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Abstract 
This paper provides the exact solutions for the fully developed two layer 
pressure driven flows of incompressible Phan-Thien-Tanner fluids in a hori-
zontal cylindrical pipe. Exact equations are formulated and solved for impor-
tant kinematic properties, such as, velocity profiles, normal and shear 
stresses, total volume fluxes through a circular cross-section and average ve-
locities. Graphical results are provided and discussed for the different flow 
parameters. A comparison of Upper Convected Maxwell (UCM), Linear 
Phan-Thien-Tanner (LPTT) and Exponential Phan-Thien-Tanner (EPTT) 
shows that UCM is a low viscosity fluid as compared to LPTT, and EPTT and 
LPTT is lighter than EPTT. 
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1. Introduction 

The Navier-Stokes equations governing the motion of the viscous fluid are 
non-linear and their exact solutions are rare or non-existent. The nonlinearity in 
these equations is caused by the presence of convected term and in the case of 
non-Newtonian fluids, the use of constitutive equations. Because of the great va-
riety in physical structure of non-Newtonian fluids, it is not possible to describe 
their mechanical behavior by a single constitutive equation. For this reason, a 
great variety of constitutive equations have been proposed [1]. Among many 
equations, the constitutive equations proposed by Phan-Thien and Tanner [2] 
[3] have been the subject of increasingly extensive study in recent years. Oliveira 
and Pinho [4] studied the problem of fully developed channel and pipe flows of 
PTT fluids and obtained an analytical expression for velocity fields and stress 

How to cite this paper: Siddiqui, A.M., 
Walait, A., Allison, T. and Haroon, T. (2018) 
Exact Solution for Pressure Driven Flow of 
Two Immiscible Phan-Thien-Tanner Fluids 
in a Pipe. Open Journal of Fluid Dynamics, 
8, 378-391. 
https://doi.org/10.4236/ojfd.2018.84024 
 
Received: August 16, 2018 
Accepted: November 5, 2018 
Published: November 8, 2018 
 
Copyright © 2018 by authors and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

  
Open Access

http://www.scirp.org/journal/ojfd
https://doi.org/10.4236/ojfd.2018.84024
http://www.scirp.org
https://doi.org/10.4236/ojfd.2018.84024
http://creativecommons.org/licenses/by/4.0/


A. M. Siddiqui et al. 
 

 

DOI: 10.4236/ojfd.2018.84024 379 Open Journal of Fluid Dynamics 
 

components in both geometries. Some other studies regarding PTT have been 
carried out in [5] [6] [7]. Letelier and Siginer [8] studied the problem of fully 
developed pipe flow of a class of nonlinear viscoelastic fluids which include PTT 
and Johnson-Segalman models as special cases. Some other works using PTT 
fluid have been carried out by Siddiqui et al. in [9]. All these studies are based on 
the flow of a single PTT fluid. This paper however, deals with a two-layer con-
centric flow of two immiscible PTT fluids in a single pipe. 

Recently, the interest in stratified laminar flow of two or more immiscible fluids 
has grown considerably because of their wide use in technological processes. 
There has been some theoretical and experimental work on the stratified laminar 
flow of two immiscible fluids in a horizontal pipe. For instance, Packham and 
Shall [10] studied the stratified laminar flow of two immiscible fluids in a pipe, 
Brauner [11] analyzed the annular-core flow of two immiscible liquids, and Ka-
pur and Shulka [12] investigated the flow of n layers of immiscible fluids of dif-
ferent heights between two plates and had shown that for any number of fluids, 
ignoring their heights, a unique maximum velocity always exists. The reason for 
the interest in this configuration stems from the idea of possibly reducing the 
power required to pump oil in a pipeline by the addition of water. The combina-
tion of two melt streams (co-extrusion through a die) has become a very eco-
nomical method of producing materials with unique properties in polymer 
processing. All the above mentioned works on multi-layered flows of immiscible 
fluids have been carried out on Newtonian fluids. This paper deals with the in-
vestigation of flow of two layers of different immiscible PTT fluids. Since PTT 
fluids are viscoelastic in nature, the work for this model represents a variety of 
industrial applications very well. 

