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Abstract 
Deviations from chemical parity (PV) were evaluated with the search for very 
small enantiomeric excesses in a racemate prepared from non chiral materials 
and were detected by means of the circular dichroism (CD). Thus, intensely 
light-absorbing perylenebiscarboximides were attached to axially chiral bi-
phenyls for the amplification of CD effects by exciton interactions of the ad-
jacent chromophores. A rapidly racemising system was applied for the exclu-
sion of artifacts and compared with an analogous with locked chirally. A very 
slight enantiomeric excess was detected for the (M) enantiomer. Application 
of the method for other systems was suggested and relations to natural prod-
ucts discussed. 
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1. Introduction  

Nature handles chemical substances and processes remarkably sustainable where 
the chirality of natural products is dominant contrasting the majority of syn-
thetic technical materials. Neither the reason for the preference of chirality nor 
the mostly strict preference of one enantiomer in natural products is clarified 
because the equivalence of both enantiomers concerning achiral, scalar proper-
ties is claimed by parity. The exact validity of parity is generally accepted for 
preparative chemistry [1] [2] [3] [4]. Thus, stereogenic centres generated from 
achiral starting materials under achiral conditions are expected to form race-
mates of an exact 1:1 composition of the enantiomers. The theoretically pre-
dicted [5] and experimentally verified [6] deviations from parity for weak inter-
actions of elemental particles induced a discussion [7] [8] [9] [10] [11] if there 
are also very small deviations from parity in chemistry. Attempts of a direct 
measurement of deviations from the 1:1 composition of racemates formed from 
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achiral material have not been successful; the therefore necessary measurement 
of extremely small differences of high concentrations seems to be an extraordi-
narily difficult problem for chemical analytics. Moreover, chiral contaminations 
as a consequence of contact with the biosphere may cause artifacts such as arbi-
trary optical induction in the syntheses of racemates or kinetic or chroma-
tographic resolution, such as by traces of bio materials adsorbed at surfaces. Re-
search is now concentrated to indicate small differences of scalar properties of 
enantiomers with essentially four concepts: Firstly measurements of differences 
in IR frequencies [12]-[17] and rotational spectra [18] of enantiomers of small 
molecules, secondly the indication of different IR-CD effects of enantiomers 
[19], and thirdly the different coiling of enantiomeric polymers [20]. Any chiral 
contamination of samples remains the main problem for the latter. Fourthly, a 
detection by CD spectra (circular dichroism) of simple derivatives of ammonia 
were suggested [21]. As a consequence, a novel concept would bring about pro-
gress in this fundamental discussion. 

2. Experimental 
2.1. Spectroscopy 

IR spectra: Perkin Elmer 1420 Ratio Recording Infrared Spektrometer, FT 1000; 
UV/Vis spectra: Varian Cary 5000 and Bruins Omega 20; fluorescence spectra: 
Perkin Elmer FS 3000 (totally corrected); CD spectroscopy: Jasco J810 Spec-
trapolarimeter, spectral bandwidth 0.5 nm, integration time 0.5 and 1 s, data in-
terval 0.2 nm; NMR spectroscopy: Varian Vnmrs 600 (600 MHz); mass spec-
trometry: Finnigan MAT 95. 

2.2. Chemicals 

(1,1'-Biphenyl)-2,2'-diamine (1, RN 1454-80-4), was supplied from Sigma-Al- 
drich (product No. 727601) and imidazole (RN 288-32-4) from BASF. Pery-
lene-3,4,9,10-tetracarboxylic-3,4-anhydride-9,10-(1-hexylheptylimide) (2) 
was prepared according to the literature [22]. 

