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Abstract 
Maheshwari has proposed three differential-voltage current-conveyor confi-
gurations for realizing first order all-pass filters only. This paper has exploited 
these configurations for realizing more complex transfer function T(s) which 
yield poles and zeros of 1 − T(s) in one of the four admissible patterns. Bili-
near and biquadratic functions are dealt in detail. It is shown that only bili-
near functions can be realized with all the four passive elements grounded. 
First order all-pass function is a special case which needs only three elements 
(2R, 1C) or (1R, 2C). A biquadratic function requires (2R, 2C) elements and 
has all the capacitor grounded. Design of second order all-pass function is 
given.  
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1. Introduction 

The symbol of a difference voltage current conveyor (DVCC) is shown in Figure 
1 and its characteristics are summarized by the following port relationships [1] 

1 2 1 2, 0, ,X Y Y Y Y Z X Z XV V V I I I I I I+ −= − = = = = −             (1) 

Maheshwari [2] has proposed three configurations, shown in Figure 2, using 
DVCC for realizing only first order voltage-mode all-pass filter. The filter has 
the advantages of high input resistance and minimum number of RC elements 
and all of them grounded.  

The intent of this paper is to exploit the circuit topologies of Figure 2 to real-
ize more general class of functions. Conditions of realization are derived. Then 
we consider realizations of bilinear and biquadratic functions in detail. In the  
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Figure 1. Block representation of a differential voltage current conveyor. 

 

 
Figure 2. Proposed topologies where zi’s in DVCC (1) and (2) are (a) z+, z−; 
(b) z−, z+, (c) z+, z+, respectively. 

 
former case, it is shown that only first order functions can have all passive com-
ponents grounded, and that there are only two possible cases with minimum 
number of passive elements (1C 2R and 2C 1R) logically, rather than intuition-
ally in [2]. In case of biquadratic function only 4 passive elements (2C, 2R) are 
required with both the capacitors grounded. Desing of a second order all-pass 
function is given. 

2. Realization of a General Voltage Transfer Function 

Each of the circuit topologies of Figures 2(a)-(c) has the voltage transfer func-
tion  

( ) ( )
( ) 1 21

N s
T s K Z Y

D s
= = −                     (2) 

From (2),  

( ) ( )
( )1 2 .

D s KN s
Z Y

D s
−

=                      (3) 

Note that the poles of Z1Y2 are the same as those of T; but zeros are given by D 
− KN = 0. Impedances Z1 and Z2 can be identified as RC driving point functions 
(DPIs) from (3), if the poles and zeros of Z1Y2, arranged in pairs starting from 
the rightmost pair, each pair consists of a pole and a zero in either order [3]. The 
four admissible pole-zero patterns are shown in Figure 3. T(s), so also Z1Y2, 
must have poles distinct negative real. Zero lociof Z1Y2 start from the poles when 
K = 0 and terminate on the zeros of T(s) when K = ∞. Hence it is possible to 
choose K sufficiently small so that the zeros are negative real. Thus, if the poles 
and zeros of Z1Y2 fit into one of the patterns shown in Figure 3, T is realizable 
otherwise not.  
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Figure 3. Admissible pole zero patterns. 

2.1. Realization of Bilinear Voltage Transfer Functions 

Let the bilinear voltage transfer function be  

( ) ( )
1 21

K s z
T s Z Y

s p
+

= = −
+

                   (4) 

If z is positive, i.e., it lies on the negative real axis, then T(s) can be realized by 
RC passive elements. Therefore, we shall consider the case when z is negative i.e., 
0 ≤ z ≤ ∞. 

Then 

( ) ( )
1 2

1
.

K s p Kz
Z Y

s p
− + +

=
+

                  (5) 

The zero-locus with K as variable is shown in Figure 4. It starts from pole at 
–p when K = 0 and reaches –∞ when K = 1 and again from +∞ to zero at z from 
K = 1 to K = ∞. Thus choosing 0 < K ≤ 1, the zero of Z1Y2 can be made negative 
real. Thus it will follow the pattern shown in Figure 3(a) and Figure 3(d). Now 

1 2 ,   .sZ Y p
s p

α
µ α

+
= < ≤ ∞

+
                   (6) 

Only possible identifications are  

( )1
1 2 2,     Z Y s

s p
µ

µ α= = +
+

                  (7) 

1 1 2 2,     s sZ Y
s s p
α

µ µ
+

= =
+

                  (8) 

1 1 2 2,      sZ Y
s p

α
µ µ

+
= =

+
                    (9) 

where μ = μ1μ2. The possible canonic realizations of Z1 and Z2 in Foster and 
Cauer forms from (7) is given in Figure 5(a), from (8) in Figure 5(b), and from 
(9) in Figure 5(c) and Figure 5(d), respectively. 

Minimum 4 elements (2C, 2R) or (1C, 3R) are required for realizing Z1,2 as 
shown in Figure 5. However, one element can be reduced by choosing K = 1 
which forces the zero of Z1Y2 at ∞ (see (5)). The reduced realizations of Z1,2 are 
shown in Figure 6. The complete realizations of T(s) given by (4) is obtained by 
inserting Z1,2 of Figure 6 in Figure 2. They reduce to all-pass functions when p = 
z. Thus we get (2R, 1C) and (1R, 2C) realizations for first order all-pass function. 
The realization corresponding to (2R, 1C) has all the passive elements grounded. 
We have thus shown that there are four possible realizations and only one of  
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Figure 4. Root locus with K as variable. 