In this paper mathematics reveals a need for a system of four first-order linear 
ordinary differential equations associated with four inhomogeneous boundary 
conditions. We will solve this system of differential equations simultaneously, 
including the boundary conditions, in order to calculate the velocity profiles, to-
tal volume fluxes and the average velocities resulting from the flow UCM, LPTT 
and EPTT models. 

2. Governing Equations  

The basic equations governing the isothermal two-layer flow of immiscible in-
compressible fluids are the continuity and momentum equations. Mathemati-
cally, 

( ) 0; 1,2,kdiv k= =V                       (1) 

( )
( )

( ) ( ) ; 1, 2,
k

k k kD p k
Dt

ρ ρ= −∇ +∇ ⋅ + =
V T b             (2) 

where the superscript k denotes the two fluids, the number 1k =  represents the 
fluid in the core, while the fluid properties for the outer fluid along the wall are 

denoted by the superscript 2k = . ( )kV , ( )kρ , ( )kT  are the velocity, density 
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and extra stress tensor of the k fluid respectively. 
D
Dt

 is the material derivative 

defined as  

( ) ( ) ( )( ).D
Dt t

∂
= + ⋅∇

∂
V

 
  

The general form of the constitutive equation defining the PTT fluid is  

( )( )( ) ( ) ( )
( )

( ) ( )
1 ; 1, 2,

k
k k k k kf tr kλ η

∇
+ = =T T T A           (3) 

where ( )kη , ( )kλ  and ( )( )ktr T  are the viscosity, relaxation time and trace of 
stress tensor of the k fluid and Rivlin-Ericksen tensor ( )

1
kA  given by  

( ) ( ) ( )( )T

1 ; 1, 2,k k k k= ∇ + ∇ =A V V                (4) 

and upper convected derivative 
( )k∇

T  is defined as  
( ) ( )

( ) ( )( ) ( )( ) ( )T
; 1, 2.

kk
k k k kD k

Dt

∇  = − ∇ + ∇ = 
 

TT T V V T        (5) 

The three PTT models, commonly used are  
( )( ) ( )1, UCM Model ,kf tr =T                (6) 

( )( )
( ) ( )

( )( ) ( )( )1 , LPTT Model ,
k k

k k
kf tr trλ

η
= +T T        (7) 

( )( )
( ) ( )

( )
( )( ) ( )exp , EPTT Model ,

k k
k k

kf tr trλ
η

 
=   

 
T T      (8) 

where ( )k  is a parameter related to the elongation behavior of the model. In 
the absence of the parameters ( )k , the models (7) and (8) reduce to the well 
known Maxwell model (6).  

3. Problem Formulation  

We consider two-layer immiscible flow of incompressible PTT fluids in a 
horizontal cylindrical pipe of radius R2 as shown in Figure 1. The interface of 
the two fluids lies at a constant distance R1 from the axis of the pipe. To visualize 
the problem a cylindrical coordinate system is chosen, where the axis of the pipe 
will be denoted by z, while r will denote the radially outward measured distance 
from the z-axis. The flow is driven by the constant pressure gradient, assuming 
that the flow is steady, unidirectional and fully developed. 

The velocities and extra stresses can be taken of the form  
( ) ( ) ( ) ( ) ( ) ( )0,0, , ; 1, 2,k k k kw r r k = = = V T T            (9) 

where w is the axial velocity component. Using Equation (9) in Equations (3)-(5), 
non-zero stress components become  

( )( ) ( ) ( )
( )d ; 1,2,

d

k
k k k

rz
wf tr T k

r
η= =T               (10) 
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Figure 1. Geometry of the problem. 

 

( )( ) ( ) ( ) ( )
( )d2 ; 1,2.

d

k
k k k k

rr rz
wf tr T T k

r
λ= =T            (11) 

Solving Equation (10) and Equation (11) simultaneously, we obtain  

( )
( ) ( )

( )

22 ; 1,2.
k k

k rz
rr k

TT kλ
η

= =                   (12) 

Trace of stress tensor of kth PTT fluid is given by  

( )( ) ( ) ( ) ( )
( ) ( )

( )

22 ; 1,2.
k k

k k k k rz
rr zz k

Ttr T T T kθθ
λ
η

= + + = =T         (13) 

Using Equation (9) in Equation (1), the continuity equation is identically 
satisfied and the non-zero component of the momentum Equation (2) becomes  

