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Abstract 
Draxler and Zessin [1] derived the power function for a class of conditional 
tests of assumptions of a psychometric model known as the Rasch model and 
suggested an MCMC approach developed by Verhelst [2] for the numerical 
approximation of the power of the tests. In this contribution, the precision of 
the Verhelst approach is investigated and compared with an exact sampling 
procedure proposed by Miller and Harrison [3] for which the discrete proba-
bility distribution to be sampled from is exactly known. Results show no sub-
stantial differences between the two numerical procedures and quite accurate 
power computations. Regarding the question of computing time the Verhelst 
approach will have to be considered much more efficient.  
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1. Introduction 

Draxler and Zessin [1] derived the power function for conditional tests of 
assumptions of a psychometric model known as the Rasch model [4] [5]. These 
tests can be viewed as a generalization of Fisher’s exact test for testing independence 
in contingency tables by considering an extended covariance structure. The 
exact probability distributions of the test statistics under both the hypothesis to 
be tested and a deviation from it are obtained from a family of conditional 
probability mass functions which can be considered as a generalization of the 
class of multidimensional non-central hypergeometric distributions [6]. These 
are rather complicated and time-consuming to compute. Hence, in practice, these 
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distributions as well as the power function of the tests are usually approximated by 
random sampling processes. Basically, there are three approaches to accomplish 
this: sequential importance sampling suggested by Chen et al. [7] as well as Chen 
and Small [8], a Markov chain Monte Carlo (MCMC) approach by Verhelst [2], 
and so-called exact sampling [3]. 

Verhelst’s MCMC technique may be considered as the most promising in 
terms of handling practically realistic cases in psychometric research (regarding 
sample sizes and item numbers) and computing times. On the basis of the stationary 
distribution of the Markov chain the conditional probability distributions of 
interest can be computed to obtain size, p value, and power of the tests. The 
stationary distribution of the chain can be arbitrarily well approximated. Unlike 
the MCMC technique, the exact sampling approach is based on an analytical 
solution of a combinatorial problem which arises as a consequence of the 
conditioning involved in the procedure. This solution enables the exact 
determination of the conditional probability distributions of interest but, 
nonetheless, computing them in practically relevant cases in psychometrics is 
still too time-consuming so that one still relies on random sampling from the 
known exact distributions. 

This paper essentially deals with two questions. The first one generally 
concerns the precision of power computations of conditional tests as introduced 
by Draxler and Zessin [1] in case of using random sampling procedures for the 
approximation of the exact power function. Thereby, precision is expressed in 
terms of dispersion measures observed for the power values (e.g. variances, 
standard deviations, quantiles, etc.) computed from the random samples drawn. 
The second question specifically deals with a comparison of Verhelst’s MCMC 
and the exact sampling approach. 

2. The Problem, Conditional Tests, and Their Power Function 

Consider a typical psychometric problem that a sample of n persons responds to 
k items. Let { }0,1ijY ∈  denote the binary response of person 1,...,i n=  to item 

1,...,j k=  and { }0,1ix ∈  be a fixed covariate, i.e. a known characteristic of the 
persons like gender. The covariate may be also treated as a random variable. 
Examples are quoted by Draxler and Zessin [1]. Consider the following 
exponential family of probability distributions given by 

( ) ( )| exp ,ij ij i ij i j i jP Y y x y xτ β δ = ∝ + +               
(1) 

with iτ ∈  as a person parameter, jβ ∈  as an item parameter, and jδ ∈  
as the conditional effect of the item given the covariate. Assuming local 
independence of the Ys the joint distribution of all binary responses is obtained 
by 

