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Abstract 
Bicycling is an important way for college students and employees to get 
around campuses. With a rise in bicycling on campuses there comes a rise in 
bicycle collisions with pedestrians walking to and from classes and work. The 
literature review showed many papers involving bicycle conflict modeling but 
on roads with motor vehicles. While some aspects of this research can be ap-
plied to non-motorized paths, there is a lack of research strictly focusing on 
only bicycles and pedestrians. This study aims to fill this knowledge gap by 
developing a model to identify locations on roads and paths (hotspots) on 
college campuses that are likely to have a bicycle collision and predict the li-
kelihood of a serious bicycle crash on a non-motorized path based on the 
characteristics of the path. This study identifies those interactions between 
bicyclists and pedestrians on non-motorized paths on a suburban college 
campus in Newark, USA. Findings suggest that pedestrian density of a path is 
a major factor in the maximum speed bicyclists can achieve. The wider the 
path is, the higher the maximum speed is that a bicyclist can obtain. This is 
because a wider path width decreases the pedestrian density. The grade of the 
path has little effect on bicycle speeds. The results of the models were dis-
played on a GIS map that is visually appealing to a viewer. The paths were 
color coded based on their level of safety, so it is easy to observe problematic 
areas of the network. This technique can be applied to the entire campus 
network of non-motorized paths to study the whole system. This can then be 
used by planners and designers to identify areas that need upgrading and im-
prove the overall safety of the non-motorized path system. 
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1. Introduction 
With the increase in population across the United States, there has been an in-
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creased demand on the transportation network [1]-[7]. The additional vehicles 
on the roads have created heavy congestion and delays for drivers [4] [8] [9] [10] 
[11] [12]. This congestion has brought a rise in alternative modes of transporta-
tion [13]-[18]. Bicycling is becoming an increasingly popular mode of transpor-
tation in the United States [19] [20] [21] [22] [23]. Users of bicycles can be di-
vided into three categories: recreational, sport/exercise, and commuters. The 
category that this study focuses on is commuters, where people on college cam-
puses are commuting to class or work. Bicycling is becoming more and more 
used as a way of commuting in a person’s average day. From 2000 to 2008-2012, 
bicycling had the largest percentage increase for any commuter mode of trans-
portation increasing from about 488,000 commuting workers to 786,000 [24]. 
This growth of bicycling affects college campuses as well, but it also varies by the 
type and size of the community. Cities have the highest rate of commuters bi-
cycling to work at 1.0%, followed by suburban at 0.4%, and those outside met-
ropolitan areas also at 0.4% [24]. College campuses exist in all three of these 
communities, therefore affected by the growth of bicycling. 

Bicycling is a popular way for college students and faculty to get around on 
their campus [25] [26] [27]. A 2012 study of the campus showed that 22% of 
students bicycle to campus in good weather [28]. This is a very large percentage 
of their student population that is bicycling around campus. While this does 
mean more potential for bicycle collisions, colleges try to promote bicycling and 
walking on their campuses. Colleges want to encourage bicycling for many rea-
sons including environmental conservation, simplicity for students, and to save 
the college money on vehicle parking. Saving money on vehicle parking is a huge 
financial incentive for colleges. In the same article [28], the author states that the 
Stanford University estimates it has saved $100 million on construction and 
maintenance of parking facilities by promoting ways to reduce solo car com-
muting. Bicycling is notably one of the ways to reduce solo car commuting. 

Unfortunately, this has created a rise in bicycle collisions with vehicles, pede-
strians, and other bicycles [29]-[37]. This is especially critical on college cam-
puses where the proportion of people biking and walking is higher than the av-
erage town. Conflicts can occur on both roads with vehicles, pedestrians and bi-
cycles, and on paths that only have non-motorized transportation [38] [39]. 
Both instances can be very serious, as seen at the University of Delaware, where 
a pedestrian was hit and killed by a bicyclist on a non-motorized path [40]. 

