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Abstract 
In a given linear, multistage, cascaded amplifier [1] comprising passive 
coupling circuits and active two-ports alternatively, the problem is where in 
the amplifier the stabilizing circuit elements should be placed to eliminate in-
stability, and of what type and value. Our investigations are based on a new 
recursive formula for the determinant of tridiagonal matrices. Relation of our 
results to the Stern stability factor has been obtained. A verification in nu-
merical examples has also been provided. 
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1. Introduction 

Stability Theory is currently being revived in many disciplines. This is because of 
the novel results in chaotic systems and investigations into its robustness. In 
electrical engineering as well, these problems are of distinguished actuality in 
areas such as in automatics, control theory, and power electronics. However, in 
this study, we concentrate on electrical circuits. 

In circuit theory, stability related problems are in close connection with ap-
pearance and application of feedback. These investigations were based on the 
observation that exotic phenomena are in close connection with singularities of 
the model. Characteristic of the early period is the graphical investigation of the 
loop gain. A later, well distinguished period can be described as a numeric inves-
tigation of stability that was often in connection with invariance properties. 
During the 1970s and 1980s, clarifications and multidimensional system investi-
gations were performed. The above-mentioned renaissance began in the 1980s 
when Professor Chua and his colleagues, based on results from physics, started 
studying exotic phenomena in nonlinear circuits. Most important results of this 
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period are the simplest circuit exhibiting chaotic phenomena and systematic in-
vestigation of chaotic behavior. More recent investigations are related to the uti-
lization of chaotic circuits for information transfer. Besides, up to the most re-
cent time, you can often find some novel results for describing chaotic circuit 
operation. 

In Section 2, we overview some publications from the history above outlined 
that relate more closely to our work. Section 3 contains our result for the deter-
minant of tridiagonal matrices. Section 4 describes stabilization of one stage am-
plifiers, with a numerical example. In Section 5, two stages are considered. In 
Section 6, factors of the determinant are related to the Stern stability factor. Ge-
neralization for more than two stages is provided in Section 7. In Section 8, nu-
merical examples are found. 

2. Overview 

References in this Section are organized as linear, time invariant, then time va-
riant, then nonlinear circuits. All references are provided in time order. Relation 
of the references to the proposed research is that all of them are founding papers 
of this topic. 

An overview figure for the proposed research is in Figure 12.  
1) The Section begins with results for linear, time-invariant, active circuits. 
[2] discusses the Nyquist stability factor, a variant suggested by him based on 

Bode’s book, and the Gewertz stability conditions. For the Nyquist stability con-
dition, he refers to the characteristic equation written for the loop gain. The 
three Gewertz conditions contain positivity of the real part of the input and 
output impedances and an inequality written for the inner loop gain. At the end 
of the article, variants that have been simplified for reciprocal, antireciprocal, 
and symmetric two-ports are also added. 

[3] deals with passivity and stability. In the part that is devoted to passivity, 
study by Gewertz and stability conditions by Llewellyn are cited. He shows that a 
rearranged version of these stability conditions is also found in the famous study 
by the M.I.T. Laboratories. That article is also mentioned in which—without re-
cognizing its significance—the formula of the Rollett stability condition was first 
published. 

[4] gives a simple method for deriving the Llewellyn stability conditions. Si-
multaneous matching of two-ports at both ports—image parameters—are inves-
tigated. He concludes that this is possible only if the two-port is unconditionally 
stable, and the stability conditions are derived from the determinant of the qua-
dratic equation that expresses matching. Maximum stable gain is also deter-
mined. 

[5] deals with the maximum gain that can be achieved at a given degree of 
stability. He recognizes that a transistor that is not unilateral, can oscillate as a 
consequence of its inner feedback, even if there is no outer feedback. An inequa-
lity can be given for the inner loop gain that results in potential instability. From 
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this point, it is obvious that a degree of stability needs to be introduced. By writ-
ing a power gain at the given value of the stability factor, and maximizing it with 
respect to the terminations, a maximum stable power gain is given. The article 
also contains an early approach to the gain-bandwidth problem. The article is 
concluded by comparison of gains of an amplifier with the given stability factor 
and proper number of stages with the same stability factor. [6] introduces the 
application of these results in the design of multistage, narrow-band amplifiers. 

[7] generalizes for n-ports the theorem that a reciprocal two-port is stable if 
and only if it is passive. 

[8] searches a stability condition that is immittance-invariant (substituting z, 
y, h or k parameters, its value remains unchanged). His stability factor is related 
to the reciprocal of the absolute value of the inner loop gain and the Stern stabil-
ity factor, and it shows immittance invariance. Some theorems regarding the 
newly introduced stability factor are also presented. 

[9] gives a stability condition that is immittance-invariant, invariant to the 
lossless terminations, change of input and output, and applicable to distinguish 
the regions of conditional and unconditional stability. For positive real input 
and output impedance or admittance, the newly introduced stability factor is 
between −1 and infinity. Between −1 and 1, the two-port is conditionally stable, 
above 1 it is unconditionally stable. He expresses power gain in a double-matched 
case in unconditionally stable region in terms of the stability factor, and he 
shows that it is immittance-invariant. Then, tending to 1 with the new stability 
factor (to the limit of conditional and unconditional stability), he gives the ex-
pression of the maximum stable gain and its invariance properties. The conclu-
sion of his article is that the new stability factor is an inherent characteristic of a 
two-port, similar to the Mason invariant [10]. 

[11] started with the statement that two multiports are simultaneously stable 
or unstable if all main minors of their Z matrix are identical. He applies this for 
such two-ports one of them being reciprocal. Previously, he proved that a pas-
sive reciprocal two-port is surely stable, and applying the two theorems, he ob-
tained the Bolinder version of the Llewellyn stability conditions. He notes that 
this cannot be applied for more than two ports, because, in general, such Z ma-
trices whose main minors are identical, cannot be constructed. 

As stability and passivity are in so close connection, we give the reference that 
provides the most refined concept of passivity for linear multiports [12]. This 
proves that for passivity, it is a necessary and sufficient condition that the im-
pedance matrix of the investigated multiport is a positive real matrix. Previously 
obtained theorems are analyzed and small inaccuracies are corrected. 