( ) ( )
1 1

| | ,
n k

ij ij i
i j

P P Y y x
= =

= = =∏∏Y y x
                

(2) 

with Y  as an n k×  matrix-valued random variable containing the Ys 
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arranged in n rows and k columns and with ( )1,..., nx x′ =x . Factorizing this 
product immediately shows that the statistics i ijjR Y=∑ , j ijiS Y=∑ , and 

j i ijiT x Y=∑  are sufficient for iτ , jβ , and jδ . Note that the former two 
sufficient statistics are the row and column sums of the matrix of responses Y . 
Suppose the interest lies in making inferences about the δs where the τs and βs 
are treated as nuisance parameters. One way of eliminating the influence of 
nuisance parameters is conditioning on the observed values of their sufficient 
statistics. Proceeding in this way one obtains the conditional distribution 

( ) T 1
1 1 1 1

1

exp
,..., | , , ,

exp

k

j j
j

k k k

j j
j

t
P T t T t

t

δ

δ

=
− −

Ω =

 
 
 = = = = =
 
 
 

∑ ∑

∑ ∑
R r S s x

        

(3) 

with ( ) ( )1 1,..., , ,...,n kR R S S′ ′= =R S . For identifiability let 0kδ = . Note that all 
information needed for making inferences about the δs is provided by the T 
statistics because of their sufficiency property. Hence, the original observations, 
the Ys, can be represented in condensed form. It suffices to consider the joint 
distribution of the Ts as a function of the Ys. Note also that at least one of the Ts 
is not free conditional on ,= =R r S s . The denominator on the right side of (3) 
is a normalizing constant requiring a summation over the set Ω. The latter is the 
set of all possible n k×  matrices given the condition ,= =R r S s . In other 
words, this is the set of all matrices with given, fixed row and columns sums. The 
subset T ⊆ Ω  contains those n k×  matrices additionally satisfying 

1 1,..., k kT t T t= = . 
Suppose the interest lies in testing the composite hypothesis 1 1... 0kδ δ −= = =  

against the alternative ( )1 1 1,..., k kδ δ − −
′ = c , where 1k−c  is any ( 1k − )-dimensional 

column vector of constants except a ( 1k − )-dimensional column vector of zeros, 
i.e. at least one δ is different from 0. Note that both hypotheses would be termed 
simple if the δs were the only parameters involved in the problem. The 
restriction on the parameter space of the free δs given by the hypothesis to be 
tested yields the Rasch model as a special case which assumes the Ys 
independent of the covariate. In other words, the hypothesis to be tested is 
equivalent with the well-known scenario of testing the equality of the item 
parameters of the Rasch model between two groups of persons. In psychometric 
literature, such an analysis is known as testing the invariance of the item 
parameters or, more general, as investigating differential item functioning (DIF). 
Moreover, if the covariate vector x  divides the sample of persons according to 
their scores, i.e. the row sums of Y , yielding one group of persons with low 
score and another with high score the hypothesis 1 1... 0kδ δ −= = =  will be 
equivalent to the assumption of equal item discriminations. This is a basic 
assumption of the Rasch model which has to be tested in almost every 
application. Thus, the conditional procedure discussed can be considered to 
have practical potential. 

A most powerful test and its power function are obtained as follows. Let α 
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denote the probability of the error of the first kind and C the critical region of 
the test. Consider the ( 1k − )-dimensional sufficient statistic 1 1,..., kT T −  for 

1 1,..., kδ δ −  to serve as the test statistic. Denote by P0 the conditional distribution 
given by (3) evaluated at 1 1... 0kδ δ −= = =  (the hypothesis to be tested) and by 
P1 the respective distribution evaluated at ( )1 1 1,..., k kδ δ − −

′ = c  (the alternative). 
According to the fundamental lemma of Neyman and Pearson [9] one will 
obtain a most powerful critical region if C is composed of those values of the test 
statistic 1 1,..., kT T −  which yield the 100α % largest values of P1/P0. Eventually, 
the power function of a critical region C chosen this way is obtained by 1CP∑ . 
Note that Fisher’s well-known exact test is obtained as a special case by setting 

( )12, 1,..., 1n nk R R ′= = = = =R 1 . In this case, (3) becomes the one dimensional 
non-central hypergeometric distribution and, under the hypothesis to be tested, 
the (central) hypergeometric distribution. 

