
Modern Mechanical Engineering, 2011, 1, 69-76 
doi:10.4236/mme.2011.12009 Published Online November 2011 (http://www.SciRP.org/journal/mme) 

Copyright © 2011 SciRes.                                                                                 MME 

Application of Linear Model Predictive Control and  
Input-Output Linearization to Constrained  

Control of 3D Cable Robots 

Ali Ghasemi 
Member of Young Researchers Club, Science and Research Branch, Islamic Azad University, Tehran, Iran 

E-mail: ali.ghasemi.g@gmail.com 
Received September 3, 2011; revised October 13, 2011; accepted October 25, 2011 

Abstract 
 
Cable robots are structurally the same as parallel robots but with the basic difference that cables can only 
pull the platform and cannot push it. This feature makes control of cable robots a lot more challenging com- 
pared to parallel robots. This paper introduces a controller for cable robots under force constraint. The con- 
troller is based on input-output linearization and linear model predictive control. Performance of input-output 
linearizing (IOL) controllers suffers due to constraints on input and output variables. This problem is suc- 
cessfully tackled by augmenting IOL controllers with linear model predictive controller (LMPC). The effect- 
tiveness of the proposed method is illustrated by numerical simulation. 
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1. Introduction 
 
After a motion simulator with parallel kinematic chains 
was introduced in 1965 by D. Stewart [1], parallel mani- 
pulators received more and more attention because of their 
high stiffness, high speed, high accuracy, compact and high 
carrying capability [2]. They have been used widely in the 
fields of motion simulators, force/torque sensors, com- 
pliance devices, medical devices and machine tools [3,4]. 

A parallel robot is made up of an end-effector, with n 
degrees of freedom, and a fixed base linked together by 
at least two independent kinematic chains [5]. Actuation 
takes place through m simple actuators. Parallel robots 
drawbacks are their relatively small workspace and kine- 
matics complexity. 

Cable robots are a class of parallel robots in which the 
links are replaced by cables. They are relatively simple 
in form, with multiple cables attached to a mobile plat- 
form or an end-effector. Cable robots posses a number of 
desirable characteristics, including: 1) stationary heavy 
components and few moving parts, resulting in low iner- 
tial properties and high payload-to-weight ratios; 2) in- 
comparable motion range, much higher than that obtained 
by conventional serial or parallel robots; 3) cables have 
negligible inertia and are suitable for high acceleration 
applications; 4) transportability and ease of disassembly/- 
reassembly; 5) reconfigurability by simply relocating the  

motors and updating the control system accordingly; and, 
6) economical construction and maintenance due to few 
moving parts and relatively simple components [6,7]. Con- 
sequently, cable robots are exceptionally well suited for 
many applications such as handling of heavy materials, 
inspection and repair in shipyards and airplane hangars, 
high-speed manipulation, rapidly deployable rescue robots, 
cleanup of disaster areas, and access to remote locations 
and interaction with hazardous environments [6-12]. For 
these applications conventional serial or parallel robots 
are impractical due to their limited workspace. 

However, cables have the unique property—they can- 
not provide compression force on an end-effector. Some 
research has been previously conducted to guarantee po- 
sitive tension in the cables while the end-effector is moving. 
The idea of redundancy was utilized in cable system con- 
trol [13,14]. 

This paper introduces a controller for cable robots un-
der force constraint. By considering, linear model predic- 
tive covers different constraint such as input constraints. 
The goal is to apply the linear model predictive control 
to the input-output linearized system to account for the 
constraints. 

A variety of nonlinear control design strategy has been 
proposed in the past two decades. Input-output lineariza- 
tion (IOL) and nonlinear model based control are the most 
widely studied design techniques in nonlinear control. The 
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central idea of the input–output linearization approach is 
to algebraically transform the nonlinear system into lin- 
ear one and apply a suitable linear control design techni- 
que [15,16]. 

LMPC is primarily developed for process control. There- 
fore its application in robot control has less been reported. 
The incipient interest in the applications of MPC dates 
back to the late 1970s. In 1978, Richalet et al. [17], pre- 
sented the Model Predictive Heuristic Control (MPHC) 
method in which an impulse response model was used to 
predict the effect at the output of the future control ac- 
tions. Linear model predictive control refers to a class of 
control algorithms that compute a manipulated variable pro- 
file by utilizing a linear process model to optimize a lin- 
ear or quadratic open-loop performance objective subject 
to linear constraints over a future time horizon. The first 
move of this open loop optimal manipulated variable pro- 
file is then implemented. This procedure is repeated at 
each control interval with the process measurements used 
to update the optimization problem. During 1980s, MPC 
quickly became popular particularly in chemical process 
industry due to the simplicity of the algorithm and to the 
use of the impulse or step response model, which is pre- 
ferred, as being more intuitive and requiring no previous 
information for its identification [18]. 