[13] solves the problem of how much is the greatest power gain of the 
two-port, which has variable terminations and feedback, and if its Stern stability 
factor is fixed. Maximum gain is expressed with unilateral gain and stability fac-
tor, and the necessary feedback is given as well. [14] adds some new formulas for 
conjugate termination and variable or fixed feedback and the freely chosen or 
limited stability factor combined. 
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[15] criticizes [13] and [14] from two points of view. One of them is that va-
riable feedback, keeping the other parameters constant, can only be realized by a 
circuit having infinitely high Mason invariant. The other one is that the formula 
used in the criticized articles for unilateral gain, is not identical to that of the 
Mason invariant, but it was obtained from conjugate matched gain by omitting 
the feedback. Besides those, formulas in the criticized articles are correct. 

[16] investigates how to express the stability conditions by the scattering ma-
trix. Similar to the Llewellyn conditions, three inequalities are given, and he tries 
to prove them in a similar manner that [11] followed. First two inequalities can 
be obtained without problems, but the third one is valid only for reciprocal cir-
cuits. He also gives the Rollett stability factor in terms of the S-parameters. 

[17] gives a simplified form of the known stability conditions expressed in 
terms of S-parameters. The previously given three conditions are decreased to 
two: The Rollett stability factor must be greater than one and the determinant of 
the S matrix must be lower than one. Later, he analyzes the relation between its 
set of stability conditions to the previously published ones. 

[18] publishes a theorem for the spectral radius and applies it to the stability 
investigations of linear circuits. Accordingly, spectral radius of a rational matrix 
of n variable is bounded above within the unit circle if and only if it is bounded 
above on its boundary. By application to the scattering matrix of multiports, he 
shows that stability of the investigated multiport can be decided by terminating 
the ports by uncoupled reactances. Therefore, a new proof of an old theorem is 
also given: A reciprocal multiport is stable if and only if it is rigorously passive. 

[19] gives necessary and sufficient conditions of absolute stability (for arbi-
trary one-port terminations, in BIBO sense) of linear, time invariant multiports. 
Main learning from his study is that if we allow open or short circuit as termina-
tion, then the condition for the determinant of the Z matrix has to be completed 
by other conditions. 

[20] deals with absolute stability of linear, time-invariant, distributed circuits. 
He means I/O stability. The so-called k-stability is introduced: He means stabili-
ty with such terminations that first k1 ports are terminated by a k1 port, the next 
k2 port by a k2 port, and so on, with k1 + k2 + ∙∙∙ = n. This k-stability is connected 
to the stability concept known till date in such a manner that k1 = 1, k2 = 1, ∙∙∙ He 
gives for absolute stability a necessary and sufficient condition. He points out 
that k-stability in general is weaker than traditional stability. 

For time invariant, lumped element circuits, stability is often investigated by 
the Hurwitz test. [21] gives necessary and sufficient conditions for an interval 
polynomial (whose coefficients are bounded above and below) being a Hurwitz 
polynomial. According to the cited Kharitonov stability condition, this can be 
deduced to the investigation of eight so-called limit polynomial. Limit polyno-
mials can be obtained from the original one by substituting the coefficients ac-
cording to some given rules and some further transformations. 

[22] investigates the number of additional conditions that are needed for un-
conditional stability in addition to the Rollett stability factor. In his experiment, 
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output of the two-port is terminated by a susceptance, and the locus of the input 
admittance is studied. He comes to the geometrical interpretation of the Rollett 
stability condition: The locus of the input admittance (a circle in this case) 
should not cross the imaginary axis. In his explanation, the additional conditions 
serve for deciding if the locus is at the right or left side of the axis. As the two 
sides are equivalent from the stability point of view, it is enough to fulfill one of 
the additional conditions. The same is valid for the scattering matrix description. 

[23] [24] replaces the Rollett stability condition and the additional condition 
by one condition that is necessary and sufficient for unconditional stability. A 
new stability factor is introduced. Disadvantage of the result is that it is not inva-
riant for the interchange of the input and output. 

[25] investigates amplifiers containing many parallel-connected stages. The 
motivation is that in push-pull amplifiers, power transistors, and in microwave 
monolithic integrated circuits, such odd-mode oscillations have been observed 
that may cause damage of the device. Stability is investigated by the Nyquist test 
of the feedback loop. Results are verified by a circuit containing two or three de-
vices. 

2) As two examples, we continue with investigations of linear, time-variant 
circuits in time and complex frequency domain. 

[26] publishes a basic result for stability of linear, time-variant circuits in time 
domain. The circuit is defined stable if it obtains a bounded output for a 
bounded input. This can only occur if the weight function of the circuit is abso-
lute integrable. He notes that his result was motivated by a known result for sta-
bility of linear, time-invariant, sampled filters, and that a completely another 
approach is also known for his result. 

[27] investigates the stability of linear, time-variant circuits. State-space ap-
proach is used. On stability, he means that for zero excitation, the answer is zero 
or an answer tending to zero (Ljapunov stability, asymptotic stability). Condi-
tions for Ljapunov stability and asymptotic stability are given. He shows that his 
results are simpler and sharper than other results. 

3) This overview is finished with some stability investigation results for non-
linear circuits. 

[28] investigates the circle criterion [29] for periodically excited nonlinear 
circuits containing a linear, time-invariant circuit and a varactor diode. Asymp-
totic stability is considered: Answer must tend to a steady state with same period 
than that of the excitation. He shows that the investigated circuit may exhibit 
subharmonic oscillation. The circuit is stable if the voltage of the nonlinear part 
is bounded from above and below, and the locus of the quantity jωZ(jω) that is 
derived from the impedance Z(jω) of the linear subcircuit lies outside a circle 
that is derived from bounds. 

Besides general stability conditions, several researchers publish conditions for 
specific nonlinear circuits [30], [31]. Although practical value of such investiga-
tions is high, their validity is limited because of their circuit-specific nature. For 
this reason, general investigations that are applicable in practice have an espe-
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cially high value. 
In our early study [32], we generalized the one-port stability condition given 

by [33] based on perturbation method, for the case of nonlinear two-ports. Ge-
neralization became possible because of introduction of two-port functions be-
ing described. Our investigations are based on an experience that for sinusoidal 
excited, tuned nonlinear amplifiers, instability occurs in the form of output with 
mixed amplitude and phase modulation. This modulation is considered as per-
turbation, and the stability investigation is the Routh-Hurwitz test of the per-
turbation transfer matrix. Applying for low-frequency, tuned amplifier, a cir-
cuit-specific stability condition is given, containing the feedback capacitance, 
characteristics of the nonlinear transfer, and the excitation level. This stability 
condition is in good agreement with the experimental fact that there is no insta-
bility for small excitations, instability appears at a critical level, and further in-
crease of the excitation level results in stability again. The results were extended 
later for different input and output tuning and for synchronized oscillators. 