There has been extensive research studying bicycle and pedestrian crashes. 
However, most of this research involves crashes with vehicles which are more 
common; one study by the University of California Transportation Center com-
piled crash data from three university campus areas; University of Califor-
nia—Berkley, University of California—Los Angeles, and California State Uni-
versity—Sacramento. The study combined crash data from the California High-
way Patrol, the three campus’ police units, and an online survey administered to 
each campus [41]. The study does include bicycle and pedestrian crashes oc-
curred on multi-use paths and separated bike paths, but does not single these 
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crashes out. The focus of the report involves crashes with vehicles, yet its me-
thods could be applied to pedestrian and bicycle conflicts on non-motorized 
paths pavement [42] [43]. 

A report from Japan studied shared pavements that were used by bicyclists 
and pedestrians. These pavements were on the sides of roads, free of motor ve-
hicles. The study compiled bicycle speed and pedestrian density data for the 
shared pavement. It found that as the number of pedestrians increased, the 
speeds of the bicycles decreased [44]. The study only collected this data on one 
shared pavement area in Kyusyu, Fukuoka. For this study, we will study paths of 
different widths and geometric characteristics to determine how pedestrians and 
bicyclists behave. 

The literature review showed many papers involve bicycle conflict modeling 
but on roads with motor vehicles. While some aspects of this research can be ap-
plied to non-motorized paths, there is a lack of research strictly focusing on only 
bicycles and pedestrians. This study aims to fill this knowledge gap by develop-
ing a model to identify locations on roads and paths (hotspots) on college cam-
puses that are likely to have a bicycle collision. The objectives of this research are 
trifold: 1) collect data on selected non-motorized paths on a suburban college 
campus; 2) design a model based on geometric variables of the non-motorized 
path as well as non-physical variables such as speed and density of users; and 3) 
create an output value and scale that will determine the safety of locations on 
non-motorized paths. 

The final results of the model will give an output value for each location. A 
rating scale will be developed for the output value that will show how likely or 
unlikely it is for there to be a bicycle collision at that location. This will show the 
user of the model what locations are possible hotspots for collisions. The model 
results that can be used by planners and engineers will help make college cam-
puses safer. It will show what attributes of a road or non-motorized path contri-
bute most to bicycle collisions. Knowing what attributes contribute most to col-
lisions will assist planners and engineers in avoiding those attributes as best as 
possible. They can design while keeping bicycle and pedestrian safety at the fo-
refront of consideration. This study also offers areas to expand on the model. 
The focus for this study will be on suburban college campuses, but it could be 
expanded to include towns and communities. The study will also focus on 
non-motorized paths, but the model can be expanded to include path intersec-
tions as well. 

The remainder of the paper is organized as follows. Section 2 introduces the 
methodology of the data collection and analysis. The data collection process is 
an innovative process that was used to collect the data for this project. This sec-
tion also discusses how the raw data was processed and analyzed. Section 3 
shows the final data collected and the various graphs that are developed from the 
data and discusses the several developed linear and non-linear models. The 
models are applied in GIS to create visual representations of the rating scale de-
veloped. From the analysis, recommendations are given of how to enhance the 
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safety of non-motorized paths from the results of the modeling in Section 4. 

2. Methodology 

The University of Delaware campus was used to study and develop the model to 
identify bicycle conflict hotspots. The first step in the process was the design of 
the process and data variables, i.e., determining what variables were to be col-
lected for analysis [45] [46] [47]. This was done by determining key geometric 
features as well as user characteristics. Once the variables were identified, the lo-
cations for data collection and analysis were selected. These were selected to in-
clude paths that are near both academic areas and residential areas on campus. 
Once the locations were identified, the data was collected. Geometric data was 
collected first, and then the user data was collected both in the summer and 
again in the fall when school was in full session. The different variables from the 
data collected were plotted on various graphs. Best fit lines were graphed to 
model the data. These equations were used as models to predict conflicts on the 
non-motorized paths. 

2.1. Variables 

The variables used in the model are categorized as either geometric variables or 
characteristic variables. The geometric variables are physical features of the 
paths. The characteristic variables describe the users of the paths and their ac-
tions. 

