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Abstract 
Urban search and rescue robots are playing an increasingly important role 
during disasters and with their ability to search within hazardous and dan-
gerous environments to assist the first respond teams. Surveying and remote 
sensing the hazardous areas are two of the urgent needs of the rescue team to 
identify the risks before the intervention of the emergency teams. With such 
time-critical missions, the path planning and autonomous navigation of the 
robot is one of the primary concerns due to the need of fast and feasible path 
that is comprehensive enough to assess the associated risks. This paper 
presents a path planning method for navigating an unmanned ground vehicle 
within in an indoor hazardous area with minimum priori information. The 
algorithm can be generalized to any given map and is based on probabilistic 
roadmap path planning method with spiral dynamics optimization algorithm 
to obtain the optimal navigating path. Simulations of the algorithm are pre-
sented in this paper, and the results promising results are illustrated using 
Matlab and Simulink simulation environments. 
 

Keywords 
Remote Sensing, Path Planning, UGV, Autonomous Mobile Robot 

 

1. Introduction 

Urban search and rescue (USR) are time-critical missions, failing to find and 
rescue the victims in time within the hazardous areas may lead to a tragedy. 
Search and rescue robots have been proven to be useful in disasters such as hur-
ricanes, volcanos, collapses and earth quakes [1] [2] [3]. Due to the need of a 
low-risk solution to detect the victims and assess the hazards, robots were 
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equipped with sensing elements and have been utilized to navigate within the 
disastrous areas for searching and surveying [1] [2]. Whether manually tele op-
erated or autonomously driven, various types of robots such as unmanned 
ground vehicles (UGV), unmanned aerial vehicles (UAV) and unmanned sur-
face vehicles (USV), have been used in urban search and rescue missions [4] [5] 
[6]. Furthermore, first responders’ teams have used robots to drop emergency 
kits at victims who are drowning in sea or trapped within hazardous areas such 
as mine collapses or under the rubbles after earth quakes [7] [8]. 

Surveying and remote sensing in an urban hazardous indoor area is a chal-
lenging problem due to the restricted accessibility for personnel and robots. In-
door navigation is difficult for robots due to the loss of GPS signals and would 
require a localization system to position the robot within the indoor environ-
ment [9] [10]. Synchronous Localization and Mapping (SLAM) methods would 
require more processing time and would be beneficial in less critical applications 
than search and rescue missions where time factor is of utmost importance to 
facilitate the aid and save victims lives [8] [10] [11]. This paper presents a novel 
work on combining path planning using SDA algorithm in an unknown indoor 
environment with minimum priori information. 

This paper presents an approach for optimal path planning for a remote sens-
ing autonomous robot in a cluttered and hazardous indoor environment. The 
operating scenario of this robot is applicable during the search and rescue mis-
sions, where unmanned ground vehicles (UGVs) are favored, to survey and 
sense the environment for various detectable phenomena such as gases, fire or 
smoke detection and etcetera. The proposed algorithm can be generalized to any 
given map and as an example simulation scenario; we present an application of 
path planning of a mobile robot in an urban search and rescue mission to navi-
gate through an indoor hazardous building for remote-sensing and assessment 
of the hazardous situation. The sensing of the environment would enable the 
first responders’ team to determine the severity of the emergency and would 
help them to decide on rescuing the victims with the least risk towards the team. 
With the proposed system, the robot will navigate autonomously by utilizing 
probabilistic roadmaps (PRM) to find out all the possible navigation paths for 
autonomous navigation of the robot, given the building map. With the various 
solutions of the probabilistic roadmaps, an optimal path that would be selected, 
based on particle swarm optimization algorithm, that covers most of the indoor 
area to provide the best possible assessment of the hazard situation. 

2. Probabilistic Roadmaps Path Planner 

Probabilistic roadmap (PRM) methods have been known for their efficient ap-
proach in path planning complex motions for a wide discipline of applications 
including various types of robots such as manipulators, unmanned robotic ve-
hicles as well as predicting the motion and transitions of biological systems such 
as proteins and molecules [12] [13]. In robotics, PRM solves complex motion 
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planning problems for a single or multiple robots with multiple degrees of free-
dom in free space. 