2-(1-Hexylheptyl)-9-{2'-[6-(1-hexylheptyl)anthra[2,1,9-def;6,5,10-d'e'f']di
isoquinoline-1,3,8,10-tetraone-2-yl]diphenyl-2-yl}anthra[2,1,9-def;6,5,10-d'e'f'] 
diisoquinoline-1,3,8,10-tetraone (3): Perylene-3,4,9,10-tetracarboxylic-3,4-an- 
hydride-9,10-(1-hexylheptylimide) (2, 212 mg, 369 µmol) [22] and (1,1'-bi- 
phenyl)-2,2'-diamine (1, 34 mg, 185 µmol) in imidazole (1 g) were heated with 
the exclusion of air and moisture (Ar atmosphere) for 5 h at 140˚C, diluted with 
ethanol after cooling (10 mL), precipitated with 2 m aqueous HCl (20 mL), 
stirred for 1 h, collected by vacuum filtration and purified by column separation 
(silica gel, chloroform to remove a forerun and then silica gel, chloro-
form/ethanol 20:1 for the main fraction). Yield 111 mg (46%) dark red solid, Rf 
(silica gel, chloroform/ethanol 20:1): 0.29, IR (KBr): ν  = 2923.6 (m), 2854.5 
(m), 1695.5 (m), 1655.2 (s), 1592.0 (s), 1577.0 (m), 1505.7 (w), 1480.6 (w), 1432.9 
(w), 1403.9 (m), 1337.8 (s), 1249.9 (m), 1174.2 (w), 1124.7 (w), 1105.9 (w), 964.2 
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(w), 847.9 (w), 808.5 (m), 744.6 (m), 637.4 cm−1 (w), 1H NMR (600 MHz, CDCl3, 
25˚C): δ = 0.82 - 0.92 (m, 12 H, CH3), 1.22 - 1.49 (m, 32 H, CH2), 1.92 - 2.04 (m, 
4 H, β-CH2), 2.25 - 2.35 (m, 4 H, α-CH2), 5.22 - 5.24 (m, 2 H, α-CH), 7.24 - 7.25 
(m, 2 H, arom. CH), 7.47 - 7.50 (m, 2 H, arom. CH), 7.69 - 72 (m, 2 H, arom. 
CH), 7.79 - 7.80 (m, 2 H, arom. CH), 8.13 - 8.51 ppm (m, 16 H, arom. CH), 13C 
NMR (151 MHz, CDCl3, 25˚C): δ = 14.3, 22.9, 27.2, 29.5, 32.0, 2.1, 32.5, 32.7, 
55.1, 122.7, 122.9, 123.0, 123.3, 123.4, 124.0, 124.3, 126.1, 126.5, 128.9, 129.0, 
129.2, 129.3, 129.6, 130.9, 131.8, 133.5, 133.8, 134.1, 134.3, 134.7, 134.8, 138.2, 
162.8, 163.8, 164.2 ppm, UV/Vis (CHCl3): λmax (ε) = 262 (63,400), 461 (37,400), 
492 (102,900), 533 nm (152,200 L·mol−1·cm−1), fluorescence (CHCl3): λmax = 539, 
582 nm, fluorescence quantum yield (CHCl3, λex = 490 nm, E490nm = 0.240 cm−1, 
reference [23]: 2,9-Bis-(1-hexylheptyl)anthra[2,1,9-def;6,5,10-d’e’f’]diisoquino- 
line-1,3,8,10-tetraone, RN 110590-84-6 [24], with Φ = 1.00): 1.00, MS (DEI+/70 
eV): m/z (%): 1294 (4) [M+], 931 (39), 182 (38), 97 (42), 83 (61), 69 (100), 55 
(91), 44 (24). C86H78N4O8 (1295.6): calcd. C 79.73, H 6.07, N 4.32; found C 79.26, 
H 6.26, N 4.26. 

3. Results and Discussion 

The detection of an utmost only very small enantiomeric excess in essentially 
racemic materials as a consequence of a possible chemical violation of parity 
(PV) requires an analytical signal amplification. We applied optical circular 
dichroism (CD) [25] as the difference of light absorptivity between left and 
right circularly polarized light for the detection of a chiral fraction where the 
effect would be completely compensated for an exact 1:1 racemate. Chiral 
substituents or chiral media generally induce only very weak CD effects in 
achiral, flat chromophores such as the perylene dyes; this makes CD spectros-
copy of such dyes insensitive and robust concerning traces of chiral contami-
nants of biological origin. However, very strong CD effects were induced by 
exciton interactions of adjacent chromophores in chiral arrangements in dyads 
so that the required high signal amplifications are obtained. Furthermore, spe-
cial care has to be taken for the exclusion of other possible artifacts such as ar-
bitrary kinetic or chromatographic partial resolution of racemates in chemical 
synthesis and workup of such chiral arrangements. For this reason, we applied 
permanently fast racemising [26] [27] [28] [29] axially chiral 2,2'-substituted 
biphenyls [30] [31] with chiral half-lifes in the order of minutes [32] [33] [34] 
[35] [36].  