2.1.1. Geometric Variables 
• Width: The width of the path, measured in feet. 
• Grade: The grade is measured along the direction of the path as a percent. It 

was taken at three points on each segment, the beginning, middle, and end. 
• Cross Slope: The cross slope was measured at the same three points on each 

segment as the grade. It measures the slope perpendicular to the direction of 
the path. 

• Horizontal Curvature: The horizontal curvature is categorized as either 
“curved” or “angled”. The degree of curvature was not measured because 
some paths were not uniform or had multiple curves in the study segment. 
“Angled” means the paths bends at an angle, not as a curve. 

2.1.2. Characteristic Variables 
• Pedestrian Volume: The number of people walking or running on the path, 

divided into both directions. The volume is given as volume per fif-
teen-minute segment. Skateboarders were not counted in this data collection 
because they do not have the characteristics of pedestrians or bicycles. They 
were chosen to be omitted for this reason and because they are a rare occur-
rence. 

• Bicycle Volume: The number of people riding bicycles on the path, divided 
into both directions. A person walking a bicycle is counted as a pedestrian, 
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not a bicycle. The volume is given as volume per fifteen-minute segment.  
• Crossing Pedestrian: The number of pedestrians who crossed the path per-

pendicular to the normal flow of users. The crossing pedestrian is given as 
number per fifteen-minute segment. 

• Crossing Bicycle: The number of bicycles who crossed the path perpendicular 
to the normal flow of users. The crossing bicycle is given as number per fif-
teen-minute segment. 

• Conflict: An observable situation in which a bicyclist nearly collides with a 
pedestrian or another bicyclist at any point on the study segment if their 
movements remain unchanged. A bicyclist weaving through pedestrians or 
adjusting speed safely is not a conflict. If a collision occurred, this was tallied 
as a conflict but also a description of the collision was recorded. 

• Pedestrian Speed: The speed in feet per second of the pedestrians, divided 
into the two normal directions of the path. 

• Bicycle Speed: The speed in feet per second of the bicyclists, divided into the 
two normal directions of the path. 

2.2. Locations 

The locations for the data collection were chosen to encompass different geome-
tric features on the University of Delaware campus. The horizontal curvatures, 
widths, and grades vary at the different locations. The paths chosen are critical 
paths on the campus that are between residential buildings and academic build-
ings or between two academic buildings. Many students and faculty walking to 
and from classes throughout the day use these paths. 

A total of twelve locations were chosen around campus. This number is a 
large enough sample to include different geometric features and user characte-
ristics. For each path, a segment was chosen to collect the data. The segment 
chosen had uniform width and did not contain a major intersection with anoth-
er path. However, there are building entrances, side door entrances, benches, 
and bike racks within the segments chosen. The segment lengths range from 45 
feet to 176 feet long. The twelve locations for the data collection are shown on 
the map below (Figure 1) and the locations are listed in Table 1. 

2.3. Data Collection 

The data collection was done in two seasons, the summer and the fall. The 
summer data was collected first to have samples with smaller volumes when 
there are fewer people on campus. Data was collected again in the fall at all loca-
tions when all students and faculty were back on campus. This collection showed 
higher volumes as expected. The summer was also used to tweak the new data 
collection process to ensure it would be affective in the fall. The data was col-
lected for two-hour periods at each location during midday on weekdays. The 
summer collections were done from 11:30 AM - 1:30 PM and were done once at 
eight of the twelve locations. The remaining four locations had little to no  
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Figure 1. Data collection locations map. 

 
Table 1. Data collection locations. 

Location Name Width (ft.) Length (ft.) 

Harrington Turf Path 12 96 

Elliot Hall Path 7.5 81 

Trabant Path 18.5 95 

North Green, Sharp Hall Path 15 118 

Kirkbride Path 11 55 

North Green, Gore Hall Path 15 72 

Mitchell Hall Path 12 92 

North Green, Crossing Path 10 176 

Evans Hall Path 10 45 

Mentor’s Circle Path 15 127 

Allison Hall Path 11 90.5 

Perkins Path 16 73 

 
volume during the summer because they were located near residence halls that 
were unoccupied. In the fall, two data collections were done at each location.  