This topic has other Hungarian-related results as well: Information transfer 
using chaotic circuits has been investigated by [34]. 

3. Determinant of Tridiagonal Matrices 

Let A  be a square matrix having nonzero entries only in the main and neigh-
boring diagonals (tridiagonal matrix). The submatrix comprising the rows with 
serial number 1 2, , , up p p  and columns 1 2, , , vq q q  is denoted as follows 
[35] [36]: 

1 2
1 2

, , ,
, , ,

u
v

p p p
q q qA 



                          (1) 

For determinant of A , we introduce the notation A . 
Theorem 1. The determinant of the n × n matrix A  can be expressed as 

1,2, , 1, 2, , 1,2, , 1 2, 3, ,
1,2, , 1, 2, , , 1 1, 1,2, , 1 2, 3, ,

p p p n p p p n
p p p n p p p p p p p nA A A a a A A+ + − + +

+ + + + − + += ∗ − ∗   

   

    (2) 

where ai,k is the entry of A  in the ith row and kth column, and p is a positive 
integer with 1 p n≤ ≤ . 

Meaning of (2) is illustrated in an example. Let n = 8 and p = 3. Submatrices 
in (2) are denoted by thick lines in Figure 1.  

Proof: Full induction is applied where for n = 2 and p = 1 the following holds: 
a c

ad bc
b d

= −                       (3) 

 

 
Figure 1. For the explanation of (2). Circles and crosses denote nonzero, the empty places 
denote zero entries. On the left, the first term of (2) is shown, whereas, on the right, the 
second one. 
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1,2, ,
1,2, ,

p
pA a=



                        (4)
 

1, 2, ,
1, 2, ,

p p n
p p nA d+ +
+ + =



                      (5) 

1,p pa b+ =                         (6) 

, 1p pa c+ =                         (7) 

and we define 
1,2, , 1 2, 3, ,
1,2, , 1 2, 3, , 1p p p n

p p p nA A− + +
− + += = 

 

                 (8) 

when the first row or column index is greater than the last one. If n = 2 and p = 
2, then (2) holds as well. 

We assume that the theorem is valid for n × n tridiagonal matrices when 
1 p n≤ ≤  and prove that it holds for (n + 1) × (n + 1) if 1 1p n≤ ≤ + . 

In the pth column, three entries are different from zero: ap-1,p, ap,p, ap+1,p. Thus 
1,2, , 1 1, , 2, , , 1 1, , 1, 1, , 1
1,2, , 1 1, 1, , 1, 1, , 1 , 1, , 1, 1, , 1

1, , , 2, , 1
1, 1, , 1, 1, , 1

n p p n p p n
n p p p p n p p p p n

p p n
p p p p n

A a A a A

a A

+ − + − + +
+ − − + + − + +

+ +
+ − + +

= − +

−

    

    

 

 

       (9) 

On the right side, all three determinants are determinants of n x n tridiagonal 
matrices; for that the assumption above holds: 

1, , 2, , , 1 1,2, , 2 , , 1
1, , 1, 1, , 1 1,2, , 2 1, 1, , 1

1,2, , 3 1, , 1
2, 1 , 2 1,2, , 3 1, , 1

p p n p p n
p p n p p p n

p p n
p p p p p p n

A A A

a a A A

− + − +
− + + − − + +

− + +
− − − − + +

= ∗

− ∗

   

   

 

 

      (10) 

From the tridiagonal property, it follows that 

, 2 0p pa − =                         (11) 

Therefore, (10) can be rewritten as 
1, , 2, , , 1 1,2, , 2 , , 1
1, , 1, 1, , 1 1,2, , 2 1, 1, , 1

p p n p p n
p p n p p p nA A A− + − +
− + + − − + += ∗   

   

           (12) 

Now we apply the assumption for the second determinant on the right side of 
(9): 

1, , 1, 1, , 1 1,2, , 1 1, , 1
1, , 1, 1, , 1 1,2, , 1 1, , 1

1,2, , 2 2, , 1
1, 1 1, 1 1,2, , 2 2, , 1

p p n p p n
p p n p p n

p p n
p p p p p p n

A A A

a a A A

− + + − + +
− + + − + +

− + +
− + + − − + +

= ∗

− ∗

   

   

 

 

      (13) 

Because of the tridiagonal property, all entries with a difference of more than 
one between row and column indices is zero: 

1, 1 1, 1 0p p p pa a− + + −= =                     (14) 

Thus (13) has a form of 
1, , 1, 1, , 1 1,2, , 1 1, , 1
1, , 1, 1, , 1 1,2, , 1 1, , 1

p p n p p n
p p n p p nA A A− + + − + +
− + + − + += ∗   

   

            (15) 

Finally, the third determinant on the right side of (9) is expanded: 
1, , , 2, , 1 1,2, , 1 , 2, , 1
1, , 1, 1, , 1 1,2, , 1 1, , 1

1,2, , 2 2, , 1
, 1 1, 1 1,2, , 2 2, , 1

p p n p p p n
p p n p p n

p p n
p p p p p p n

A A A

a a A A

+ + − + +
− + + − + +

− + +
− − + − + +

= ∗

− ∗

   

   

 

 

      (16) 

As 
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1, 1 0p pa − + =                        (17) 

(16) is simplified as 
1, , , 2, , 1 1,2, , 1 , 2, , 1
1, , 1, 1, , 1 1,2, , 1 1, , 1

p p n p p p n
p p n p p nA A A+ + − + +
− + + − + += ∗   

   

            (18) 

Because of (9, 12, 15, 18): 
1,2, , 1 1, , 2 , , 1 1, , 1 1, , 1
1,2, , 1 1, 1, , 2 1, 1, , 1 , 1, , 1 1, , 1

1, , 1 , 2, , 1
1, 1, , 1 1, , 1

n p p n p p n
n p p p p p n p p p p n

p p p n
p p p p n

A a A A a A A

a A A

+ − + − + +
+ − − − + + − + +

− + +
+ − + +

= − ∗ + ∗

− ∗

    

    

 

 

   (19) 

On the right side of the last equation, we reformulate the second determinant, 
applying (2): 

, , 1 1, , 1 2, , 1
1, 1, , 1 1 1, , 1 1, 1 , 1 2, , 11p n p p n p n

p p n p p n p p p p p nA A A a a A+ + + + +
− + + − + + + − + + += ∗ + ∗ ∗  

  