For further conditional tests and their power functions as well as an 
application to real-world data from educational research one is referred to 
Draxler and Zessin [1]. Other tests of various assumptions of the Rasch model 
also based on Ω have already been suggested by Ponocny [10]. A Bayesian 
approach also based on the conditional distribution (3) is discussed by Draxler 
[11]. 

3. Computational Issues 

To compute the conditional distribution given by (3) one obviously has to 
determine the cardinalities of the two sets T and Ω. Counting the total number 
of matrices in Ω is not an easy task. Miller and Harrison [3] suggest an exact 
recursive counting algorithm based on graph theory, the Gale-Ryser theorem [12] 
[13], and dynamic programming which, additionally, enables exact and efficient 
sampling from Ω. Their solution can be considered as the fastest and most 
efficient amongst other exact algorithms (excluding approximate solutions) up 
until now. It is feasible for many real-world applications, primarily in ecological 
research and also in some cases in psychometrics. It may be also reasonably used 
for the evaluation of the accuracy of approximate algorithms like the ones 
mentioned in the introduction. Nonetheless, in most cases in psychometric 
research the size of Ω (the total number of matrices) will be probably too large 
for the exact algorithm because of RAM capacity limitations of the usual desktop 
machines. For practice, one can suggest approximately 100n k+ < . In the 
majority of cases in psychometric research the matrices are far larger so that the 
number of matrices in Ω is usually not determined or counted but random 
sampling procedures are used to approximate the ratio of cardinalities of T and 
Ω. Since T ⊆ Ω  this can be accomplished by drawing a random sample of 
matrices from the discrete uniform distribution of the elements (matrices) of Ω. 
One simply has to count the number of matrices within the sample which satisfy 

1 1,..., k kT t T t= = , i.e. those matrices drawn from the set T within all matrices 
drawn. The precision or the variance of this relative frequency obviously depends 
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on the size of the random sample. Hence, to approximate the conditional 
distribution (3) under both 1 1... 0kδ δ −= = =  and ( )1 1 1,..., k kδ δ − −

′ = c  the 
summations in the numerator and denominator on the right side of (3) have to 
be taken only over the respective matrices drawn. 

Miller and Harrsion [3] also suggest an exact sampling algorithm that can be 
used after counting the exact total number of matrices in Ω. In this case, the 
discrete uniform distribution over Ω is exactly known and one can directly 
sample from it ensuring that every matrix has the same probability of being 
selected. As already remarked, the practicality of this exact procedure is only 
ensured for smaller matrices or very sparse larger matrices. The program 
package EXACT, an efficient C routine with R, Python, and Matlab wrappers, 
can be downloaded from:  
http://jwmi.github.io/software.htmlhttp://jwmi.github.io/software.html. An alternative 
for larger matrices as they typically occur in psychometric research are 
procedures for the approximation of the desired discrete uniform distribution 
over Ω. These are a sequential importance sampling [8] and an MCMC 
approach by Verhelst [2]. The former is less appropriate compared to the latter 
with respect to psychometric problems. Therefore, it is not considered any 
further. Verhelst’s MCMC approach may be considered as the most efficient and 
fastest sampling algorithm amongst all algorithms (exact and approximate) 
available. The stationary distribution of the Markov chain is given by the 
discrete uniform distribution over Ω which can be, in principle, arbitrarily well 
approximated by using an appropriate burn in phase of the algorithm. This 
ensures random draws with approximate equal probabilities for every matrix. It 
is easily accessible as an R package [14] which is practicable for larger matrices 
up to 4096 rows and 128 columns. No other technique can handle matrices of 
this size. 