The procedure of the data collection was developed specifically for this 
project. It consisted of 2 - 3 persons sitting at the location next to the path to 
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ensure they had an unobstructed view of the entire segment. One or two people 
collected the volume data, depending on the usage volume of the path. The col-
lectors used counting sheets that were divided into 15-minute intervals over the 
two-hour collection. These collectors counted the number of pedestrians and 
bicycles in each direction, and recorded them in the appropriate 15-minute in-
terval. These collectors also counted any crossing pedestrians or bicycles, also 
recording them in the appropriate 15-minute interval. Finally, these collectors 
counted any conflicts they saw and noted any collisions. The final person was 
the speed data collector. This person used several stopwatches to record the time 
it took randomly selected pedestrians and bicyclists to travel through the seg-
ment. 

2.4. Data Processing 

The data from the data collection sheets was input into Excel in separate files for 
the volume data and speed data. The volume data was input just as the collectors 
recorded on the collection sheets. As stated before, the speed data was input as 
times (in seconds) and the spreadsheet converted these times to speeds in feet 
per second. In the same Excel file, the low, mean, and high speeds were calcu-
lated for each fifteen-minute period in each direction. These speed values were 
copied into a final Excel sheet where they were matched with the corresponding 
volume values. The geometric data for the paths were added as well as time and 
location of the collection data. So, each line in this final spreadsheet is one fif-
teen-minute period of data collection, and contains the identification informa-
tion, geometric characteristic, volume value, and calculated speed values. 

From this data, separate spreadsheets were made to create the appropriate 
graphs needed for data analysis. This was done repeatedly for various graphs and 
the same process was used in Excel for modeling linear and non-linear equations 
to the data. After the models were developed, a scale was developed to rate the 
non-motorized paths. Using Geographic Information Systems software, the rat-
ing scale was used to create a visual representation of the ratings of the 
non-motorized paths on the University of Delaware campus. 

3. Data Analysis 

3.1. Data 

The data from the volume and speed collections was entered into Excel format. 
The speeds were calculated from the times collected in the field. The low speed, 
mean speed, and max speed for pedestrians and bicycles in both directions were 
calculated. A sample of the data is shown in Table 2 that includes location and 
time identification, geometric features, volumes, and calculated speeds. 

Each line represents a 15-minute data collection period. For formatting pur-
poses for this sample, the Direction #2 data lines were moved under Direction 
#1. The data for each location includes the location name and number, the width, 
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Table 2. Data Sample—Fall. 

Location Name Evans Hall Path Mitchell Hall 
Mentors Circle 

Path 
Harrington  
Turf Path 

Number 9 7 10 1 

Width (ft) 10 12 15 12 

Avg Grade (%) 0.43 EB To Clbrn 1.50 EB To Grn 0.70 SB To Lib 1.27 EB To Red 

Avg Cross Slope 
(%) 

0.77 SB 1.50 SB 0.43 EB 0.7 SB 

H Curve - - Curve - 

Segment ID 65 73 81 89 

Date 10/24/2016 10/25/2016 10/28/2016 10/31/2016 

Weather Sunny Sun/Cloud Sunny Sunny 

Time 2:15:00 PM 2:15:00 PM 2:15:00 PM 2:15:00 PM 

Direction #1 EB (To Clbrn) EB (To Grn) NB (To Ment) EB (To Red) 

Ped Volume #1 110 17 215 44 

Low Speed #1 4.29 3.93 4.87 2.88 

Mean Speed #1 4.84 4.30 5.33 3.27 

Max Speed #1 5.77 4.95 6.05 3.60 

Bike Volume #1 7 1 12 11 

Low Speed #1 7.50 0.00 8.58 5.93 

Mean Speed #1 12.38 0.00 11.53 11.20 

Max Speed #1 15.52 0.00 14.60 13.33 

Direction #2 WB (To Grn) WB (To S Coll) SB (To Lib) WB (To Perk) 