A cable-suspended robot is actuated by servo motors 
that control the tensions in the cables. A major disadvan- 
tage of cable robots is that each cable can only exert ten- 
sion. This constraint leads to performance deterioration 
and even instability, if not properly accounted for in the 
control design procedure. Due to this feature, well known 
results in robotics for trajectory planning and control are 
not directly applicable to them. Several approaches in- 
cluding a lyapunov based controller with variable gains 
and a feedback linearizing controller with variable gains 
[19], feedback linearization together with method of ref- 
erence signal management [20], lyapunov based sliding 
controller with method of signal management [21] have 
been suggested to satisfy the positive tension in the ca- 
bles while the platform is moving. 

In this paper a linear model predictive control is ap- 
plied to linearized model. Model predictive control, a com- 
puter control algorithm that utilizes an explicit model to 
predict the future response of a system is an effective tool 
for handling constrained control problems. 
 
2. Kinematics Modeling of the Cable Robots 
 
The kinematic notation of a spatial cable-driven manipu- 
lator is presented in Figure 1, where Pi and Bi are two 
attaching points of the ith cable to the platform and the 
base, respectively. ai represents the position vector of Bi 
in the base frame and bi shows the position vector of the 

cable connection in the platform frame. Therefore, Ti = 
ai –R bi –c is the vector representing the length of each 
cable and li is the direction of tension force along each 
cable, where c is the position vector of mass center of 
platform parameterized. R is the rotation matrix between 
the two frames, the base and the moving, Figure 1. 
 
3. System Dynamics 
 
The inertia of each link of cable robots is negligible com- 
pared to that of the platform because the so-called link is 
just a cable or wire. Therefore, the dynamics of the links 
can be ignored which will significantly simplify the dy- 
namic model of the manipulator. One can derive the New- 
ton-Euler equations of motion of the manipulator with res- 
pect to the center of mass on the platform as follows [10] 
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where m and I are the mass and inertia tensor of the 
platform including any attached payload; g is the gravity 
acceleration vector; and fext and τext are external force and 
moment vectors applied to the platform.  and α are the 
linear and angular acceleration vectors of the platform; Ti 
and fi are the force vector and force value of the ith cable. 
Equation (1) can be rewritten into a compact form as: 
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Figure 1. General kinematics of a cable robot. 
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Equation (2) can be written into a steady state form as: 
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where LF h  (X) and Lgj h  (X) are the Lie derivatives of 

In this way, we can write all plant’s input-output equa- 
tio

max0 u u   

 
4. Input-Output Linearization 
 
T
duced if we can find a direct and simple relation between 
the system output y and the control input u. Indeed, this 
idea constitutes the intuitive basis for the so-called input 
-output linearization approach to nonlinear control design. 

This article is aimed to use the LMPC which covers 
fferent constraints such as input constraints. Because of 

LMPC is usually used for linear discrete systems. In the 
beginning we will linearize the dynamics equations based 
on in Input-Output Linearization. 
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where q and ri are the number of degree of freedom of 
the robot and the relative order of the plant, respectively. 

Equation (4) can be represented in the following com- 
pact form: 
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. Linear Model Predictive Control 

hown in Fi- 

5
 

he basic structure of MPC to implement is sT
gure 2 A model is used to predict the future plant outputs, 
based on past and current values and on proposed future 
control actions. These actions are calculated by optimizer 
taking into account the cost function as well as con- 
straints. The optimizer is another fundamental part of the 
strategy as it provides the control action. each component 
of this structure is described in more detail In the fol- 
lowing of this article. 
 