( )( )1 ; 1,2,k
rzrT C k

r r
∂

= − =
∂

                 (14) 

where p C
z
∂ − = ∂ 

. The boundary conditions for the problem under consideration 

are given by  
( )1 0, at 0,rzT r= =                      (15) 

( ) ( )1 2
1, at ,rz rzT T r R= =                    (16) 

( ) ( )1 2
1, at ,w w r R= =                    (17) 

( )2
20, at .w r R= =                     (18) 

We note here that these conditions are four in number and are sufficient to 
find the solution to our problem which consists of four first order differential 
equations, two first order differential equations represented by Equation (14) and 
two differential equations obtained for velocity by simplifying either Equation (10) 
or Equation (11). Hence, our problem is consistent and we attempt to find exact 
solutions to the problem. 

4. Solution of The Problem 

Equation (14), upon integration with respect to r, yields  
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( ) ( )
2

, 1, 2
2

k k
rz

rrT C A k= − + =                (19) 

where ( )kA , 1,2k = , are constants of integration. Using the condition (15) in 
the equation (19) when 1k = , we find that ( )1 0A = , so that we obtain  

( )1
1; 0 .

2rz
rT C r R= − ≤ ≤                  (20) 

Similarly, Equation (19) with the help of boundary condition (16) gives 
( )2 0A =  which yields  

( )2
1 2; .

2rz
rT C R r R= − ≤ ≤                  (21) 

The expressions (20) and (21) clearly indicate that the shear stresses of both 
the fluids are the same and vary linearly with the distance from the axis of the 
pipe, which implies  

( ) ; 1, 2,
2

k
rz

rT C k= − =                    (22) 

for which we see that for fluid (1) and fluid (2) the regions are 10 r R≤ ≤  and 

1 2R r R≤ ≤ , respectively. 
This last result when used in Equation (12) for normal stresses leads to  

( )
( )

( )

2
2; 1, 2.

2

k
k

rr k

CT r kλ
η

= =                  (23) 

Thus the normal stresses for both the fluids are different, depending on their 
corresponding material constants. Moreover, these normal stresses increase with 
the square of the distance from the axis of the tube. For Newtonian fluids, 

( ) 0kλ =  and we find that the shear stresses remain unchanged while the normal 
stresses are zero. 

Trace of extra stress tensor is given by  

( )( )
( )

( )

2
2; 1, 2.

2

k
k

k

Ctr r kλ
η

= =T                (24) 

Velocity profile can be calculated by rewriting in simplified form equation (10) 
resulting in the equation  

( ) ( )( ) ( )

( )
d ; 1,2

d

k kk
rz

k

f tr Tw k
r η

= =
T

              (25) 

which is a system of first order non-homogeneous linear ordinary differential 
equations for two immiscible PTT fluids. 

4.1. Solution for the Upper Convected Maxwell Model   

By making use of expressions (6) and (22) in expression (25), we get  
( )

( )
d

, 1,2,
d 2

k
u

k

w C r k
r η

= − =                  (26) 

where subscript u stands for UCM model. By integrating Equation (26), we get 
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velocity profiles for fluid (1) and fluid (2), with two constants of integration and 
those constants are evaluated by using boundary conditions (18) and (17). 
Velocity profiles for both immiscible fluid are given by 

( )
( ) ( )

( )
( )

2 2 2 2
1 1 2 1

11 2

2 2
2 2

1 22

; 0 ,
4 4

; .
4

u

u

R r R Rw C r R

R rw C R r R

η η

η

 − −
= + ≤ ≤  

 
 −

= ≤ ≤  
 

           (27) 

Flow rates through a circular cross section of a pipe bounded in the region 

10 r R≤ ≤  and 1 2R r R≤ ≤  are given by  

( ) ( ) ( ) ( ) ( ) ( )
1 2

1

1 1 2 2

0

2π d , 2π d .
R R

u u u u
R

Q w r r r Q w r r r= =∫ ∫           (28) 

We use the expression for velocity profiles (27) in formulas (28) and obtain  

( )
( ) ( )

2 2 2
1 2 2 1 1

1 2 1π ,
4 8u

R R RQ R C
η η

 −
= +  

 
                 (29) 

( )
( )

4 4 2 2
2 2 1 1 2

2

2π .
8u

R R R RQ C
η

 + −
=   

 
                 (30) 

Net volume flux through the circular pipe of radius 2R  is given by  

( ) ( )

4 4 4
2 1 1

2 1

π .
8u

R R RCQ
η η

 −
= +  

 
                   (31) 

Average velocity is given by  

2
2

.
π

u
u

Qv
R

=                           (32) 

Substituting expression (31), average velocity becomes  

( ) ( )

4 4 4
2 1 1

2 2 1
2

,
8u

R R RCv
R η η

 −
= +  

 
                   (33) 

Above results are same as for the case of two immiscible Newtonian fluids 
with viscosities ( )1η  and ( )2η . 