Ped Volume #2 91 23 210 17 

Low Speed #2 4.21 4.04 4.31 2.94 

Mean Speed #2 4.80 4.79 4.83 3.37 

Max Speed #2 5.63 5.71 5.50 3.95 

Bike Volume #2 2 2 6 7 

Low Speed #2 10.00 12.60 10.67 7.56 

Mean Speed #2 10.00 12.69 15.11 11.38 

Max Speed #2 10.00 12.78 19.54 13.71 

Crossing Ped - - - - 

Crossing Bike - - - - 

Conflict - - - - 

 
the average grade, the average cross slope, any horizontal curvature, a given 
segment ID number, the weather, and the time and date. Following that infor-
mation is the pedestrian and bicycle volumes for each direction as well as the 
minimum, mean, and maximum speeds for pedestrians and bicycles. 

There are 16 hours of summer data collected, which breaks down into 64 fif-
teen-minute periods. For the fall data, there are 50 hours of data for 200 fif-
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teen-minute periods. As stated before, all twelve locations were counted twice in 
the fall. However, location 3 (Trabant Path), was counted a third time because of 
weather. That is why there is an additional two hours of data for the fall. Over 
the summer and fall, this totals 66 hours of data collected which breaks down 
into 264 fifteen-minute periods. 

3.2. Graphing the Data 

After the data was processed and put into an Excel format, the different variables 
were graphed against each other and the results are shown below. The indepen-
dent variable in this section, shown on the x-axis, is the volume of pedestrians 
on the path. The pedestrian volume is used rather than the bicycle volume be-
cause the pedestrian volume is much larger and governs the density of the path. 
The dependent variable that we want to focus on is the speed of the bicycles. 
This is because if bicycles are moving faster compared to the pedestrians, it is 
more likely that a collision will be serious and that a bicyclist is less able to move 
out of the way. Therefore, the models that will be developed will be generating 
bicycle speeds as an output. 

Figure 2 is a sample graph from the fall data, and it is showing the pedestrian 
volume on the x-axis and the mean speed of the bicycles of the corresponding 
segment on the y-axis. The pedestrian volume shown is the volume in the same 
direction as the corresponding bicycle speed shown on the y-axis. The data col-
lection process yielded large amounts of data and many characteristics of the 
non-motorized paths. The many characteristics collected were graphed against 
each other to see how they affect each other. The data analysis revealed many 
trends in the data that will be modeled in the next section. 

There were several important trends that were observed. When the pedestrian 
volume was first graphed against the bicycle speed, there did not appear to be a 
trend because paths of different widths experienced very different volumes. 
Once the volume was converted to the density term, volume per foot of width of 
the path, the data points were standardized and showed a downward trend in 
bicycle speed as the pedestrian density increased. This is a logical trend because 
when there are more pedestrians on a non-motorized path, a bicycle is not able 
to reach a high speed. 

The second important trend that was observed was the relationship between 
path width and bicycle speed. When the path width was graphed as the inde-
pendent variable and the bicycle speed as the dependent variable, the graph ap-
peared to show an upward trend in the bicycle speed as the path width increased. 
This is also a logical trend because it would mean the wider paths have lower 
pedestrian densities than the narrower paths and bicycles are able to travel at a 
faster speed. This is an important trend because it would allow paths to be 
evaluated without having to collect pedestrian volume data. Both trends men-
tioned will be modeled with both linear and non-linear equations next to con-
firm the assumptions. These will be the basis for a rating scale to evaluate the 
non-motorized paths. 
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Figure 2. Ped volume vs bike mean speed—Fall. 

3.3. Modeling Results 

The second objective of this study is to develop a model using non-physical cha-
racteristics such as volume and density as well as geometric characteristics of the 
paths. In this section, the non-physical characteristics such as pedestrian volume 
and density will be used create a model to predict the maximum possible speed 
of a bicycle. To reiterate, the volume data was collected by students on selected 
paths in fifteen-minute periods. The density term that will be used, Pedestrian 
Volume per Ft of Width, was developed by dividing the volume of each fif-
teen-minute period by the width of the path. This was done to be able to com-
pare paths of different widths to each other. 

