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1. Introduction

In this paper we consider classical Hamiltonian systems with two degrees of

freedom for which the Hamiltonian is of the form
1
H=E(pf+p§)+V(ql,qz), (1)

where V'is a homogeneous function of degree 0. Although these systems arising
from physics and applied sciences are generally understood to involve only real

variables, we will assume that the Hamiltonian system associated to (1) is
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defined on the complex symplectic manifold M =C*\X equipped with the

canonical symplectic form

2
= qu S Adp;,
Jj=1
where X is a set of zero Lebesgue measure.

We will assume that the system of equations
grad (¢,.4,)=V"(41-9,) =(4-4:)-

has a nonzero solution d =(d,,d,)e C?, called a Darboux point of the potential
V.

A Hamiltonian system of two degrees of freedom is integrable in the Liouville
sense if there exists a first integral £ defined in C* except perhaps in a set of
zero Lebesgue measure, which is independent with the Hamiltonian, 7e. the rank

of the matrix

oH on o on
oq, 0Oq, O0p, 0p,
OF OF OF OF
oq, 0Oq, O0p, Op,

is 2, except perhaps in a zero Lebesgue measure set of C*.

The aim of this paper is to find necessary conditions for the integrability of
some homogeneous potentials of degree of homogeneity 0. More precisely, our
main results are the following.

Proposition 1 Assume that a Hamiltonian system of two degrees of freedom

with Hamiltonian of the form (1) and potential

V= a4, +aq, )

b
4, + 439,

where a,=b; +ib,,eC for j=0,1,2,3, is integrable in the Liouville sense,
and that it has Darboux points. If a, # 0, then

b11 (b21b31 + b22b32) b12 (b22b31 - b21b32)

R bi+by )
b.o—— b11 (b21b32 - b22b31 ) 4 blz (b21b31 + b22b32)
v b, + b, b, + b,

If a;=0 isa particular case of Proposition 3.
Proposition 2 Assume that a Hamiltonian system of two degrees of freedom

with Hamiltonian of the form (1) and potential

_ 4 + 499, + 4 @)

4 2 2°
a4, ta,q,9, +asq,

where a,=b,, +ib,, €C for j=0,---,5, is integrable in the Liouville sense,
that it has Darboux points. If a5 #0 , then
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_ b2]b3lb51 + b21b32b52 + b22b31b52 _b22b32b5]

by = )
" bs2 1+ b522
b =— b21b31b52 — b21b32b51 — b22b3|b51 — b22b32b52
" b521 + b522 ’ (5)
b = b21b41b51 + b2|b4zb52 + b22b41b52 _b22b42b51
! b52 [t bszz ’
b = _b21b41b52 + b21b42b51 + b22b41b51 +b22b42b52 .
’ by + b5,
If a;=0, then
by =by, by =by and b, =b, =0. (6)

Proposition 3 If a Hamiltonian system of two degrees of freedom with
Hamiltonian of the form (1) and potential

n n-1 n

- aQq, +aq, ¢, +-+a,q
n
q

; (7)

where a,=b, +ib,,€C for j=0,--,n, is integrable in the Liouville sense

and has Darboux points, then it satisfies

[(n-1)/2] [n/2]

bl,l == Z b2k+l,l (2k +1)2 (_1)k > b2,l = zbZk,lkz (_1)k >
k=1 k=2 (8)
[(VLI)/Z] 2 k ["/2] 2 P
b,=- bys (2k+1) (—1) , b,= sz,{’zk (—1) .
k=1 k=2

These three propositions are proved in Section 3. The proof of Proposition 2
needs the help of an algebraic manipulator like mathematica for doing it, and a
such manipulator also helps in the proof of Proposition 1 but there is not strictly
necessary.

The integrability of other Hamiltonian systems with two degrees of freedom
and different potentials have been studied in [1]-[30].

2. Preliminary Results

It was proved in Theorem 1.2 of [31] the following result for Hamiltonian
systems with 12 degrees of freedom of the form (1) with homogeneous potentials
of degree 0.

Theorem 4 Assume that V € (C[ql,---,qn] is homogeneous of degree 0 and
that the following conditions are satisfied:

1) there exists a non-zero d =(d,,--,d,)eC" such that
V'(dl,---,dn):(d],-‘-,dn) , and

2) the system is integrable in the Liouville sense with rational first integrals.

Then

1) all eigenvalues of the Hessian matrix V"(d,,--,d,) are integers, and

2) the matrix V"(d,,---,d,) is diagonalizable.

When n=2 Theorem 4 has the following easier formulation given in section
5 of [31]
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Theorem 5 Assume that V € C[q,,q,| is homogeneous of degree 0 and that
the following conditions are satisfied:

1) there exists a non-zero d=(d,,d,)eC’ such that V'(d,,d,)=(d,.d,),
and

2) the system is integrable in the Liouville sense with rational first integrals.