     (20) 

Because 

1 , 1
p
p p pA a− −=                        (21) 

and 

1, 1 0p pa + − =                         (22) 

(20) can be rewritten as 
, , 1 1, , 1
1, 1, , 1 , 1 1, , 1

p n p n
p p n p p p nA a A+ + +
− + + − + += ∗ 

 

               (23) 

The last step is getting to know that the second and third term on the right 
side of (19) can be joined as 

1, , 1 1, , 1 1, , 1 , 2, , 1
, 1, , 1 1, , 1 1, 1, , 1 1, , 1

1, , 1 , , 1
1, , 1 , , 1

p p n p p p n
p p p p n p p p p n

p p n
p p n

a A A a A A

A A

− + + − + +
− + + + − + +

− +
− +

∗ −

=

   

   

 

 

       (24) 

Based on (19, 23, 24): 
1,2, , 1 1, , 2 1, , 1 1, , 1 , , 1
1,2, , 1 1, 1, , 2 , 1 1, , 1 1, , 1 , , 1

n p p n p p n
n p p p p p p n p p nA a A a A A A+ − + + − +
+ − − − + + − += − ∗ + ∗    

    

   (25) 

and that is what we wanted to see. Pathologic cases (n < p) are trivial. 
Explanation for Equation (25) is that it expresses the same as Equation (2) 

above and that we wanted to prove. 

4. Stabilization of a One-Stage Amplifier 

In this Section, Theorem 1 will be applied for stabilization of a one-port amplifi-
er. The amplifier can be characterized in the following manner: 

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

1 1
11 21

1 1 2 2
21 22 11 12 12

2 2 3 3
2321 22 11 21

3 3
21 22

0 0

00
0 0
0 0 0

G GG

L
L

Y Y Y VI
Y Y Y Y V

VY Y Y Y
VY Y Y

 +          +    =      +         + 

      (26) 

where the square matrix on the right is called the admittance matrix of the am-
plifier. Explanation for notations is found in Figure 1. The first and third blocks 
are coupling circuits, whereas, the second block is the active device (transistor). 
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In building up the admittance matrix, reciprocity of the coupling circuits is ex-
ploited.  

Transducer power gain is defined as 

max

L
T

G

PG
P

=                         (27) 

Power absorbed by the load is 

21
2L L LP V G=                       (28) 

where ( )L LG Re Y= . Maximum generator power is 
2

max 4
G

G
G

I
P

G
=                        (29) 

where ( )G GG Re Y= . From (27)-(29): 
2

2 L
T G L

G

VG G G
I

=                      (30) 

The transducer power gain (30) is a function of the transfer impedance: 
( ) ( ) ( )1 2 3

21 21 21L
T

G

V Y Y YZ
I D

= = −                   (31) 

and that is obtained from (26) using Cramer’s rule. D is the determinant of the 
admittance matrix of the amplifier. The amplifier is unstable if 

TG →∞                          (32) 

otherwise it is stable. Therefore, 
Theorem 2. For stability of the amplifier, it is necessary that the zeroes of the 

determinant D are placed at the left half of the complex frequency plane. If the 
admittances in the nominator of (31) do not have right half plane poles, then the 
given condition is necessary and sufficient. 

Proof: Now Theorem 1 will be applied for determining D. The admittance 
matrix of the amplifier is denoted by Y : 

1,2 3,4 1 4
1,2 3,4 2,3 3,2 1 4D Y Y y y Y Y= −                (33) 

The determinants at the right side are written based on (26): 

( )( ) ( ) ( )( ) ( )( )21 1 2 11,2
1,2 11 22 11 21GY Y Y Y Y Y= + + −             (34) 

( ) ( )( ) ( )( ) ( )( )22 3 3 33,4
3,4 22 11 22 21LY Y Y Y Y Y= + + −             (35) 

( )2
2,3 12y Y=                         (36) 

( )2
3,2 21y Y=                         (37) 

( )11
1 11GY Y Y= +                       (38) 

( )34
4 22 LY Y Y= +                       (39) 
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In (34), 1,2
1,2Y  can be rewritten as a product: 

( )( ) ( ) ( )
( )( )

( )

21
211 1 21,2

1,2 11 22 11 1
11

G
G

Y
Y Y Y Y Y

Y Y

 
 = + + − +  

            (40) 

In the second term on the right, we introduce a new notation. Output admit-
tance of the first block in Figure 2, when the input is terminated by GY , is 

( ) ( )
( )( )

( )

21
211, 1

22 1
11

o

G

Y
Y Y

Y Y
= −

+
                   (41) 

Meaning of the new notation is clarified in Figure 3. With this notation: 
( )( ) ( ) ( )( )1 1, 21,2

1,2 11 11
o

GY Y Y Y Y= + +               (42) 

Based on (35), similarly, 3,4
3,4Y  can be expressed as a product:  

( ) ( )( ) ( )( )2 3, 33,4
3,4 22 22

i
LY Y Y Y Y= + +                (43) 

where ( )3,iY  is the input admittance of block 3 in Figure 2 when its output is 
terminated by LY : 

( ) ( )
( )( )

( )

23
213, 3

11 3
22

i

L

Y
Y Y

Y Y
= −

+
                  (44) 

Utilizing (42) and (43), D in (33) can be written as follows: 

( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( ) ( )( )1 1, 2 2 3, 2 2 3
11 11 22 12 21 22

o i
G LD Y Y Y Y Y Y Y Y Y Y = + + + − + 

   (45) 

The second term on the right side of (45) can be transformed: 

( ) ( )( ) ( ) ( )
( ) ( )

( ) ( )
( ) ( )( ) ( ) ( )( )

2 2
1, 2 2 3, 1, 2 2, 3,12 21

11 22 111, 2
11

o i o o i
o

Y YY Y Y Y Y Y Y Y
Y Y

 
+ + − = + + 

+  
  (46) 

where ( )2,oY  denotes output admittance of the block 2 in Figure 2 when its in-
put is terminated by ( )1,oY : 

( ) ( )
( ) ( )

( ) ( )

2 2
2, 2 12 21

22 1, 2
11

o
o

Y YY Y
Y Y

= −
+

                  (47) 

Thus, product decomposition of the determinant is 
 

 
Figure 2. Block diagram of a one-stage, cascaded amplifier. Coupl-
ing circuits and the active element are denoted by 1, 3, and 2. 