PRM is based on representing an approximation of the free space (F) in a 
sample-based approach that is referred to as a configuration space and is com-
posed of nodes and local paths or segments. The approximation of the free space 
is based on a probability measure to avoid computing an exact shape of the free 
space, thus the “probabilistic” term of the method. PRM algorithm is based on 
two steps; roadmap construction and the roadmap query. The algorithm re-
quires start and goal points to calculate collision-free paths from the constructed 
representation of the free space. The basic PRM pseudocode used in this re-
search is presented in Table 1. 

With its simple pseudo code, the PRM algorithm could calculate many feasi-
ble paths in any given map. However, with the limited and constrained time of 
the rescue missions, an optimal path among all the calculated paths would be 
needed within a fast and reliable time to facilitate the given tasks of surveying or 
remote-sensing of the environment. Thus, a fast optimization algorithm would 
be needed to obtain an optimal comprehensive path with the given constraints. 

3. Spiral Dynamic Optimization Algorithm 

Spiral dynamics optimization algorithm (SDA) has been inspired by the com-
mon feature of the logarithmic spirals found in nature such as whirling currents 
and was introduced by Tamura and Yasuda [14] who believed that it could be of 
a beneficial search strategy. SDA is a relatively new metaheuristic optimization 
algorithm that was tested and compared against other common optimization 
methods such as particle swarm optimization (PSO) and bacterial foraging algo-
rithm (BFA) and has shown an equal or better performance in terms of the 
speed of convergence and evolution of cost accuracy [15] [16]. 

The strength of the algorithm relies in the diversification and intensification 
of the search stages that mimics the whirling current spiral where the diversifica-
tion covers a wider area of search and the intensification improves the cost ac-
curacy around good solutions. With its fast convergence towards optimal cost 
 
Table 1. Basic PRM pseudocode [13]. 

PRM Pseudocode 

1: Generate a set of n configurations in free space S from some distribution 
2: Let G = φ, ethe empty graph on S. 
3: for each configuration si∈S do 
4: Find k neighbors for si, Nk(si) 
5:        for each configuration si∈Nk(si) do 
6:   if j > i and the local planner can find a collision-free path from si to sj 
7:   then 
8:    add an edge (i,j) in G. 
9:  end if 
10:      end for 
11: end for 
12: return the graph G and the set S. 
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functions, SDA would enhance the search for optimal path among all the calcu-
lated PRM paths and would result in the optimal navigation path. The nomen-
clature of the SDA optimization is presented in Table 2 followed by the pseu-
docode of the algorithm in Table 3 as reported by Tamura and Yasuda in [14]. 

The rotation matrix for the n-dimension SDA algorithm is defined as 
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The n-dimension spiral dynamic model is expressed using the rotational ma-
trix as: 
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The simple structure both the PRM and SDA algorithms and would enable 
having an onboard processing unit to calculate the optimal path online. In the 
upcoming section, we demonstrate the feasibility of the proposed algorithm over 
a given operating scenario that involves an indoor cluttered map with obstacles. 

4. Simulations and Results 

The simulation scenario assumed in this paper is to have the robot navigate 
through some hazardous chemical laboratories where a gas leak has been de-
tected. Figure 1 illustrates the building map with a total area of (410 × 280) 
square meters. The robot will be simulated to have a starting point at the reception 
 
Table 2. SDA optimization nomenclature. 

Parameter Description 

θ  Rotation angle, 0 2θ π≤ ≤  

maxk  Maximum iteration number. 

r Convergence rate of distance between a point and the origin, 0 1r≤ ≤  

,i jR  Rotation matrix between xi – xj planes 

m Dimension of the search space 
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Table 3. SDA optimization pseudocode [14]. 

SDA Pseudocode 

Step 0: Preparation 
Select the number of search points 2m ≥ , parameters 0 2 , 0 1rθ π≤ < < <  of ( ),nS r θ , and 

maximum number of iterations maxk  
Set 0k = . 
Step 1: Initialization 
Set initial points ( )0 , 1,2,n

ix R i m∈ =   in the feasible region at random and centre x∗  as 

( )0
gi

x x∗ = , ( )( )arg min 0 , 1,2, ,g i ii f x i m= =  . 

Step 2: Updating xi 

( ) ( ) ( ) ( )( )1 , ,i n i n nx k S r x k S r I xθ θ ∗+ = − −  

1,2,i m=  . 
Step 3: Updating x∗  

( )1
gi

x x k∗ = + , 

( )( )arg min 1 , 1,2, ,g i ii f x k i m= + =  . 