 

Figure 2. Basic structure of MPC. 
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The goal tive control 
to

is to apply the linear model predic
 the input-output linearized system to account for the 

constraints. Since the linear model predictive is more na- 
turally formulated in discrete time, the linear subsystem 
in (5) is discretized with a sampling period T to yield 
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d d
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where Ad ,Bd and Hd are obtained directly from the con- 

t relation between u(k) and 
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This mapping can be rewritten in the following rm 

 
.1. Constraint Mapping 

hen linear model predictive control is applied to the 

tinuous-time matrices [22]. 
Also, the state-dependen
k) is obtained as 

  rv k L h      r
F G FX k L L h X k u k        

 fo

       v k P X k W X k u k         

5
 
W
system, it is necessary to map the constraints from the 
original input space to linearized system. By considering 
v is a new input to be determined, To obtain constraints 
on the new input, The input constraint mapping is perfor- 
med using input–output linearization law and the current 
state measurement x(k). The transformed constraints can 
be determined on each sampling period by solving the 
following optimization problem: 
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where Z (k + j|k) is the predicted value of the system s

pr

minv k j k P X k j  

tate 
(Z) at time k + j based on the information available at time k. 

Note that the variable X (k + j|k) cannot be calculated 
ovided that the input sequence is calculated, which is 

not possible until the constraints are specified. Therefore, 
at the beginning (k = 0), the input constraint over the entire 
control horizon can be presented by: 
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Then, we use inputs calculated at last sampling time to 
de
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termine future constraints at the current sampling time. 

Therefore, Equation (7) will be changed into Equation (9). 
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(9) 
Now Equation (9) can be solved to obtain vmin(k+

an

.2. Linear Model Predictive Control Design 

he goal is to apply LMPC to the linearized system to 

j|k) 
d vmax(k + j|k). If W(i,j) is positive, the control u(j) must 

be the smallest value for vmin and the largest value for 
vmax and if W(i,j) is negative, then it must be the largest 
value for vmin and the smallest value for vmax. 
 
5
 
T
account for these constraints. Now the model (6) is used 
in the infinite horizon linear model predictive strategy pro-
posed by Muske and Rawlings [23]. Therefore, the open- 
loop optimal control problem that the input control found 
by minimizing the infinite horizon criterion, can be ex- 
pressed as 

   

     
    
    

d d d d
( | ) 1

d d

min ( ) ( )

1

1

T T

V k k j

T

T

k j k H QH k j k

v k j k v S v k j k v

v k j k v k j k

R v k j k v k j k

   


   

    

    

    



(10) 

where ξd and vd are target values for ξ and v, respectively, 

o mi- 
ni

sion vector is defined as V(k|k) = [v(k|k) 
v(



and Q,S, and R, are positive semi definite matrices. 
In order to obtain value v(k + j|k) it is necessary t
mize the functional of Equation (10) to do this value of 

the predicted output are calculated as function of pas va- 
lues of inputs and outputs and future control signals ob- 
tain an expression whose minimization leads to the looked 
for values. 

The deci
k+1|k) v(k+N-1|k)]T, where N is the control horizon. 

All future moves beyond the control horizon are set 
equal to the target value vd. As discussed in [23], the ma- 
trix Ad is unstable and in order for the linear model pre- 
dictive problem to have a feasible solution it is necessary 
to impose the equality constraint ξ(k + N|k) = ξd . To ob- 
tain a finite set of decision variables, inputs beyond the 
control horizon are set equal to the desired value: v(k + 
j|k) = vd, j ≥ N. Therefore, the infinite horizon linear 
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model predictive problem Equation (10) can be written 
as a finite horizon problem. 
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This optimization problem must be solved subjected to 
th

  

The solution of Equation (13) belongs to the regular 
system. To find the solutions of the tracking one, that of 
the regular system should be shifted into the origin of the 
system to the steady state described by ξd, and vd. The 
desired values must lie within the feasible region defined 
by input constraints for linear model predictive control 
and minimize the control effort (Equation (15)). 
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U and Qs are desired value of the input and a positive 
definite matrix, respectively. Therefore control law is the 
summation of the answers of Equation (13) and Equation 
(15) which can be shown in the following form. 

1

0

0
,

0

T
d N d

T
d d

S
B K A

FF

B K A


                 




GG  

         
       

(

(d d d

u k W X k k v k k P X k k

W X k k v k k P X k k





 

 
  (16) 
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6. Simulation 
 
In this section, simulation results of applying model pre- 
dictive control on a 3D cable robot will be presented. 
Table 1. shows the dimensions of the cable robot. We 
consider a definite movement of the platform from X0 = 

2,.001,–0.001]T to X = [0.2sin(t), 0.4 
03t3,0,0,0]T, on a desired trajectory 

of Equaqion (10), R = I, Q = I, S = 0.01I, and Qs of 
Equation (15), Qs = I. 