 

 
Figure 3. Physical meaning of the notation of (41). 
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( )( ) ( ) ( )( ) ( ) ( )( ) ( )( )1 1, 2 2, 3, 3
11 11 22

o o i
G LD Y Y Y Y Y Y Y Y= + + + +        (48) 

Please recognize that the terms of the product decomposition correspond to 
the admittances at the connections of blocks as shown in Figure 4. 

Theorem 3. Number of terms in the product decomposition of the determi-
nant is equal to the number of interconnections in the amplifier. One of the 
terms is the admittance of interconnected ports, without any change in the am-
plifier. The other terms are also admittances at other interconnections, but with 
other ports short-circuited. 

Proof: Figure 4 shows proof for one-stage amplifier. Extension for more 
stages are found in the next Sections.  

Theorem 3 can be applied for finding circuit elements stabilizing the amplifi-
er. For this, you have to recognize that a circuit element connected to the input 
of block 3 modifies only the third term of the determinant. The circuit element 
connected to the input of block two modifies the second and the third term, the 
circuit element at the input of block 1 modifies terms 1, 2, and 3, whereas the 
circuit element at the output of block three modifies terms 3 and 4. Hurwitz test 
of the terms specifies which term has to be modified and thus the place where it 
has to be connected is given. 

The last statement is illustrated by an example. A one-stage amplifier is illu-
strated in Figure 5.  

Determinant of the admittance matrix of the amplifier in Figure 5 has been 
determined in a half-symbolic form [37], and a Hurwitz test has been per-
formed. The Hurwitz test does not report instability in case of terms 1, 2, and 4. 
However, term 3 in (46) has a form of 
 

 
Figure 4. Terms of the determinant are identical to interconnection 
admittances, with proper terminations at other ports. 

 

 
Figure 5. Circuit diagram of a one-stage amplifier. 
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( ) ( ) ( )
( )

2, 3, 32.499 10o i A p
Y Y

B p
−+ = ×                 (49) 

( ) 9 19 2 30 3

41 4 67 5

1 2.209 10 1.038 10 3.065 10

1.099 10 4.217 10

A p p p p

p p

− − −

− −

= + × + × + ×

+ × − ×
      (50) 

where p denotes complex frequency. A(p) is not a Hurwitz polynomial because 
the sign of the fifth order term is different from others. For this reason, a stabi-
lizing element to be connected at the input of the block 3 is needed. Let it be a 
resistor whose element value is determined so that the Rollett stability factor 
equals to one at the edge of the passband. The stabilized amplifier with its cha-
racteristic before and after stabilization are shown in Figures 6-8. 

In Figure 7 and Figure 8, the Rollett stability factor, that is, the determinant 
of the scattering matrix of the amplifier (that appears in the Woods stability 
condition) are denoted by K and Det, respectively. Gain is smaller in the stabilized  
 

 
Figure 6. The stabilized amplifier. 

 

 
Figure 7. Characteristics of the amplifier before stabilization. 

 

 
Figure 8. Characteristics of the amplifier after stabilization. 
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amplifier, of course. Det < 1 in both cases, satisfying the stability condition re-
garding the determinant. Before stabilization, K < 1 at the lower edge of the 
passband, hurting the stability condition, and K > 1 in the whole passband, after 
stabilization.  

5. Two-Stage Amplifier 

A two-stage cascaded amplifier can be characterized as follows: 
( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

1 1
11 21

1 1 2 2
21 22 11 12 12

2 2 3 3
12 22 11 21 23

3 3 4 4
3421 22 11 12

4 4 5 5 45
12 22 11 21

5 5
21 22

0 0 0 0

0 0 00
0 0 00

0 0 0 0
0 0 0 0
0

0 0 0 0

G
GG

L
L

Y Y Y VI
Y Y Y Y V

Y Y Y Y V
VY Y Y Y
VY Y Y Y
V

Y Y Y

 +     
    +
    
   + =     

+     
    +     

       + 

 

(51) 

For determining the power gain, we have to formulate the transfer impedance 
as it can be seen from (30): 

( ) ( ) ( ) ( ) ( )1 2 3 4 5
21 21 21 21 21L

T
G

V Y Y Y Y YZ
I D

= = −                    (52) 

where D denotes now the determinant of the 6 × 6 admittance matrix in (51). In 
the following, we calculate the product decomposition of D. If Theorem 1 is ap-
plied for n = 6 and p = 2, then n = 4 and p = 2, and the result is rearranged as in 
the previous Section; we arrive at the following expression: 

( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( )( )1 1, 2 2, 3 3, 4, 4 5, 5
11 11 11 22 22

o o o i i
G LD Y Y Y Y Y Y Y Y Y Y Y Y= + + + + + +

 
(53) 

where the following notations have been introduced: 

( ) ( )
( )( )

( )

21
211, 1

22 1
11

o

G

Y
Y Y

Y Y
= −

+
                     (54) 

the output admittance of block 1 when its input is terminated by GY , 

( ) ( )
( )( )

( )

25
215, 5

11 5
22

i

L

Y
Y Y

Y Y
= −

+
                     (55) 

the input admittance of block 5 when its output is terminated by LY , 

( ) ( )
( ) ( )

( ) ( )

2 2
2, 2 12 21

22 1, 2
11

o
o

Y YY Y
Y Y

= −
+

                    (56) 

the output admittance of block 2 when its input is terminated by ( )1,oY , 

( ) ( )
( ) ( )

( ) ( )

4 4
4, 4 12 21

11 4 5,
22

i
i

Y YY Y
Y Y

= −
+

                   (57) 

the input admittance of block 4 when its output is terminated by ( )5,iY , 
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( ) ( )
( )( )

( ) ( )

23
213, 3

22 2, 3
11

o
o

Y
Y Y

Y Y
= −

+
                   (58) 

the output admittance of block 3 when its input is terminated by ( )2,oY . 
Terms of D in (53) are identical to the admittances in Figure 9 at the dashed 

lines.  
Thus, as it is written in the previous Section, Hurwitz test of the terms in (53) 

can be applied for determining the place of the stabilizing circuit elements. 
Product decomposition of the determinant is not unique. As a consequence, a 

specific stabilization problem can be solved at least two ways. Solutions for one- 
and two-stage amplifiers are summarized in Table 1(a) and Table 1(b) and Ta-
ble 2(a) and Table 2(b). 