For the non-physical characteristics modeling, a best fit equation was devel-
oped but not using all of the data points. Instead, data points were selected that 
represented the highest speed a bicycle achieved at each pedestrian density. This 
was done because the goal is to model the maximum speed a bicycle could 
achieve at a given density, rather than what the average speed would be. Fitting 
the entire data set would not give an accurate model for the maximum achieva-
ble speed. Both the mean speed and maximum speed will be used to create the 
models. 

Model 1 

Pedestrian VolumeMaximum Bicycle Speed 0.7652 30.388
Path Width

 = − ∗ + 
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Maximum Bicycle Speed is given in feet per second. 
Pedestrian Volume is given as the volume in one direction in a fifteen-minute 

period. 
Path Width is given in feet. 
Model 2 

Total Pedestrian VolumeMaximum Bicycle Speed 0.4941 31.11
Path Width

 = − ∗ + 
 

 

Model 3 

( )Maximum Bicycle Speed 0.702 Path Width 11.891= ∗ +  

The results of the three models are compared against each other. However, 
each model requires different inputs. All three models require path width as an 
input value. Models 1 and 2 require pedestrian volumes as inputs values as well. 
Model 1 uses the pedestrian volume in one direction of travel, while Model 2 
uses the total pedestrian volume in both directions. 

A table in Excel was set up to compare the three models to each other using 
pre-determined input values. The path widths start at 4 ft. and increase in 2 ft. 
increments up to 20 ft. At each of the path widths, the single direction pedestrian 
volumes start at 30 users per fifteen-minutes. The number of users increases by 
30 and goes up to 300 users per fifteen-minutes. For the total volume, the single 
direction volume was doubled. So, the total volume starts at 60 users per fif-
teen-minutes and increases to 600 users per fifteen-minutes. These values are 
realistic because the path widths on the University of Delaware campus range 
from 7.5 ft. to 18.5 ft. The highest pedestrian volumes observed were 201 users 
per fifteen-minutes in one direction and 566 users per fifteen-minutes combined 
both directions. 

There are a few observations that should be noted about the comparison 
tables. The first is that the resulting values in the Model 1, Model 2, and Model 3 
columns are bicycle speeds given in feet per second. These speeds are the values 
that the model gives as the maximum possible bicycle speed for the inputs given. 
The second observation that should be noted is that some of these values are less 
than the maximum speeds observed in the data collection. This is because the 
model was fit to selected data points where some values are lower than the linear 
fit and some are higher than the linear fit. The final observation is that some 
values the model gives are negative. This occurs when the pedestrian volume is 
extremely high for the size of the path, and this only happens at the 4-ft, 6-ft, 
and 8-ft widths. The negative values occur because the models are linear and de-
crease as the pedestrian density of the path increases. The high volumes on nar-
row paths create pedestrian densities that may be at jam density or are unrealis-
tic. For these reasons, the Models 1 and 2 result in some negative bicycle speeds 
at high densities. 

The three models that have been developed all output maximum bicycle 
speeds for the given path with and pedestrian volumes. These models can be 
used to evaluate the safety of the non-motorized paths on the University of De-
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laware campus. To use these models to evaluate the paths, an output scale must 
be created. The numerical results of the models will fall into safety levels that 
show how safe or unsafe the non-motorized path is (Table 3). 

3.4. GIS Applications 

Geographic Information Systems are able to display the model results on a vi-
sually appealing map that is easy for viewers to understand. The maps created 
can be displayed for planners and designs who can work to improve the safety of 
non-motorized paths. The maps identify key areas that are more dangerous than 
others on campus. 

Using only the path width, the study segments can be input into Model 3 to 
determine the levels of safety. The other two models can be used as well; howev-
er a pedestrian volume must be chosen and input into the model along with the 
path width. The results of Model 3 using the 12 study segments are shown in 
Table 4. 