Since the controller needs platform’s position/orient- 
tation, at first, we must solve forward kinematics of the 
robot. This has been carried out by the authors using neu- 
ral network algorithm [24]. 

 quite well and a trajectory 
tra

s of t

Po

[–0.1,–0.1,1.5,0.00
in(t), 1 + 0.2t2 – 0.s

shown in dotted lines by Figures 4(a) to 4(f), for posi- 
tion/orientation of the platform. 

Also, we consider the parameters of the model predict- 
tive controller as: the control horizon N = 25, S, Q, and R  
 

Table 1. Dimension

Position vector X(m) Y(m) Z(m) 

Figure 4 shows the model predictive controller with 
input-out linearizing worked

cking are done. Figure 5 shows the six tensions in the 
cables vs. time. As it can be seen, all of them remain po- 
sitive during the motion. 

he cable robot. 

sition vector x(m) y(m) z(m) 

a1 1.1547 –2 3 b1 –0.2887 –0.5 0 

a2 1.1547 –2 3 

a  1.1547 2 3 

b2 0.5774 0 0 

3 b3 0.5774 0 0 

a4 1.1547 87 0.5 0 

a  –2.309 0 3 b  –0.2887 0.5 0 

–

2 3 b4 –0.28

5

a6 

5

b6 –2.309 0 3 0.2887 -0.5 0 

 

 
(a)                                              (b) 

 
(c)                                              (d) 

 
(e)                                              (f) 

Figure 4. Plots of desired and actual position and orientation of the platform, (a)-(c) position in X-Y-Z directions, respectively, 
(d)-(f) orientation around X-Y-Z direction, respectively. 
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(a)                                           (b) 

 
(c)                                           (d) 

 
(e)                                           (f) 

 

 
7. Conclusions 
 
In this paper, a linear model predictive controller toge- 
ther with an input-output linearizing control strategy for 
a constrained robotic system, a 3D cable robot, was de-
veloped and evaluated. The control system is comprised 
of: 1) an input-output linearizing controller that accounts for 
cable robot nonlinearities; 2) a constraint mapping sche- 

e that transforms the actual input 
onstraints on the feedback linearized sy
near model predictive controller that provides explicit 

nput constraints. The simulation re-
ectiveness of the proposed method. It 

Figure 5. Plots of tension trajectories. 

m
c

constraints into input 
stem; and 3) a 

li
compensation for i
ults showed the effs

is worth nothing that this approach can be extended for 
the redundant cable robots. 
 
8. References 
 
[1] D. Stewart, “A Platform with Six Degrees of Freedom,” 

Proceedings of the Institution of Mechanical Engineer, Vol. 
180, No. 15, 1965, pp. 371-386. 
doi:10.1243/PIME_PROC_1965_180_029_02 

[2] J. -P. Merlet, “Parallel Robots, Solid Mechanics and Its 

2006, pp. 890-902. 

[7] A. T. Riechel and I. Ebert-Uphoff, “Force-Feasible Work- 
space Analysis for Underconstrained Pointmass Cable 
Robots,” Proceedings of I

Applications,” Kluwer, Norwell, 2001. 

[3] J. -P. Merlet, “Still a Long Way to Go on the Road for 
Parallel Mechanisms,” A Keynote Speech at Design En-
gineering Technical Conferences, Montreal, 29 Septem-
ber-2 October 2002. 

[4] J. -P. Merlet, “Parallel Robots, Open Problems,” INRIA 
Sophia-Antipolis, France. http://www.-sop.inria.fr 

[5] L. -W. Tsai, “Robot Analysis, The Mechanics of Serial and 
rs,” Wiley, New York, 1999. 

A. T. Riechel and I. Ebert-Uphoff, “Wrench- 
rkspace Generation for Cabledriven Robots,” 

Journal of Intelligent and Robotic Systems, Vol. 22, No. 4, 

EEE International Conference on 
Robotics and Automation, New Orleans, 26 April-1 May 

4962. 

  W. Choe, S. Tanaka and S. R. Pandian, 

[9] P. Lafourcade, M. Llibre and C. Reboulet, “Design of a Par-

Parallel Manipulato

[6] P. Bosscher, 
Feasible Wo

2004, pp. 4956-

] S. Kawamura,[8
“Development of an Ultrahigh Speed FALCON Using 
Wire Drive System,” In Proceedings of the 1995 IEEE 
International Conference on Robotics and Automation, 
21-27 May 2003, pp. 215-220. 