Table 1(a) and Table 1(b) contain examples for the relation of non-Hurwitz 
terms and the places for stabilization for one-stage amplifiers. Those ports that 
modify the terms according to the given columns are denoted by X. Thus, for 
example, if the first term of the determinant is non-Hurwitz, then that term can 
be modified by the circuit element connected to port 1, 2, or 3. For stabilization  
 

 
Figure 9. Terms of the determinant of the admittance matrix of the two-stage amplifier. 
 
Table 1. Examples for one-stage amplifiers. 

(a) 

Port number 
Serial number of the non-Hurwitz term 

1 2 3 4 

1 X    

2 X X   

3 X X X X 

4    X 

(b) 

Port number 
Serial number of the non-Hurwitz term 

1 2 3 4 

1 X    

2 X X X X 

3   X X 

4    X 
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Table 2. (a) Examples for the relation of non-Hurwitz terms and the places for stabiliza-
tion; (b) More examples for the relation of non-Hurwitz terms and the places for stabili-
zation. 

(a) 

Port number 
Serial number of the non-Hurwitz term 

1 2 3 4 5 6 

1 X      

2 X X     

3 X X X    

4 X X X X X X 

5     X X 

6      X 

(b) 

Port number 
Serial number of the non-Hurwitz term 

1 2 3 4 5 6 

1 X      

2 X X     

3 X X X X X X 

4    X X X 

5     X X 

6      X 

 
of the amplifier, we exploit that there are ports where, if a stabilizing circuit ele-
ment is connected, then not all terms are modified. For example, a circuit ele-
ment connected to port 1, does not influence term 2, 3, or 4. 

The difference between Table 1(a) and Table 1(b) is the “center” term in the 
product decomposition.  

6. Relation to the Stern Stability Factor 

Instability of the investigated amplifiers are caused by the feedback inside the ac-
tive elements. Instability can also be traced by investigating the real part of the 
terms of the determinant. Therefore, it is interesting to investigate the ratio of 
the real part of the terms with and without feedback. For example, in case of a 
two-stage amplifier, the third term in (53) is: 

( ) ( )2, 3
3 11

oy Y Y= +                       (59) 

and the value of 3y  without the feedback of the active element (block 2) is 
( ) ( )2 3

30 22 11y Y Y= +                       (60) 

The above-mentioned ratio is 

( )
( )

3
3

30

Re y
d

Re y
=                        (61) 
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Physical interpretation of the terms in d3 is given in Figure 10.  
Relation between the Stern stability factor and the minimum of d3 is 

3min
3

11d
S

= −                       (62) 

where S3 is the Stern stability factor of the circuit in the upper right corner of 
Figure 10. 

We denote by y a term of the determinant that is identical to the admittance at 
the load side port of an active element. The following idea is valid also for gene-
rator side admittance; thus, a full generalization of (62) is made. Denote by y0 the 
value of y when the feedback is omitted. Let us denote by YG and YL the termi-
nating admittances according to Figure 11.  

Let 

( )
( )0

Re y
d

Re y
=                      (63) 

and let S denote the Stern stability factor of the amplifier in Figure 11. 
Theorem 4. 

min
11d
S

= −                      (64) 

Proof: First we recognize that d depends on GG, GL, and BG, but it does not 
depend on BL ( ,G G G L L LY G jB Y G jB= + = + ). For this reason, to keep the power 
gain constant, we keep GG, GL constant and we seek for the minimum as a func-
tion of BG. Then we compare the expression for dmin to the definition of the Stern 
stability factor. 

Applying the notations of Figure 11, y can be expressed as follows: 

12 21
22

11
L

G

Y Yy Y Y
Y Y

= − +
+

                     (65) 

When determining the real part of y, we introduce the following notations: 

12 21Y Y M jN= +                        (66) 

 

 
Figure 10. Physical meaning of the quantities in (61). 

 

 
Figure 11. An amplifier operating between terminating admittances YG and YL. 
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Real and imaginary parts of the admittance matrix entries are denoted by G 
and B, respectively, properly indexed.  

( ) ( )22
11 11

L
G G

M jNg G Re G
G G j B B

+
= − +

+ + +
            (67) 

Let 

11 1GG G G+ =                         (68) 

22 2LG G G+ =                         (69) 

11 1GB B B+ =                         (70) 

Real part of y is the following: 

1 1
22 2

1 1

MG NBg G
G B

+
= − +

+
                    (71) 

and really, g does not depend on BL. We seek gmin as a function of BG, therefore, 
we have to solve the following equation: 

1

0
G

g g
B B
∂ ∂

= =
∂ ∂

                       (72) 

or in more detailed form, 

( ) ( )

( )

2 2
1 1 1 1 1

22 2
1 1

2
0

N G B B MG NB

G B

+ − +
=

+
              (73) 

The solution is 

2

1 1 1M MB G
N N

   = − ± +    
                 (74) 

Minimum of g is found by substituting (74) into (71): 

2 2

min 2
12

M N Mg G
G

+ +
= −                  (75) 

If the active element does not have inner feedback, then M = N = 0, thus, from 
(71): 

( )0 2Re y G=                        (76) 

From (75) and (76): 

2 2

min
1 2

1
2

M N Md
G G
+ +

= −                  (77) 

The definition of the Stern stability factor [18] is 

1 2
2 2

2G GS
M N M

=
+ +

                   (78) 

Therefore, the relation between the Stern stability factor and dmin can be ex-
pressed as 
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min
11d
S

= −                        (79) 

The Stern stability condition is 

1S ≥                           (80) 

Thus from (79) and (80): 

min 0d ≥                         (81) 

as expected. 
Note that the proof contains more to learn. Using the results above, (3) can be 

proven in a simple way, as follows. For stability, terms of the determinant must 
not have roots in the closed right half plane. From this and from passivity of y0, 
(81) follows at the jω axis. From (81) and (79), (80) follows, and finally, from 
(80) and (78) results in (3). 

We also note that for a two-stage amplifier, not considering feedback in active 
elements does not influence the terms 1, 2, 5, and 6, thus 1id =  if i = 1, 2, 5, or 
6. In these cases, Theorem 2 is useless. On the contrary, in a multistage amplifi-
er, Theorem 2 holds for all terms that are modified when the feedback of the ac-
tive elements is omitted. 

7. A Multistage Amplifier 

In this Section, the stabilization method introduced in the previous Sections is 
generalized. Generalization is based on the fact that in the recursive formula for 
the determinant of tridiagonal matrices, direction of recursion can be changed 
once. 