 

   
(a)                          (b) 

    
(c)                          (d) 

Figure 5. Realizations of Z1 and Z2 given by (a) (7); (b) (8) and (c) and (d) by (9). 
 

   
(a)                     (b) 

Figure 6. Two realizations of Z1,2. 
 
which have all three elements (2R, 1C) grounded systematically, and not intui-
tively as in [2].  

Alternative proof 
In Figure 2, Z1 and Z2 can have only one R and one C element at the most in 

parallel for them to be grounded. Any additional resistance (capacitance) in pa-
rallel will be absorbed in R (C) already present. Let Zi (i = 1, 2) be parallel com-
binations of one Ri and one Ci as shown in the Figure 5(d). Then  

1 1 ,    1, 2
1i

i

i i

Z i
C

s
C R

 
= = 

   + 
 

               (10) 

Now 

( ) { }
{ }

1

2 1 12

11 2

2 1

1 1

1 11
1

1 1
1

Rs
R C RC

C sZ CT s
Z C s p

s
C R

α
µ

 
− −    −  −   = − = − =  +   + 

 

  (11) 
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Since the denominator is of first order, the circuit can realize only bilinear 
transfer functions with four components (2C and 2R); all grounded. The num-
ber of elements can be reduced by 1 under specific conditions. Let us consider 
the special case of all pass function. From (11), the condition is  

1 1 ,    1, 2
1i

i

i i

Z i
C

s
C R

 
= = 

   + 
 

                 (12) 

There are infinite number of solutions to satisfy (11). From (11), it is obvious 
that R1 cannot be equal to R2 and C1 cannot be equal to C2. To have minimum 
number of passive components, the choices are C2 = 0, R1 = 2R2 and R2 = ∞, C2 = 
2C1. In the latter choice, it can be seen from (11) that T(s) will be negative. These 
choices were directly chosen in [2] without any logic. 

2.2. Realization of Biquadratic Transfer Functions 

Let the function be expressed as 

( ) ( )( )
( )( )

1 2

1 2

s z s z
T s K

s p s p
+ +

=
+ +

                   (13) 

where poles p1,2, as discussed above, have to be negative real and z1,2 may lie an-
ywhere in the s-plane. Then from (2)  

( ) ( ) ( ) ( )
( )( )

2
1 2 1 2 1 2 1 2

1 2
1 2

1 K s p p K z z s p p Kz z
Z Y

s p s p
− + + − + + −  =

+ +
   (14) 

To realize with minimum number of elements, we choose K = 1. Then 

( ) ( ) ( )
( )( )

( )
( )( )

1 2 1 2 1 2 1 2
1 2

1 2 1 2

p p z z s p p z z s
Z Y

s p s p s p s p
α

µ
+ − + + −  + = =

+ + + +
  (15) 

where ( ) ( )1 2 1 2p p z zµ = + − +  and 
( ) ( )

1 2 1 2

1 2 1 2

p p z z
p p z z

α
−

=
+ − +

. If α and p1,2  

satisfy any of the pole-zero patterns shown in Figure 3 then Z1,2 can be identified 
as driving point impedances. Since there are many possible locations of z1,2, we 
explain the procedure by taking the all-pass function for which z1,2 = −p1,2. Then 
(15) reduces to  

( )( )1 2
1 2

.sZ Y
s p s p

µ=
+ +

                 (16) 

where μ = 2(p1 + p2).  
Now Z1,2 can be identified, in two possible ways as 

2,11
1 2

1,2 2

,    
s p

Z Z
s p s
µ

µ
+

= =
+

                (17) 

where μ = μ1μ2. 
Choosing μ1 = μ2 = 1, Two realizations of Z1,2 given by (17) are shown in Fig-

ure 7. As expected, all elements are not grounded. It is interesting to realize an 
all-pass filter with double poles, i.e., p1 = p2 = p. In this case (17) reduces to 
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1
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= =
+

                 (18) 

Example: Realize a second order all-pass function 

( )
2

2

4 3 .
4 3

s sT s
s s
− +

=
+ +

                     (19) 

Here  

( ) ( )( )1 2
81 .

1 3
sZ Y T s

s s
= − =

+ +
               (20) 

Identifying 

1 2
1 3,    

1 8
sZ Z

s s
+

= =
+

                  (21) 

the complete realization of T(s) of (19) is given in Figure 8. 

3. Conclusion 

Maheshwari [1] proposed three DVCC configurations and used them for realiz-
ing only first order all-pass filters. This paper has exploited these configurations 
for realizing transfer function T(s) such that the location of poles and zeros of 1 - 
T(s) matches with any one shown in Figure 3. It has been proved that only bili-
near functions can be realized with all the four passive elements grounded. First 
order all-pass function is a special case which needs only three elements (2R, 1C) 
or (1R, 2C). Biquadratic functions have also been considered. They require (2C, 
2R) passive elements with both the capacitors grounded. We have not attempted 
here the non-ideal analysis, simulation and applications as they are very well 
documented in [1]. 
 

 
Figure 7. Two realizations of Z1,2 given by (17). 

 

 
Figure 8. Realization of all pass function given by (19). 
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