Let z=gq,/q, with q,#0, be the affine coordinate on CP' and set

v(z) = V(l,z) . Then the Darboux points are +i, and the function v satisfies

v’(z*)+z*v"(z*):O. (9)
Proof. Darboux points of V7 are non-zero solutions of equations

oV oV

—=q, —=4,. (10)

o4, 4 od 9,

It is convenient to consider Darboux points in the projective line CP'. Let
z=gq,/q, with g #0, be the affine coordinate on CP'. Then we can rewrite
system (10) in the form

V(z)z=—-q;, V(z)=zq;, (11)
where v(z) = V(l,z) . From the above formulae it follows that z, isa Darboux
point of Vif and only if z e{-i,i}, and V/(z.)=0. Thus the location of the
Darboux points does not depend on the potential.

If z. is the affine coordinate of the Darboux point d =(d,,d,) of V; then

the Hessian matrix V" (d ) expressed in this coordinate has the form

vr(d)-= —"(z)x> =2 ) —[v’(z*)+z*v"fzz*)]x;2 ’
—[v'(z*)+z*v"(z*)]x* V'(z.)x
where
x=—V(z)z= v'(z*)/z*.

Vector dis an eigenvector of V"(d) with corresponding eigenvalue A=-1.
As the trace of V"(d) is -2, A=-1 is the only eigenvalue of V"(d). Thus
the first hypothesis of Theorem 4 is satisfied, and the second also by our
assumptions, then the matrix V"(d) is diagonalizable, and since its eigenvalues

are -1 and -1, we get that 7"(d) is diagonal. Hence the second condition of
Theorem 4 is satisfied if and only if (9) holds.

3. Proof of the Propositions
Proof of Proposition 1. We will apply Theorem 5 to potential (2). Then it has the
Darboux points =i . Since

_ a, +(112
v(2) a,+az’

we have

V2V 420" (2 =(a1a2—a0a3)(a2—a3z)
(ool

Taking a,=b, +ib;, for j=0,---,3, the condition (9) implies
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(byy +ibyy —i(byy +ibyy ) ((Byy +ibyy ) (byy +ibyy ) = (byy +ibyy )(by, +ibyy )
(by, +iby, +i(by, +iby,))

=0(12)

and
(b21 +iby, +i(b;, +ib32))((b“ +iby, ) (byy +ibyy ) = by, +iby, ) (b, +ib32))
(by, +iby, —i(by, +iby,))

=0.(13)

Taking the real part and the imaginary part of (12) we get
~by,ba by, — 2By, by by by, — By bayby, — 2by,byybsy + by b3, + by by b,
+Dyyby,byy — 2by,by b3, + Byybiybsy — 2by,byyby by, — byyby by, — byyby,
+b, b3, + b, by, b3, + 2b,,b,,b,,b,, — b, by, bY, — b, by by +2b, b3 b,
~by,b3,by, + 2b,b3 by, + 2b,,b, by, by, — by, + by,by, b3, + byyb,y,bY, =0
and
~by b3 \bsy + 2B,y b3, — by bayby, + 2Dy, by, by by, + by by by, + by by,
~byb3,by, = 2by,b, by by, — bbby, — 2byuby,ba, + byybs, + by,by b
+b,,b},b,y — 2b,,b3,by, — 2B, by byybs, + by b3, — by byyby, — by, by,b3,
+b,,b3, + By,by b3, + 2B,,by byyby, —by,by b2 — byyby by, + 2b,b3,by, = 0.
Taking the real part and the imaginary part of (13) we get
~bybi by, + 2By, by by by, — by bayby, + 26y byybs, + by, b3, + by by b,
+Dyyby by, + 2by,by b, + Boybiy by + 2b,byby by, — byyby by, — bbby,
+b,,b3, + b, by,bs, —2b, b, b,,by, — by by b, —by\b, b3, —2b, b2,b,,
~by,b3,by, — 2b,,b3 by, — 2b,,by byyby, —byyb3, + bybybiy +byby,bs, =0
and
~by,b3 by, — 2by by by, — by bayby, — 2by byyby by, + by b3 by, + by b3,
~byybi by, +2by,b, by by, — bbby, +2by,by,bs, + b, + by,by b,
+b,,b3 by, + 2b,,b3\by, + 2B, by byyby, + by by, — by byyby, — by by,b3,
+b,,b3, + byyby b3, — 2b,,by by, by, — Byyby by, — byby bsy — 2b,,baby, = 0.
Solving these four equations we obtain that the condition (3) given in the
statement of Proposition 1.