Theorem 5. 
If [ ]ikA a=  is an n × n tridiagonal matrix, and m is a positive integer, 

2 1m n≤ ≤ − , then the determinant of A  can be expressed as follows: 

1
n

kkA a
=

=∏                          (82) 

1 11a a=                            (83) 

1, 1

1

, 2,3, , 1k k kk
k kk

k

a a
a a k m

a
− −

−

= − = −
              (84) 

1, , 1 1, , 1
,

1 1

m m m m m m m m
m m m

m m

a a a a
a a

a a
− − + +

− +

= − −               (85) 

1, 1

1

, 1, 2, , 1k k kk
k kk

k

a a
a a k m m n

a
+ +

+

= − = + + −
           (86) 

n nna a=                           (87) 

Proof: We will see that the Theorem is valid for m = n − 1, then we assume it 
holds for m and prove that it holds for m − 1 as well. 

1
n

kkA b
=

=∏                        (88) 

1 11b a=                           (89) 
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1, 1

1

, 2,3, ,k k kk
k kk

k

a a
b a k n

b
− −

−

= − = 
              (90) 

The n-1th and nth terms in detail are as follows: 

2, 1 1, 2
1 1, 1

2

n n n n
n n n

n

a a
b a

b
− − − −

− − −
−

= −                 (91) 

1, , 1
,

1

n n n n
n n n

n

a a
b a

b
− −

−

= −                     (92) 

Then the product of these two terms is rewritten as 

1 1 , 1, , 1

1, , 1
1 ,

,

2, 1 1, 2 1, , 1
1, 1 ,

2 ,

n n n n n n n n n

n n n n
n n n

n n

n n n n n n n n
n n n n

n n n

b b b a a a

a a
b a

a

a a a a
a a

b a

− − − −

− −
−

− − − − − −
− −

−

= −

 
= −  
 
 

= − −  
 

           (93) 

Comparing this with (85), we can see that the Theorem is valid for m = n − 1 
as we wanted. Now we assume it is valid for m, and terms m − 1 and m are writ-
ten as 

2, 1 1, 2
1 1, 1

2

m m m m
m m m

m

a a
a a

a
− − − −

− − −
−

= −                (94) 

if 2m ≥ , and 

1, , 1 1, , 1
,

1 1

m m m m m m m m
m m m

m m

a a a a
a a

a a
− − + +

− +

= − −             (95) 

if 1m n≤ − . 
Similarly, as in (93), we rewrite the product of these two terms: 

1, , 1
1 1 , 1, , 1 1

1

1, , 1 1, , 1
1 ,

1, , 1 1
,

1

m m m m
m m m m m m m m m m

m

m m m m m m m m
m m m

m m m m m
m m

m

a a
a a a a a a a

a

a a a a
a aa a aa

a

+ +
− − − − −

+

− − + +
−

+ + +

+

= − −

 
   = − −   − 
 

       (96) 

If in (82)-(87), we leave all terms unchanged except terms m − 1 and m, and at 
the place of these terms (96) is written, then the theorem is proven. 

Now we apply Theorem 5 for the admittance matrix of an n-stage amplifier. 
Figure 12 shows the block diagram of an n-stage amplifier. Odd and even num-
bered blocks denote the coupling circuits and the active elements, respectively.  

This amplifier can be characterized as follows: 
 

 
Figure 12. The block diagram of an n-stage amplifier. Odd numbered blocks are coupling 
circuits, even numbered ones are active elements. 

https://doi.org/10.4236/cs.2018.911017


J. Ladvánszky   
 

 

DOI: 10.4236/cs.2018.911017 188 Circuits and Systems 
 

( ) ( )

( ) ( ) ( )

( )

( ) ( )

( )

( )

1 1
11 21

1 1 2
21 22 11 12

2
12 23

1
3422 11

45
21

2 1
22

0 0 0 0

0 0 00
0 0 00

0 0 0 0
0 0 0 0
0

0 0 0 0

G
GG

m m

m

n L
L

Y Y Y VI
Y Y Y V

Y V
VY Y
VY
V

Y Y

−

+

 +     
    +
    
    =     

+     
    
    

       + 

  (97) 

Applying Theorem 5 for the admittance matrix in (97), product decomposi-
tion of the determinant is the following: 

( )( ) ( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( )( )

1 1, 2 , 1,
11 11

2 2 1, 2 1
22 22

o m o m i
G

n n i n
L

D Y Y Y Y Y Y

Y Y Y Y

+

+ +

= + + ∗ ∗ +

∗ ∗ + +





          (98) 

where the following notations were introduced: Output admittance of block 1 
when the input termination is GY : 

( ) ( )
( )( )

( )

21
211, 1

22 1
11

o

G

Y
Y Y

Y Y
= −

+
                     (99) 

Output admittance of block m when the input termination is ( )1,m oY − : 

( ) ( )
( ) ( )

( ) ( )
, 12 21

22 1,
11

m m
m o m

m o m

Y YY Y
Y Y−

= −
+

                 (100) 

Input admittance of block m + 1 when its output is terminated by ( )2,m iY + : 

( ) ( )
( ) ( )

( ) ( )

1 1
1, 1 12 21

11 1 2,
22

m m
m i m

m m i

Y YY Y
Y Y

+ +
+ +

+ +
= −

+
               (101) 

Input admittance of block 2n + 1 when its output is terminated by LY : 

( ) ( )
( ) ( )

( )

2 1 2 1
2 1, 2 1 12 21

11 2 1
22

n n
n i n

n
L

Y YY Y
Y Y

+ +
+ +

+
= −

+
               (102) 

Terms of (98) have physical meaning. In case of n-stage amplifier, there are 2n 
+ 2 terms, where 2n + 1 terms are equal to the admittance at a port interconnec-
tion, when another interconnection is short-circuited. In case of the remaining 
term, the short circuit must not be applied. Physical meaning of the terms is 
summarized in Figure 13. With this step, proof of Theorem 3 is completed.  
 

 
Figure 13. Terms of the determinant in the product decomposition (98) are equal to the 
admittances that can be measured at dashed lines. 
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Equation (98) can be applied for stabilization of n-stage amplifiers as it was de-
scribed in the previous Sections. Note that the fact that coupling circuits and ac-
tive elements follow each other alternatively was not deeply exploited. Therefore, 
our results can be reasonably applied for arbitrary order of components. 

