where each of which moves in a field-free region. Later, the 
sub-beams produce an interference pattern. Relying on their analysis, AB argue 
that the 4-potential is an indispensable element of quantum mechanics. Indeed, 
in the summary section of [39] they state: “The essential result of the previous 
discussion is that in quantum theory, an electron (for example) can be influ-
enced by the potentials even if all the field regions are excluded from it. In other 
words, in a field-free multiply-connected region of space, the physical properties 
of the system still depend on the potentials.” Hereafter, this statement is called 
the main AB assertion. 

The following argument proves that the main AB assertion cannot be correct. 
Indeed, AB discuss systems that do not contain radiation fields. Therefore, the 
Breit interaction presented in section 6 can be used as a basis for a quantum 
mechanical analysis of the problem. In this case the interaction of the traveling 
electron with the source can be cast into the form of a sum of two 
body-interaction of the traveling electron with each charge of the source. This 
application of the Breit interaction means that the problem can be legitimately 
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reduced to a mechanical-like Lagrangian where the potentials and the fields are 
not directly used. Therefore, the AB potentials are nothing more than auxiliary 
quantities that play no fundamental role. This argument refutes the main AB as-
sertion. Few details of this general conclusion are presented below. 
 The first AB article [39] treats a single particle problem of the traveling elec-

tron that moves in an external potential. This is inconsistent with the Breit 
interaction which proves that the interaction takes the symmetric sum of a 
two-body interaction. It means that [39] ignores the contribution of the 
source. Later AB admitted this problem but argue that an inclusion of the 
source does not change the results [40]. The following arguments prove that 
this AB conclusion is unjustified. 

 It has been proved that a crucial element of the existence of the AB effects is 
that the source should behave as an inert object [41] [42]. Namely, the same 
4-potentials yield different interference patterns if the source is inert or 
non-inert. This outcome demonstrates the crucial role of the source and re-
futes the main AB assertion. 

 The symmetric form of the Breit two-charge interaction means that the inte-
raction may be cast either to the interaction of the traveling electron with the 
potential of the source or to the interaction of the source with the 4-potential 
of the traveling electron. These two forms are equivalent. In the latter case, 
the fields of the traveling electron do not vanish at the source. It means that 
in this legitimate description there is no field-free region and a fortiori no 
multiply-connected field-free region exists. Hence, the main AB assertion is 
refuted. It is interesting to note that several authors have recently claimed 
that the inclusion of the source denies the main AB assertion concerning 
field-free potentials [43] [44] [45]. These claims are in accordance with the 
analysis presented earlier in [41] [42]. 

 It has also been proved that the electric AB effect is based on arguments that 
lead to a violation of the law of energy conservation [46] [47]. This unac-
ceptable contradiction substantiates the claim that the main AB assertion is 
inherently wrong. 

It is interesting to note that the experimental confirmation of the magnetic AB 
effect uses an inert source of the vector potential A [48]. The result of this expe-
riment agrees with the analysis of [41] [42]. 

8. Conclusions 

Section 2 presents contradictory quotations from respectable textbooks that 
demonstrate the extremely problematic status of the electromagnetic 4-potential 

( ),A tµ x . The present work analyzes the theoretical meaning of this quantity. 
Obviously, in MLE, the 4-potential is an auxiliary quantity, because the primary 
equations of this theory—namely, Maxwell equations and the Lorentz law of 
force—are independent of the 4-potential. As is well known, ( ),A tµ x  is useful 
in attempts to solve problems (see [7], p. 219). It means that the usefulness of the 
4-potential ( ),A tµ x  cannot be denied.  
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This work is dedicated to an analysis of the theoretical significance of the 
4-potential ( ),A tµ x  in VE. This paper proves that like the case of MLE, in VE 
the 4-potential is an auxiliary quantity. An important element of the discussion 
is the proof that radiation fields and bound fields are inherently different physi-
cal objects. This evidence means that the present QED form should be revised. It 
is also proved above that the radiation 4-potential is not a 4-vector of the form 

( ),A tµ x . An analogous argument can already be found in a well-known text-
book (see [3], p. 251). It is explained why the dependence of the Lie-
nard-Wiechert 4-potential on retarded coordinates is inconsistent with the re-
quired locality of functions used by a Lagrangian density. It is also shown that 
relativistic covariance of electrodynamics can be consistently restored if in each 
frame radiation fields are used for a reconstruction of a 4-potential. This proce-
dure directly yields a 4-potential whose form is required for QED analysis (9). 

Bound fields have different properties. Here the Darwin Lagrangian and the 
associated Breit interaction prove that the Lagrangian takes a mechanical-like 
form that depends on instantaneous values of the coordinates and the velocities, 
but is independent of the fields and of their 4-potential. Hence, in the case of 
bound fields, both the electromagnetic fields and their 4-potentials are auxiliary 
quantities. The time-independence of the Breit interaction is consistent with the 
standard practice of atomic calculations which use functions that take the form 
of the time-independent Heisenberg picture. 

It is also proved that some physical concepts that are based on the 4-potentials 
are unjustified. These issues include the idea of gauge transformations in VE, the 
Dirac monopole theory and the two AB effects. 
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