Proof of Proposition 2. We will apply Theorem 5 to potential (4). First assume
that a; #0. Therefore this potential has the Darboux points =i . Since
v(z)= a, +alz+azzi ,
a,+a,z+asz

we obtain

Vi(z)+2"(z)

1
= 3 (ao (z(af +3a4a52+4a5222)—a3(a4 +4a5x))
(a3 +z(a, + asz))

+a, (azz —a,z(a, +6asz)+ a2’ (a;z—a, ))

+ azz(4a32 + a3z(3a4 —4a5x) +a,z’ (a4 - asz)))

=0.
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By condition (9) on vand since a;=b, +ib,, for j=0,---,5, we get

((b(” + iboz)(i(b31 +ib32)(b41 +ib42)

i
(by, +iby, +i(by, +iby,)~by, —iby, )
—4(by, +iby, )(bs, +ib52)+3i(b4l tiby, ) (b, +ibg, ) +(by +ib,, )’
(b +ibgy )7 )+ (byy b, ) (30(byy by, ) (b + iy ) +4(by, + iy )
+4(by, +iby, ) (byy +ibgy )+ i(by +iby, ) (bsy +ibsy )~ (byy +ib42)2)
+(byy +ibyy ) (=i (b +ibyy ) (byy +iby, )+ 6 (by, +ibyy ) (b, +ibsy )

)
)2 (b41 +ib4z)(b51 + ibsz)+(b51 +ibs, )2)) =0

(14)

+(by, +iby,

and
1

(byy +ibyy —i(byy +ibyy ) by, —iby, )
+6(by, +iby,)
2

(B +iby, ) (i(byy +ibyy ) (byy +iby,)

(bs, +zb52) (b31 +zb32) —i(by, +iby, )(bs, +ibs,)
by by ') =i ((boy + by ) (=i By + iy ) (g b3 )+ 4(by + b, )’ (s
~4(by, +iby, ) (b, +iby, ) =3i(by, +iby, )(by, +iby, )+ (by, +iby, )’
—4(by, +iby,)’ )+(b21 by, )((by +iby, )(4(byy +ibgy ) =3y, +iby )
—(by +ibyy ) (by +iby, +i(by + ibsz))))) = 0.

Taking the real part and the imaginary parts of (14) and (15) and solving the
corresponding equations with the help of an algebraic manipulator such as
Mathematica we get the unique solution given in (5).

Now we assume that a; =0. In this case

v(z)= a, +az+a,z’ .

a;+a,z
Then
V(z)+2v"(2)
_ 1
(by, +iby, +(by +ibyy)2)
+(byy +iby, ) (byy +iby, ) (=by, —iby, +(by, +iby, ) 2)

(b ) 2 (4B +ib ) +3 (b + ) 2 (b 4y ) (b + ) 7)),

- ((bll +iby, )(by, +iby, ) (by, +iby, (by, +ib42)z)

By condition (9) on vand since a;=b, +ib,, for j=0,---,4, we get
by, +iby, +i(by, +iby, ) — by, —ib,,

=0 (16)
by, +iby, +i(b,, +ib,,)

and
by, +iby, —i(by, +iby, ) — by, —iby,

- - - =0. (17)
by, +iby, —i(b,, +ib,,)

Taking the real part and the imaginary parts of (16) and (17) and solving the
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corresponding equations with the help of an algebraic manipulator such as
Mathematica we get the unique solution given in (6).
Proof of Proposition 3. We will apply Theorem 5 to potential (7). Then its
Darboux points are =i . Since
1 & . . u .
V=—>aqq”, thenv(z)=)az,
1 J=0 j=0

and consequently
V(z)+2v"(z)= ijajzj’l.
j=1

Now applying condition (9) on vand taking into account that a, =b, +ib,,

for j=1,---,n, we get

S (b, +ib,, )i =0 and Y (b, +ib,, )(~1) i =0,
=

Jj=l
which yields
[(n1)/2] (2]

; bypy (2k+1)° (-1)° —ikz:;bZk’l(Zk)z(—l)k

[(n—l

/2] 2 k [n/Z] 2 k
+i Y by, (2k+1)7(<1) +kZb2k,2(2k) (-1 =0
=1

=

T
(=]

and
[(n-1)/2] [n/2]

> by, (26 +1) (<1) +i Y by, (2k) (<1)

k=0 k=1
[(r=02) ., b .
+i bys (2k+1)"(=1) = Dby, (2k) (-1) =0.
k=0 k=1

Therefore
[(/14)/2] [n/2]

Y oy (2k+1) (21) + Xy, (26) (1) =0,

. L] s
- bZk,l(Zk) (—1) + Z b2k+1,2(2k+1) (—1) =0,

k=1 k=0
1171)/2] 5 k [n/2] 2 k
Doy (2k+1)7(<1)" = D by, (2k) (-1) =0,

k=0 k=1
[n/2] ) . [(n-1)/2] ) ‘
D by, (2k) (1) + by (2k+1)° (1) =0.
k=1 k=0
Hence
[-1)/2] L
Z b2k+,’](2k+1) (—1) =0,

[r-1)] .
byss (2K +1) (<1) =0.
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This yields (8).

4. Conclusions

We have characterized the Liouville integrability of the Hamiltonian systems

with Hamiltonian
1
H=—(p+ 1)+ (0.0),

and one of the following potentials

V= 4, +aq, ,
a4, + a9,
v, - %QE + 44,9, +a2Q2§ ’
a4, +a,q9,9, +asq,
y, = Gt tads g+t ag)

q

For doing this we have used the Darboux theory of integrability.
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