It would result in further simplification if the direction of recursion in 
(82)-(87) could be altered once more. But we can see easily that this is not possi-
ble. The reason is that we exploited in (82)-(87) the property of (88)-(90), that is, 
that terms do not depend on other terms with higher serial number. On the 
contrary, the mth term in (85) depends on terms m − 1 and m + 1, and all terms 
of lower serial number depend on the previous ones, whereas those of higher 
serial number depend on the next terms. Therefore, recursion can be altered on-
ly once. 

8. Examples 

Next, you can find a simple example for illustration that product decomposition 
of the determinant can be utilized for characterization of stability based on cir-
cuit element values. 

Product decomposition in (48) is applied here for a one-stage field-effect tran-
sistor (FET) amplifier. Circuit schematics is shown in Figure 14.  

According to Theorem 3, the determinant is a product of four terms. Roots of 
first, second, and fourth terms lie in the left half plane. Thus, stability of the am-
plifier depends on the third term. Regarding (48), the third term can be ex-
pressed as follows: 

( )( ) 2
3 2

1 2
1

1

1
1

m GD GD
GD

L
GS GD

G

g pC pC pCy G pC pC R pCG pC pC
R pC

− −
= + − +

++ + +
+

      (103) 

where p stands for the complex frequency. When 1 2,C C →∞ , the above ex-
pression is simplified as 

( )( )
3 2

1

1
1

m GD GD
GD

L
GS GD

G

g pC pC
y G pC

RG pC pC
R

− −
= + − +

+ + +
           (104) 

 

 
Figure 14. One-stage RC coupled FET amplifier schematics and its model. Parts of the 
circuit are separated by dashed lines. 

RG C1 R1 R2 C2 RL

RG C1 R1 CGS
CGD

gm R2 C2 RL

VG

VG

+UT
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Thus, the stability of the amplifier is determined by the real part of the roots 
of the following equation: 

( )( )2 1
1 10 GD GS GD m GD GD

L G

G pC G pC pC g pC pC
R R

  
= + + + + + − − −  
  

(105) 

Recognize that the right side of (105) is the determinant of the admittance 
matrix of the FET model completed with resistive elements. If the FET does not 
have inner feedback, then the second term would appear, and the real part of the 
roots is always negative. The learning from this example is that our method is 
very efficient in characterizing stability. 

Next, we investigate a two-stage amplifier designed for the 0.5 - 2.5 GHz band. 
The amplifier does not meet the stability conditions. We analyze the terms of the 
determinant and we obtain a possible way for stabilization. 

Schematics of the amplifier is shown in Figure 15. Characteristics are shown 
in Figure 16 and Figure 17. The stability condition K > 1 is hurt, where K is the 
Rollett stability factor. 
 

 
Figure 15. Schematics of the investigated two-stage amplifier. 
 

 
Figure 16. S21 as a function of frequency. 
 

 
Figure 17. The Rollett stability factor K and the determinant of the scattering matrix of 
the amplifier. 
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Recognize that we have to separate the parts of the amplifier differently than 
what is shown in Figure 15. As the blocks 1 and 3 in Figure 15 have poles at the 
jω axis, they hurt the conditions of Theorem 2. New blocks are shown in Figure 18.  

Now (98) applies for seven blocks; thus, the number of terms is 8. The circuit 
is cut between blocks 4 and 5; thus m = 4. In the product decomposition, ob-
viously terms 1, 2, and 8 do not exhibit instability. Numerators of the other 
terms ( ) , 3, 4, ,7iA p i =   are determined in half-symbolic form [17]. Coeffi-
cient of the lowest power term is normalized to 1. 

( ) 11 2 21 3
3 3.706 10 1.668 10A p p p p− −= + × + ×           (106) 

( ) 10 21 2
4

31 3 58 4

1 1.703 10 6.687 10

2.023 10 4.528 10

A p p p

p p

− −

− −

= + × + ×

+ × + ×
          (107) 

( ) 10 20 2 30 3
5

40 4 51 5 61 6

73 7 97 8

1 6.623 10 9.369 10 5.636 10

2.688 10 6.998 10 1.28 10

4.101 10 1.773 10

A p p p p

p p p
p p

− − −

− − −

− −

= + × + × + ×

+ × + × + ×

+ × − ×

   (108) 

( ) 10 20 2 31 3
6 1 1.352 10 6.078 10 2.369 10A p p p p− − −= + × + × + ×    (109) 

( ) 12 2
7 4.618 10A p p p−= + ×                  (110) 

It is obvious that in case of A7 there is no stability problem. In case of A3, A4, 
and A7, the coefficients and all Hurwitz determinants [34] are positive. Therefore, 
we have stability problem only in case of A5. The problem is solved by R5 that is 
connected between blocks 4 and 5. R5 modifies only term 5; therefore, no more 
stabilizing elements are necessary. To have all coefficients of A5 positive, 

5 0.674R ≤  kohm resistor is needed. Circuit schematics and characteristics are 
given in Figures 19-21. 

9. Conclusions 

Our problem was to determine places where stabilizing elements could be con-
nected in a linear multistage cascaded amplifier. We showed that the problem  

 

 
Figure 18. Blocks of the amplifier modified. 

 

 
Figure 19. Schematics of the two-stage amplifier after stabilization. 
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Figure 20. S21 as a function of frequency. 

 

 
Figure 21. The Rollett stability factor K and the determinant of 
the scattering matrix of the amplifier. 

 
leads to the product decomposition of the determinant of the admittance matrix 
of the amplifier. For this reason, we obtained identities for the determinants of 
tridiagonal matrices, and we applied them for our problem. We showed that 
Hurwitz test of the terms of the determinant provides a possibility for finding 
places for the stabilizing elements. We proved that the terms of the determinant 
are in close connection with the Stern stability factor. 

In practice, it is convenient to connect stabilizing elements with ports of 
blocks of the amplifier. For this reason, we solved our problem based on the ad-
mittance matrix description of the amplifier. Other formalisms, for example, 
impedance matrix, can also be used and that leads to stabilizing elements in se-
ries with the ports. 

Stability can also be provided using feedback. Using low-loss circuit elements 
for the feedback, maximum stable gain can be approached. In our method, re-
sulting stabilized gain is smaller than that, but in return, we have a conveniently 
applicable procedure, and the stabilizing elements can be inserted at the ready 
amplifier. 

The method is not directly applicable for stabilizing distributed circuits. For 
our method, lumped-element model is necessary. 

The product decomposition introduced is not unique. It depends on selecting 
the value of m in (98). We showed in examples that the method can be efficiently 
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applied in writing circuit-specific stability conditions, and that transfer admit-
tances of the blocks must not have right half plane poles. 
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