4.2. Solution for the Linear Phan-Thien-Tanner (LPTT) Model 

By using trace of extra stress tensor (24) in linear model (7) and then using that 
model and shear stresses (22), in differential Equation (25), we get  

( )

( )

( ) ( )

( )

3 2
3

3

d
, 1, 2,

d 2 4

k k k
l

k k

w C Cr r k
r

λ
η η

= − − =
             (34) 

where subscript l stands for LPTT fluid model. Integrating with respect to r we 
get  

( )
( )

( ) ( )

( )

3 2
2 4

3
, 1, 2,

4 16

k k
k

l kk k

C Cw r r B kλ
η η

= − − + =
          (35) 
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where , 1, 2kB k =  are the constants of integration. For 2k = , the Equation (34) 
with the boundary condition (18), yields  

( )
( ) ( )

( ) ( )

( ) ( )
2 23 2

2 2 2 4 4
2 2 1 22 2 3

; .
4 16l

C Cw R r R r R r Rλ
η η

= − + − ≤ ≤
     (36) 

with the help of the expression (36) for ( )2
lw  and the boundary condition (17) 

the Equation (35) for 1k = , gives  

( ) ( )
( )

( )
( )

( ) ( )

( ) ( )
( ) ( )

( ) ( )

2 2 2 2
1 2 11

1 2

1 1 2 23 2 2
4 4 4 4
1 2 1 11 23 3

4

; 0 .
16

l

R r R RCw

C R r R R r R

η η

λ λ
η η

 − −
 = +
  

 
+ − + − ≤ ≤ 

  

 
   (37) 

Flow rates for both the fluids are obtained by using Equation (36) and Equation 
(37) in Equation (28) as  

( )
( ) ( )

( ) ( )

( )( )
( )

( ) ( )

( )( )
2 2 2 12 2 2 3 2 2 2

1 2 4 4 42 1 1 1
1 2 1 13 32 1 2 1

ππ ,
84 8 2 3

l
R R R C RQ CR R R Rλ λ
η η η η

 
 −   = + + − +   
    

 

  (38) 

( )
( ) ( )

( ) { }
2 24 4 2 2 3 2

2 6 6 4 21 2 2 1
2 1 2 12 2 3

2 ππ 2 3 .
8 48l

R R R R CQ C R R R Rλ
η η

 + −
= + + − 

 

     (39) 

The total volume flux lQ  through the circular cross section of the pipe of 
radius 2R  for two immiscible LPTT fluids is obtained as  

( ) ( )

( ) ( )

( ) ( )( )
( )( )

( )
( ) ( )( )

( )( )

1 2

2 22 2 1 14 4 4
2 6 6 62 1 1

2 1 13 32 1 2 1

π ,
8 3 3

l l lQ Q Q

R R RC C R R R
λ λ

η η η η

= +

  
−  = + + − +  

    

   (40) 

and  

( ) ( )

( ) ( )( )
( )( )

( )
( ) ( )( )

( )( )

2 22 2 1 14 4 4
2 6 6 62 1 1

2 1 12 2 3 32 1 2 12 2

,
π 8 3 3

l
l

Q R R RCv C R R R
R R

λ λ

η η η η

  
−  = = + + − +  

    

 
(41) 

is the average velocity of two immiscible LPTT fluids. 

4.3. Solution for Exponential Phan-Thien-Tanner (EPTT) Model   

Constitutive equation for EPTT fluid model (8) is  

( )( )
( ) ( )

( )
( )exp , 1,2,

k k
k k

kf tr tr kλ
η

 
= =  

 
T T              (42) 

with the help of expression (24), we get  

( )( )
( ) ( )

( )

2 2
2

2
exp , 1,2.