4. Study Design 

A first natural question continuing, supplementing, and enhancing the work of 
Draxler and Zessin [1] concerns the precision or accuracy of the power 
computations and the approximation of the exact power, respectively, in case of 
drawing random samples from Ω regardless of the particular sampling approach 
utilized. For this, the MCMC approach by Verhelst [2] shall be chosen since it is 
practical for larger matrices. Hence, one may get an idea of the precision of 
power computations in cases as they typically occur in psychometric research. 
The chosen scenarios consider matrices with row numbers 10, 30, 90, 150, 250, 
350, 500 and 25 columns in each row number case. The row sums of each of 
these matrices, also called person scores, are chosen so that values in the middle 
of the possible range from 0 to 25 are more frequent than values near 0 and near 
25 obtaining best possible symmetric frequency distributions (best possible zero 
skewness). Concerning the choice of the 25 column sums, also called item scores, 
low, middle, and high values have been selected more or less equally frequent. 
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Note that these choices are reasonable with respect to psychometric research 
since the items of a psychological (or educational) test are usually selected to 
cover a wide range of difficulties (item parameters) to ensure best possible 
accurate measurements for all persons, i.e. persons from very low to very high 
ability (person parameter). The covariate vector x  is chosen so that it divides 
the sample of persons in two groups of equal sizes. Regarding each of the 
scenarios to be considered, a random sample of 8000 matrices is drawn using 
Verhelst’s MCMC procedure and the power is computed given a choice of 1k−c  
and given 0.05α = . This procedure is replicated 3000 times to observe the 
distribution of power values and thus, to get an idea of the accuracy of the 
computations. Concerning the choice of 1k−c  the following different scenarios 
are selected. In all scenarios only one of the 1k −  free δs is selected to take a 
value different from 0. These values range from −1.75 to 1.75 with a spacing of 
0.25 (excluding 0). The rest of the δs is set equal to 0. The particular δ parameter 
that is chosen to differ from 0 is called DIF parameter in the following since it 
defines a deviation from the hypothesis to be tested. As already noted in Sec. 2, 
such a deviation is often called DIF in psychometrics. The DIF parameter refers 
to different items, i.e. to items with a score in the middle of the possible range as 
well as to items with small and high scores. 

A second question focuses on potential differences with respect to power 
computations between the exact sampling [3] and the Verhelst MCMC approach. 
Since the latter only approximates the discrete uniform distribution over Ω 
through a Markov chain the power computations may be imprecise (having 
larger variances) compared to the exact sampling procedure which samples from 
the exactly determined discrete uniform distribution. These comparisons can be 
carried out only for smaller matrices of approximate size 100n k+ <  because of 
computational limitations of the exact sampling procedure. The selected 
matrices refer to 4 items and 10, 30, 60, 90, 120 and 150 persons. Note that the 
small number of items, i.e. matrices with only 4 columns, allows for the 
consideration of person numbers up to 150. These choices are reasonable and 
practical from the psychometric point of view since one usually has person 
numbers far exceeding the numbers of items. Thus, a 100 4×  matrix is more 
realistic than a 50 50× , say. Moreover, concerning the exact sampling approach, 
the latter case is already too much for usual RAM capacities of today’s machines, 
whereas the case 100 4×  is quite manageable. 

The chosen column sums for each person number condition are illustrated in 
Table 1. The frequency distribution of the person scores, row sums, is shown in 
Table 2, where person scores 0 and 4 are excluded. These are uninformative. 
The size of the random sample drawn from Ω is set to 3000. The selected values 
of the DIF parameter range again from −1.75 to 1.75 but results are presented 
only for the case 0.6 (in Sec. 5). These results may be viewed as typical. No 
substantially different results have been observed with respect to all other 
choices of the DIF parameter as far as the comparison of the two sampling  
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Table 1. Selected values of the item scores, column sums. 

Item 
Person number 

10 30 60 90 120 150 

1 8 23 60 73 95 117 

2 6 17 28 51 69 89 

3 3 12 16 34 41 53 

4 2 7 12 15 19 24 

 
Table 2. Frequency distributions of the persons scores or row sums. 