Five of the study segments fall into the Moderately Safe level of safety, while 
the remaining seven fall into the Moderately Unsafe level of safety. None of the 
paths studied are determined to be Safe or Unsafe. However, this is only using 
the outputs from Model 3. If pedestrian data is used, then Model 1 or Model 2 is 
also able to be used. 

These results from Model 3 can then be displayed on a map using the ArcMap 
program. The color-coded study segments are created as a layer and are over-
laid on top of satellite imagery of the campus. A sidewalks layer obtained from 
the State of Delaware First Map website is also overlaid onto the satellite im-
agery to show all of the paths on campus. The sidewalks layer includes both 
sidewalks next to roads and walking paths around campus that are defined as 
non-motorized paths. This map is show in the following figure. 

The results of the models were displayed on a GIS map (Figure 3) that is vi-
sually appealing to a viewer. The paths were color coded based on their level of 
safety, so it is easy to observe problematic areas of the network. This technique 
can be applied to the entire campus network of non-motorized paths to study 
the whole system. This can then be used by planners and designers to identify 
areas that need upgrading and improve the overall safety of the non-motorized 
path system. 

4. Conclusions 

There are several conclusions that can be made from this non-motorized path 
analysis. These conclusions are based on the data collected and analyzed from 
the University of Delaware campus. Pedestrian density of a path is a major factor 
in the maximum speed bicyclists can achieve. The wider the path is, the higher 
the maximum speed is that a bicyclist can obtain. This is because a wider path 
width decreases the pedestrian density. The grade of the path has little effect on 
bicycle speeds. 
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Table 3. Modeloutput values. 

Model 1 Output Values 

Single  
Direction 

4 ft 
Path 

6 ft 
Path 

8 ft 
Path 

10 ft 
Path 

12 ft 
Path 

14 ft 
Path 

16 ft 
Path 

18 ft 
Path 

20 ft 
Path 

30 Peds 24.65 26.56 27.52 28.09 28.48 28.75 28.95 29.11 29.24 

60 Peds 18.91 22.74 24.65 25.80 26.56 27.11 27.52 27.84 28.09 

90 Peds 13.17 18.91 21.78 23.50 24.65 25.47 26.08 26.56 26.94 

120 Peds 7.43 15.08 18.91 21.21 22.74 23.83 24.65 25.29 25.80 

150 Peds 1.69 11.26 16.04 18.91 20.82 22.19 23.21 24.01 24.65 

180 Peds −4.05 7.43 13.17 16.61 18.91 20.55 21.78 22.74 23.50 

210 Peds −9.79 3.61 10.30 14.32 17.00 18.91 20.34 21.46 22.35 

240 Peds −15.52 −0.22 7.43 12.02 15.08 17.27 18.91 20.19 21.21 

270 Peds −21.26 −4.05 4.56 9.73 13.17 15.63 17.48 18.91 20.06 

300 Peds −27.00 −7.87 1.69 7.43 11.26 13.99 16.04 17.63 18.91 

Model 2 Output Values 

Both  
Directions 

4 ft 
Path 

6 ft 
Path 

8 ft 
Path 

10 ft 
Path 

12 ft 
Path 

14 ft 
Path 

16 ft 
Path 

18 ft 
Path 

20 ft 
Path 

60 Peds 23.70 26.17 27.40 28.15 28.64 28.99 29.26 29.46 29.63 

120 Peds 16.29 21.23 23.70 25.18 26.17 26.87 27.40 27.82 28.15 

180 Peds 8.88 16.29 19.99 22.22 23.70 24.76 25.55 26.17 26.66 

240 Peds 1.46 11.35 16.29 19.25 21.23 22.64 23.70 24.52 25.18 

300 Peds −5.95 6.41 12.58 16.29 18.76 20.52 21.85 22.88 23.70 

360 Peds −13.36 1.46 8.88 13.32 16.29 18.40 19.99 21.23 22.22 

420 Peds −20.77 −3.48 5.17 10.36 13.82 16.29 18.14 19.58 20.73 

480 Peds −28.18 −8.42 1.46 7.39 11.35 14.17 16.29 17.93 19.25 

540 Peds −35.59 −13.36 −2.24 4.43 8.88 12.05 14.43 16.29 17.77 

600 Peds −43.01 −18.30 −5.95 1.46 6.41 9.93 12.58 14.64 16.29 

Model 3 Output Values 

 
4 ft 

Path 
6 ft 

Path 
8 ft 

Path 
10 ft 
Path 

12 ft 
Path 

14 ft 
Path 

16 ft 
Path 

18 ft 
Path 

20 ft 
Path 

All Ped  
Volumes 

14.70 16.10 17.51 18.91 20.32 21.72 23.12 24.53 25.93 

Legend: Levels of Safety Color Code. 