2

k k
k

k

Cf tr r kλ
η

 
= =  

 
T              (43) 

Let  
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( )
( ) ( )

( )

2

2
1, 2,

2

k k
k

kM kλ
η

= =
                     (44) 

then  
( )( ) ( )( )2 2exp , 1,2.k kf trT C M r k= =                (45) 

Substituting function (42) and shear stresses (22) in differential Equation (25), 
we get  

( )
( )( ) ( )

2 2d
exp , 1,2,

d 2

k
ke

k

w CrC M r k
r η

= − =              (46) 

where subscript e is used for EPTT fluid model. Integration with respect to r 
gives  

( )
( ) ( )

( )( ) ( )2 21 exp , 1,2,
4

k k k
e k kw C M r E k

CM η
= − + =         (47) 

where ( ) , 1, 2kE k =  are the constants of integration, and can be evaluated by 
using boundary conditions (18) and (17) for 1,2k = . Both the velocity profiles 
become  

( ) ( )( ) ( )( )

( ) ( )
( )( ) ( )( )

1 1 12 2 2 2
1(1) (1)

2 22 2 2 2
2 1 12 2

1 exp exp
4

1 exp exp ; 0
4

ew C M R C M r
CM

C M R C M R r R
CM

η

η

 = − 

 + − ≤ ≤ 

 (48) 

( )
( ) ( )

( )( ) ( )( )2 2 22 2 2 2
2 1 22 2

1 exp exp ; .
4ew C M R C M r R r R
CM η

 = − ≤ ≤   (49) 

Flow rates of both the immiscible fluids are obtained as  

( )
( ) ( )

( )( ) ( )
( )( ){ }

( ) ( )
( )( ) ( )( )

1 1 12 2 2 2 2
1 1 11 1 12

2
2 22 2 2 21

2 12 2

π 1exp exp 1
4

π exp exp ,
4

eQ R C M R C M R
CM C M

R C M R C M R
CM

η

η

 = − −  

 + − 

 (50) 

( )
( ) ( ) ( )

( )( ) ( )( ){ }
( ) ( )( )

2 2 22 2 2 2
2 12 2 22

22 2 2 2
2 1 2

π 1 exp exp
4

exp .

eQ C M R C M R
CM C M

R R C M R

η
= − −

+ − 

  (51) 

Total volume flux is given by  

( ) ( ) ( ) ( )
( )( )

( ) ( ) ( )
( )( )

( )
( )( )

12 2 2
1 11 1 1 12 2

22 2 2
2 22 2 22

22 2 2
1 122

π 1 1 1 exp
4

1 1 exp

1 exp .

eQ R C M R
C M C M C M

R C M R
M C M

R C M R
C M

η

η

   = + −   
  

 + − 
 

 − −  
  

   (52) 

Average velocity v  is given by  
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( ) ( ) ( ) ( )
( )( )

( ) ( ) ( )
( )( )

( )
( )( )

12 2 2
1 12 1 1 1 12 2

2

22 2 2
2 22 2 22

22 2 2
1 122

1 1 1 1 exp
4

1 1 exp

1 exp ,

v R C M R
CR M C M C M

R C M R
M C M

R C M R
C M

η

η

   = + −   
  

 + − 
 

 − −  
  

  (53) 

for two immiscible EPTT fluids. 

5. Special Cases 

Case #1 If 1 0R = , 2R R= , ( )kη η= , ( )kη η= , ( )kλ λ=  and ( )kM M=  for 
1, 2k = , then the pressure driven two fluids reduce to a single fluid and flow 

becomes Poiseuile flow for PTT fluids, that is,  

( )2 2

; 0 .
4u

R r
w C r R

η

−
= ≤ ≤                   (54) 

( ) ( )
2 2

2 2 21 ; 0 .
4 2l

R r Mw C C R r r R
η

−  = + + ≤ ≤  
          (55) 

( ) ( )2 2 2 21 exp exp ; 0 .
4ew MC R MC r r R
CMη

 = − ≤ ≤         (56) 

where R represents the radius of the cylinder, η  is the viscosity of the fluid,   

the parameter of elongation, λ  the relaxation time, and 
2

22
M λ

η
=
 . 