Person Score 
Person number 

10 30 60 90 120 150 

1 3 8 17 26 38 46 

2 5 15 30 45 60 75 

3 2 7 13 19 22 29 

 
approaches is concerned. One can observe only the trivial fact of increasing 
power with increasing absolute value of the DIF parameter regardless of the 
sampling technique used. Moreover, an absolute value of roughly at least 0.5 or 
0.6 of the DIF parameter may be considered meaningful in most practical 
contexts in psychometric research. For a deeper discussion on the practical 
meaning of a deviation from the hypothesis to be tested in a broader context of 
power and sample size issues one is referred to Draxler [15]. The power is 
computed using both Verhelst’s MCMC approach and the exact sampling 
procedure given 0.05α = . This procedure is replicated 1000 times to observe 
the distribution of the power values with respect to both sampling procedures. 
Note the reason for decreasing the number of draws from Ω as well as the 
number of replications compared to Question 1 which is the greater 
computational effort and computing time needed for the execution of the exact 
sampler. 

5. Results 

The observed results with respect to question 1 are summarized as follows. 
Table 3 shows summary statistics of the power values for different sample 

sizes and a constant DIF parameter of 0.6 referring to an item with a score in the 
middle of the possible range. As can be seen, the standard deviations are quite 
small so that the power compuations may be considered quite stable. An 
exception is the 90 person number case which yields a considerably larger 
dispersion and additionally a slightly higher mean power than the 150 person 
number case which one would not expect. In this case, the number of random 
draws from Ω may have to be increased to get more accurate results. 

Figure 1 shows box plots of the power values concerning two scenarios. The 
diagram on the left side of Figure 1 illustrates a scenario with DIF parameter 

https://doi.org/10.4236/ojs.2018.86058


C. Draxler, J. P. Nolte 
 

 

DOI: 10.4236/ojs.2018.86058 880 Open Journal of Statistics 
 

referring to an item with score in the middle of the range of possible values. 
The diagram on the right side concerns the case assuming a difficult item (low 

item score) affected by DIF. As can be seen, the effect of the DIF parameter on 
the observed power depends on which item is assumed to be affected by DIF. 
These results are expected from theory. To explain, consider the diagram on the 
right side of Figure 1. Negative values of the DIF parameter yield smaller effects 
on the power (smaller power on average) as well as larger standard deviations of 
the power values and thus less precision than positive values. This is because a 
negative delta (DIF parameter) shifts the response probabilities of the respective 
item closer to the boundary 0 for persons with covariate value 1. Since the 
response probabilities are more extreme for these persons the responses contain 
less information about the respective δ (DIF) parameter. As a consequence, its 
effect on the power as well as the precision of the power computations become 
smaller. Figure 2 shows scenarios for which the DIF parameter refers to an item  

 
Table 3. Summary statistics of the observed frequency distributions of power values for 
different sample sizes. 

Matrix Min 
2.5% 

Quan. 
25% 

Quan. 
Median Mean 

75% 
Quan. 

97.5% 
Quan. 

Max SD 

10 × 25 0.12 0.13 0.14 0.14 0.14 0.15 0.16 0.17 0.007 

30 × 25 0.37 0.39 0.40 0.41 0.41 0.42 0.43 0.47 0.011 

90 × 25 0.28 0.31 0.47 0.49 0.47 0.50 0.51 0.53 0.051 

150 × 25 0.38 0.42 0.44 0.46 0.46 0.48 0.51 0.59 0.024 

250 × 25 0.53 0.56 0.60 0.62 0.62 0.64 0.68 0.76 0.031 

350 × 25 0.61 0.68 0.73 0.76 0.76 0.78 0.82 0.97 0.035 

500 × 25 0.75 0.80 0.84 0.86 0.86 0.88 0.92 0.97 0.031 

 

 
Figure 1. Box plots of observed frequency distributions of power values and standard deviations for two cases 
differing in the choice of the item affected by DIF. On the left the DIF parameter refers to an item with a score in the 
middle of the range of possible values, on the right the DIF parameter refers to an item with a low score (difficult 
item). 
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Figure 2. Box plots of observed frequency distributions and standard deviations of power 
values. The DIF parameter refers to an item with a high score (easy item). 

 
with high score. In these cases, the effect on the power computations is exactly 
the other way round i.e. positive values of the DIF parameter yielding smaller 
power on average even though not so obvious as on the right side of Figure 1. 
This is just because the score of the item is not so extreme as in the example 
shown in Figure 1 (right side). 