Safe 

Moderately Safe 

Moderately Unsafe 

Unsafe 

 
An advantage of this analysis is that it can be used by other universities and 
planners to study non-motorized path networks. Other universities can apply 
this analysis in two ways. The first way would be to collect data on their own 
campus and run the models using the data collected. This process is more time 
consuming and requires extensive data collection. The minimum data needed 
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Table 4. Model 3—study segment outputs. 

 
Width (ft) Model 3 Output (ft/s) 

Harrington Turf Path 12 20.31 

Elliot Hall Path 7.5 17.15 

Trabant Path 18.5 24.87 

North Green, Sharp Hall Path 15 22.42 

Kirkbride Path 11 19.61 

North Green, Gore Hall Path 15 22.42 

Mitchell Hall Path 12 20.31 

North Green, Crossing Path 10 18.91 

Evans Hall Path 10 18.91 

Mentor’s Circle Path 15 22.42 

Allison Hall Path 11 19.61 

Perkins Path 16 23.12 

 

 
Figure 3. Model 3—study segment map. 

 
would be path width data, but to do a full analysis using all three of the models, 
pedestrian volume data would need to be collected. This collection process can 
be very resource and time consuming. However, the method would be very use-
ful for university planners to analyze the safety of the non-motorized path net-
work. 

The second way that other universities can apply this analysis is by simply ap-
plying the findings directly to their planning. This analysis has shown that path 
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width and pedestrian density are the major factors in bicycle speeds. Wider 
paths offer more space for bicycles to build up speed and can make the path un-
safe. Narrower paths with higher pedestrian densities can keep bicycles at lower 
speeds and increase the level of safety. Planners can use these findings and apply 
them directly to improving their non-motorized path network.  

The data collection, analysis, and models developed are useful tools to study 
the non-motorized paths on the University of Delaware campus. These tools can 
also be applied to other suburban universities that have similar campus traits, as 
discussed in the previous section. However, with three models developed, it is 
difficult to say which is the “best” at evaluating the safety of non-motorized 
paths. All three of the models have their advantages and disadvantages. Model 3 
is easier to use since it only uses path width as an input. However, Model 1 and 
Model 2 are more accurate because they use pedestrian volume data as well as 
path width. Model 2 uses pedestrian data for both directions on the path, which 
is an advantage over Model 1 because both directions give a more accurate pede-
strian density. So, if pedestrian data is available, Model 2 is the most accurate 
and useful model. 

After the paths are evaluated for their level of safety, planners and designers 
can work to improve the safety in key areas. The results of this analysis show 
that maximum bicycle speed is determined by a number of factors and is a key 
component in the overall safety of a non-motorized path. Therefore, planners 
and designers should focus on ways to reduce bicycle speeds on campus. 

The bicycle speed control devices (e.g., “Slow Biking” signs, Speed bumps and 
speed humps, narrower paths) have the potential to reduce bicycle speeds and 
improve the safety of non-motorized paths. These devices can be studied in the 
field to see if they indeed reduce bicycle speeds, and if so, by how much. To be 
studied, they can be temporarily installed in a location on campus, and data can 
be collected using the same method that was used to collect the data for this 
study. The speeds of bicycles with the certain devices can be compared to the 
speeds in the same location at the same time of day. The studies would need to 
be done on the same day of the week to minimize other variables. If any of the 
devices prove successful, they can be implemented around campus permanently. 
The devices implemented could help improve the overall safety of the 
non-motorized path network. 
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