Perylene biscarboximides [37] [38] with the solubilizing swallow-tail 
N-substituent 1-hexylheptyl [24] [37] were used as the required chromophores 
for the preparation of the target compound, because of only a single electronic 
transition [39] in the visible polarized along the N-N-connection line [40], the 
strong fluorescence [23] and high chemical persistency [37]. Thus, we con-
densed [41] 2,2’-diaminobiphenyl (1) with the anhydride carboximide 2 [22] to 
form the racemic bichromophore (P)-3 and (M)-3; see Scheme 1. 
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Scheme 1. Synthesis of 3. 

 
The achiral chromophore of perylenebiscarboximides as a component in 3 

such as in the soluble derivative 4 (see Scheme 2, top) exhibits a strongly struc-
tured intense UV/Vis- absorption with a maximum at 526 nm and a molar ab-
sorptivity of 88,000 L·mol·cm−1 in the maximum [42] as is indicated in Figure 1, 
left, bottom. We sterically locked the chirality in the biphenyl dyad 3 with 
methyl groups to obtain the pure, stable atrop enantiomers (P)-5 and (M)-5 [43] 
where exciton effects of the adjacent chromophores both influence the UV/Vis 
absorption spectra (see Figure 1, left, middle; the spectrum of (P)-5 is identical) 
and induce very strong CD effects of absolute ε values of about 500 (see Figure 
1, left, top); these high exciton-induced CD effects were used as an amplifier for 
the detection of a chiral fraction in 3. One can expect similarly high CD effects 
in the unlocked, demethylated 3 in the same spectral region because of a similar 
arrangement of chromophores (the electronic effect of the methyl groups in 5 on 
the chromophore are estimated to be unimportant; compare [43] [44]); however, 
a fast racemization proceeds to an equilibrium because of the low torsion barrier 
in the unlocked 3; this excludes artefacts such as by arbitrary chromatographic 
resolution at chiral surfaces. There will be a compensation of CD effects of (P)-3 
and (M)-3 in the racemate so that only an enantiomeric excess will be detected 
in the CD spectrum of such a dynamic racemate. We found very weak concen-
tration-dependent CD signals of 3 in the expected spectral region where strong  
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Scheme 2. The achiral dye S-13 (4) and the sterically locked, stable 
chiral atropisomeric dyes (P)-5 and (M)-5, for comparing CD effects. 

 

 
Figure 1. Left from bottom to top: UV/Vis spectra of 4 (blue), (M)-5 (red), and the CD 
spectra of (P)-5 (orange) and (M)-5 (turquoise) for indicating the CD effect of perylenes 
in sterically locked biphenyls. Right from bottom to top: CD spectra of 4 (blue, Emax/1 cm = 
0.64), 3 (red, Emax/1 cm = 2.14), 4 (turquoise, more concentrated: Emax/1 cm = 2.36), 3 (orange, 
more concentrated: Emax/1 cm = 2.53) indicating a very small enantiomeric excess for (M)-3. 
All spectra were recorded in chloroform. 
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signals of the pure enantiomers of 5 were found. These were attributed to a very 
small enantiomeric excess of the (M)-3 enantiomer where the concentration de-
pendence may be taken as an indicator for a dye specific effect (a further in-
crease of the concentration and the optical density E, respectively, is problematic 
because of the strong light absorption). Controlling the proper function of the 
spectrometer, we recorded the spectra of the achiral and in the same spectral re-
gion analogically absorbing 4 at similar optical densities and did not get compa-
rably intense CD signals. As a consequence, the CD spectra of 3 can be taken as 
an indicator for a very small enantiomeric excess of (M)-3. 

4. Conclusion 

A fast racemizing ensemble of enantiomers may be a useful tool for the detection 
of a spontaneous formation of an enantiomeric excess where atropisomeric bi-
phenyls are of special interest because the rate of racemisation can be efficiently 
controlled by steric effects of substituents. Amplifying the detection sensitivity of 
enantiomeric excesses is necessary because of the small expected effects. Optical 
methods, preferentially the measurement of strong CD effects induced by exci-
ton interactions of adjacent chromophores, are attractive because of high sensi-
tivity. The investigation of a perylene dyad of biphenyl indicated a very small 
enantiomeric excess of the (M) enantiomer. One can speculate about the origin 
of the preference. The well-known parity-violating (PV) asymmetry for weak 
interactions seems to be very small concerning chemistry; the present study in-
dicates a much larger effect where the order of magnitude might become impor-
tant for living organisms. This may find its counterpart in the general clear pref-
erence each for one individual enantiomer in the biosphere. Finally, exciton in-
teractions of larger chromophores such as 4 in racemizing systems may be an at-
tractive, efficient and sensitive tool for the investigation of chiral effects and 
search for other examples for PV. 
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