Here, ,u lw w  and ew  given by Equations (54)-(56), are the velocity profiles 
for pressure driven flows of UC (same as Newtonian), LPTT and EPTT fluid 
models, respectively.  

Case #2 If 2 1R R→  then we obtain solutions for one layer UC, LPTT, and 
EPTT fluid models, same as given by Case # 1.  

Case #3 If ( )1 0λ =  then two immiscible fluids will reduce to the cases of 
Newtonian-Newtonian, Newtonian-LPTT, Newtonian-EPTT immiscible fluid 
models. 

Case #4 If ( )2 0λ =  then we will obtain the cases for Newtonian-Newtownian, 
LPTT-Newtonian, EPTT-Newtonian models, respectively. 

Case #5 If ( )1 0=  then all of the three cases will reduce to Maxwell-UC, 
Maxwell-LPTT, Maxwell-EPTT fluid models, respectively. 

Case #6 If ( )2 0=  then the three cases will reduce to UC-Maxwell, 
LPTT-Maxwell, EPTT-Maxwell fluid models, respectively. 

6. Non-Dimensionalization  

Introducing non-dimensional parameters 

( )
( )

* * *1

2 2 2

, , , ,
k

kRr z wr z w
R R R V

δ= = = =
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( )
( )

( )
* *

2
2

, , , 1, 2,
k

k k
k k

k

VR CC k
R V V R

ρλλ
ρη

= ℜ = = =        (57) 

with the assumption ( ) ( )1 2ρ ρ ρ= = , Equation (27) take the form  

( ) ( ) ( )
( ) ( )

*
1 * 2 *2 21

2

*
2 * *2

2

1 ; 0 ,
4

1 ; 1.
4

u

u

Cw r r

Cw r r

δ δ δ
δ

δ

ℜ = − +ℜ − ≤ ≤  

= ℜ − ≤ ≤

        (58) 

Equation (37) and Equation (36) are transformed as  

( ) ( ) ( )

( ) ( ) ( ) ( )

*
1 * 2 *2 21

2

3*3
1 2* 4 *4 3 * 41

2

1
4

1 ; 0 ,
16

l
Cw r

C M r M r

δ δ
δ

δ δ δ
δ

ℜ = − +ℜ −  
 ℜ

+ − +ℜ − ≤ ≤ 
 

    (59) 

( ) ( ) ( ) ( )
* *2

2 2* *2 2 * *2
2 21 1 1 ; 1.

4 4l
C Cw r M r rδ

 
= ℜ − + ℜ + ≤ ≤ 

 
      (60) 

Velocity components for EPTT fluid model becomes  

( )
( )

( ) ( )

( )
( ) ( )

2 2 2
1 1 1* *2 * *2 * *21 1

1* *
1

2 2 2
2 2*2 * *2 * *2 2

2* *
2

1 1 exp exp
2 22

1 1 exp exp ; 0 ,
2 22

ew C M C M r
C M

C M C M r
C M

δ
δ

δ
δ

    ℜ ℜ
= −    

ℜ      
    ℜ ℜ

+ − ≤ ≤    
ℜ      

(61) 

( )
( )

( ) ( )
2 2

2 2 2* *2 * *2 * *2 *2 2
2* *

2

1 1 exp exp ; 1,
2 22ew C M C M r r

C M
δ

    ℜ ℜ
= − ≤ ≤    ℜ      

(62) 

where ( )
( )

( )
*

2 2 2

k
k

k
k

MM
R Vη

= . 

7. Graphical Results and Discussion   

In this paper, the exact solution of the two layer non-Newtonian fluid through a 
horizontally placed cylindrical pipe is obtained and derived mathematical results 
are discussed and graphed. 

In this section, graphs demonstrating the behavior of the various parameters 
in conjunction with the velocity profile are presented. 

Figure 2 is showing the effect of viscosity (i.e., Reynolds number , 1, 2i iℜ = ) 
on velocity profile for UCM fluid model. It can be noted from Figure 2(a) that 
the viscosity of the outer layer effects the whole region, but the viscosity of 
inner fluid layer (Figure 2(b)) only effect its own region, which is true for all 
three types of fluid models. It is also observed that as the viscosity of the fluid 
increases, the fluid becomes thick and its velocity decreases, as expected 
physically. 