Step 4: Checking termination criterion 
If maxk k=  then terminate. Otherwise set 1k k= + , and return to step 2 

 

 
Figure 1. Chemical Laboratories building map. 

 

and autonomously navigate throughout the building corridors to reach the exit 
at the restricted loading area as in Figure 1. The building is assumed to have a 
cluttered environment with many obstacles and barriers within the navigation 
path such as furnishing, equipment and building infrastructures as illustrated in 
Figure 2. These obstacles would need to be defined for the path planning algo-
rithm to be avoided and an optimal path is calculated. 

To start simulating the PRM algorithm, the building map need to be con-
verted into binary occupancy grid matrices in order to define the area con-
straints for the algorithm. Figure 3 presents the converted map that is drawn 
using a binary occupancy grid matrix. 

Simulations start with the SDA optimization algorithm to find out the best 
navigating path where the robot can record most of the sensory data throughout  
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Figure 2. The obstacles and barriers of the building. 

 

 
Figure 3. A grayscale map constructed from the binary occupancy grid. 

 
the corridors until reaching the end of the path. The objective function is de-
fined to have the best connection distance between the PRM nodes. Table 4 
presents the simulation constraints in terms of the number of nodes and con-
nection distances. 

Figure 4 and Figure 5 show the lower and upper limits of the PRM results 
respectively with various numbers of nodes and connection distances. With the 
lower limits of the PRM parameters, as shown in Figure 4(a), the PRM has 
failed to plan a path due to the low number of connecting nodes. On the other 
hand, the PRM has found a possible path from the proposed starting point till 
the end point but without passing through all the possible corridors of the 
building as shown in Figure 4(b). Thus, failing to record the sensory readings 
and may lead to a poor decision of the responding team. The SDA algorithm is 
simulated with the following parameters: (Table 5) 
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Table 4. Simulation constraints of PRM algorithm parameters. 

Parameter Lower limit Upper limit 

Number of nodes 80 700 

Connection distance 50 200 

 
Table 5. SDA Simulation parameters. 

Parameter Value 

P 15 

R 0.95 

θ  
4
π  

Initial points 10 

Iterations 250 

 

 
Figure 4. Path planner simulation with the lower limits of the PRM parameters. 

 
The SDA has converged to the optimum number of nodes of 419 within 250 

iterations as shown in Figure 6. Numerous simulations were carried out to ob-
serve the convergence of the SDA solution towards the optimal path. Figure 7 
illustrate simulation trials before the convergence to the optimal solution of the 
path planning. 

The optimal path is therefore presented in Figure 8 with the optimized num-
ber of nodes of the PRM. As it can be clearly observed from Figure 6 that the 
optimized number of nodes by the SDA algorithm has resulted in a better navi-
gating path that covers most of the corridors when compared to the previous tri-
als of Figure 7. In addition, the PRM has successfully calculated a navigation 
path of the robot and avoided the obstacles and barriers within the environment.  
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Figure 5. Path planner simulation with the upper limits of the PRM parameters. 

 

 
Figure 6. Path planner simulation with the upper limits of the PRM parameters. 

 
Therefore, leading to more precise sensory measurements for the responders’ 
team. 

5. Conclusions 

This paper set out with the aim of providing a fast and reliable optimal path 
planning algorithm for a remote-sensing unmanned ground vehicle in an indoor 
hazardous environment. A proposed path planning algorithm consisting of PRM 
and SDA optimization algorithm has been presented. The previous section has  
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(a)                                                          (b) 

Figure 7. An example of two non-optimal solution illustrated by the SDA algorithm trial whilst searching for the best path within 
the given constraints. 

 

 
Figure 8. Optimal navigation path obtained by the PRM and SDA algorithms. 

 
illustrated the feasibility of the proposed algorithm and has demonstrated prom-
ising results in a simulation scenario of a hazardous indoor environment. 

These simulation results provide further support to be tested experimentally 
on an unmanned ground vehicle with an onboard processing unit and remote 
sensing equipment to get an insight how the complexity of a given map would 
affect the online processing time as well as for further verification of the algo-
rithm. Further experimental studies of the algorithm are therefore recommended. 
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