Generally, as seen in all diagrams the observed standard deviations of the 
power values are quite small. They are higher for those scenarios yielding a mean 
power around 0.5 which is also obvious from theory. Thus, the computations 
may be considered quite stable. Further analyses have been carried out 
decreasing the number of samples drawn from Ω to 3000 and even to 1000 
without considerably increasing the standard deviations of the observed power 
values. 

Moreover, the burn in phase of the MCMC algorithm has been varied from 
300 up to 8000 as well as three different values of the so-called step parameter 
have been considered, i.e. 16, 32, and 50. The latter is simply to avoid 
dependence of the matrices to be drawn (states in the Markov chain), e.g. 16 
means that only every 16th matrix is selected. Figure 3 shows a few exemplary 
results. It can be summarized that the precision of the computations seems to be 
barely influenced by the choice of the size of the burn in sample. Thus, the 
approximation of the discrete uniform distribution over Ω seems to be sufficient 
already in cases of burn in samples as small as 300. The step parameter, on the 
contrary, does seem to have a certain impact on the precision of the 
computations. Increasing it yields decreasing standard deviations. 

Finally, Figure 4 illustrates results concerning Question 2, the comparison of 
Verhelst’s MCMC and the exact sampling procedure. Obviously, no noticeable 
difference between those two sampling procedures have been observed. Note 
that the observed average power is slightly larger in the case considering 60 
persons than in the one with 90. One would not expect a higher power in case of  
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Figure 3. Typical results observed concerning the impact of burn in phase and step 
parameter of Verhelst’s MCMC procedure. 

 

 
Figure 4. Box plots of frequency distributions of observed power values obtained from 
computations based on Verhelst’s MCMC and exact sampling approach. 

 
a smaller sample size but, nonetheless, this result is quite understandable. In the 
presented examples the DIF parameter refers to item 2. In Table 1 it can be seen 
that its score is 28 in the 60 person number case, whereas it is 51 in the case of 90 
persons. The latter, 51, is more extreme, i.e. it is farther from the center of the 
range of values from 0 to 90. Consequently, the effect of the DIF parameter is 
smaller and one observes even a slightly lower average power than in the 60 
person scenario. 

6. Final Remarks 

In cases of smaller sample sizes, i.e. up to a few hundred, conditional testing of 
assumptions of the Rasch model [1] is a reasonable alternative to asymptotic or 
large sample χ2 tests usually applied in this context (e.g. [15] [16] [17] [18] [19]). 
In contrast to χ2 tests the conditional procedure treated in this paper is a 
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one-sided hypothesis test which generally has higher power than its two sided 
counterpart. 

The power function of the conditional test can be well approximated by 
numerical procedures and random sampling techniques, respectively. The 
results of this work hint at quite accurate and stable computations. Nonetheless, 
many more scenarios could be investigated. Particularly, scenarios assuming 
more extreme values of the person (row sums) as well as the item scores 
(column sums) than have been analyzed in this contribution. In such cases 
higher variances and less precision of the power computations have to be 
expected. 

Probably the most important result of this contribution for the practice of 
psychometric data analysis is that the exact sampling approach based on an exact 
counting algorithm [3] for the number of matrices in Ω does not yield 
substantially more accurate, or rather not even slightly more accurate, power 
computations than the MCMC approach by Verhelst [2] which only 
approximates the distribution over Ω. Moreover, the Verhelst approach is 
practicable for considerably larger matrices and is much more efficient in terms 
of computing time. 
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