Figure 3 is showing the effect of pressure gradient on velocity profile for 
UCM fluid model. With the increase in pressure velocity is increased but the 
thickening effect can be noticed easily. 
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Figure 2. The effect of (a) ( )2ℜ  keeping ( )1 25ℜ =  and (b) ( )1ℜ  keeping ( )2 25ℜ =  
on velocity profile of UCM fluid model when 2, 0.5C δ= = . 
 

 

Figure 3. The effect of pressure gradient C keeping (a) ( )1 25ℜ =  and ( )2 5ℜ =  (b) 
( )1 5ℜ =  and ( )2 25ℜ =  on velocity profile of UCM fluid model when 0.5δ = . 

 
Figure 4 and Figure 5 are showing the effect of viscosity on velocity profile 

for LPTT fluid model. In Figure 4 an increase in velocity profile can be observed 
with the increase in relaxation parameter. 

Figure 5 shows an elongation effect, ( )2  on velocity profile. When the effect 
of ( )2  and ( )2λ  are combined, a huge effect can be noticed. 

In Figure 6 and Figure 7 the effect of viscosity on velocity profile for EPTT 
fluid model can be observed. Figure 6 depicts how relaxation parameter is 
affecting the velocity profile. With increase in relaxation parameter, velocity is 
increased. From Figure 7, it can be observed that elongation alone has very little 
influence on the velocity profile, but when it is combined with the relaxation 
parameter, velocity of EPTT fluid has increased significantly. 

Observing Figure 2(a), Figure 4(a) and Figure 6(a), we find that for small 
values of elongation and relaxation parameters, all three PTT fluids have almost 
the same behavior, but with increasing these two parameters LPTT and EPTT  
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Figure 4. The effect of ( )2ℜ  keeping (a) ( )2 0.1λ =  (b) ( )2 0.5λ = , on velocity profile of 
LPTT fluid model when ( )1 25ℜ = , ( )1 0.1= , ( )2 0.1= , ( )1 0.1λ = , 2C = , 0.5δ = . 
 

 

Figure 5. The effect of ( )2ℜ  on velocity profile of LPTT fluid model keeping (a) 
( )2 0.1λ =  and ( )2 0.5=  (b) ( )2 0.5λ =  and ( )2 0.5=  when ( )1 25ℜ = , ( )1 0.1= , 
( )1 0.1λ = , 2C = , 0.5δ = . 

 

 

Figure 6. The effect of ( )2ℜ  keeping (a) ( )2 0.1λ =  (b) ( )2 0.15λ =  on velocity profile of 
EPTT fluid model when ( )1 25ℜ = , ( )1 0.1λ = , ( )1 0.1= , ( )2 0.1= , 2C = , 0.5δ = . 
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Figure 7. The effect of ( )2ℜ  keeping (a) ( )2 0.1λ = , ( )2 0.15=  (b) ( )2 0.15λ = , 
( )2 0.15=  on velocity profile of EPTT fluid model when ( )1 25ℜ = , ( )1 0.1λ = , 
( )1 0.1= , 2C = , 0.5δ = . 

 
fluid model are showing thinning effect (Figure 4(b) and Figure 6(b)). EPTT 
fluid becomes thinner than LPTT fluid for the same values of λ  and  . 

8. Conclusions   

To summarize the results of our analysis of the pressure driven flow of two 
immiscible non-Newtonian fluids in a pipe by focusing our attention on three 
fluid models known as UCM, LPTT and EPTT, we present visual evidence 
reflecting the behavior of the various parameters in conjunction with the 
velocity profile. 
• For all the three fluid models, the viscosity of fluid k = (1), in the region 

0 r δ≤ <  does not effect the flow of the fluid k = (2), in the region 1rδ < ≤ . 
Thus, the flow parameters of fluid (2) are independent of the viscosity of 
fluid (1).  

• Viscosity of fluid (1) is affected by the flow parameters (velocities and flow 
rates) of fluid (1) and fluid (2).  

• Increase in pressure gradient, elongation and relaxation time parameters 
enhance the speed of flow, showing the thinning effect.  

• For fixed value of parameters we compare the velocities as follows  

u l ew w w> >  

where uw , lw  and ew  are the velocities of the UCM, LPTT and EPTT fluid 
models, respectively.  
• We recover the Newtonian case from LPTT and EPTT fluid models as 

0λ → .  
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