Copyright © 2011 SciRes.                                                                                 MME 



A. GHASEMI 76 

mental Issues and

plication of HIL Microgravity Con-

allel Wire-Driven Manipulator for Wind Tunnels,” In 
Proceedings of the Workshop on Funda  
Future Research Directions for Parallel Mechanisms and 
Manipulators, Quebec, 3-4 October 2002, pp. 187-194. 

[10] X. Diao, O. Ma and R. Paz, “Study of 6-DOF Cable Ro-
bots for Potential Ap
tact-Dynamics Simulation,” In Proceedings of the AIAA 
Modeling and Simulation Technologies Conference and 
Exhibit, Keystone, 21-24 August 2006, pp. 1097-1110. 

[11] P. Gallina, G. Rosati and A. Rossi, “3-D.O.F. Wire Driven 
Planar Haptic Interface,” Journal of Intelligent and Ro-
botic Systems,Vol. 32, No. 1, 2001, pp. 23-36. 
doi:10.1023/A:1012095609866 

[12] J. Albus, R. Bostelman and N. Dagalakis, “The NIST 
Robocrane,” Journal of Robotic Systems, Vol. 10, No. 5, 
1993, pp. 709-724. doi:10.1002/rob.4620100509 

[13] Y. Q. Zheng, “Workspace Analysis of a Six DOF Wire- 
Driven Parallel Manipulator,” Proceedings of the WORK-
SHOP on Fundamental Issues and Future Research De-
rection for Parallel Mechanisms and Manipulators, Que-
bec, 3-4 October 2002, pp. 287-293. 

[14] W. J. Shiang, D. Cannon and J. Gorman, “Dynamic 
Analysis of the Cable Array Robotic Crane,” Proceedings 
of the IEEE International Conference on Robotics and 
Automation, Detroit, 10-15 May 1999, pp. 2495-2500. 

[15] J. J. Slotine and W. Leiping, “Applied Nonlinear Control,” 
Prentice Hall, Englewood Cliffs, 1991. 

[16] H. Khalil, “Nonlinear Systems,” 3rd Edition, Prentice-Hall, 
Upper Saddle River, 2002. 

[17] J. Richalet, A. Raault, J. L. Testud and J. Papon, “Model 

Predictive Heuristic Control: A pplication to Industry 
Processes,” Automatica, Vol. 14. No. 2, 1978, pp. 413-428. 
doi:10.1016/0005-1098(78)90001-8 

[18] C. E. Garcia, D. M. Prett and Morari, “Model Predictive 
Control: Theory and Practice—a Survey,” Automatica, 
Vol. 25, No. 3 1989, pp. 335-348. 
doi:10.1016/0005-1098(89)90002-2 

[19] A. B. Alp and A. K. Agrawal, “Cable Suspended Robots: 

ce on Robotics and 

Design, Planning and Control,” International Conference 
on Robotics Robotics & Automation, Washington, DC, 9- 
13 May 2002, pp. 556-561. 

[20] S. R. Oh and A. K. Agrawal, “Controller Design for a 
Non-redundant Cable Robot Under Input Constraint,” ASME 
International Mechanical Engineering Congress & Expo-
sition, 16-21 November 2003, Washington, DC. 

[21] S. R. Oh and A. K. Agrawal, “A Control Lyapunov Ap- 
proach for Feedback Control of Cable-Suspended Ro- 
bots,” IEEE International Conferen
Automation, 10-14 April 2007, pp. 4544-4549.  

[22] F. Franklin, J. Powell and L. Workman “Digital Control 
of Dynamic Systems” 2nd Edition, Addison Wesley, Bos- 
ton, 1994, pp. 40-70. 

[23] K. R. Muske and J. B. Rawlings, “Model predictive con-
trol with linear models,” AIChE Journal, Vol. 39, No. 2, 
1993, pp. 262-287. doi:10.1002/aic.690390208  

[24] A. Ghasemi, M. Eghtesad and M. Farid “Neural Network 
Solution for Forward Kinematics Problem of Cable Ro-
bot,” Journal of Intelligent and Robotic Systems, Vol. 60, 
No. 2, 2010, pp. 201-215. 
doi:10.1007/s10846-010-9421-z

 

Copyright © 2011 SciRes.                                                                                 MME 


