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Abstract

In this paper, we propose and analyze a mathematical model to study the dynamics of a fishery resource sys-
tem with stage structure in an aquatic environment that consists of two zones namely unreserved zone (fish-
ing permitted) and reserved zone (fishing is strictly prohibited). In this model we introduce a stage structure
in which predators are split into two kinds as immature predators and mature predators. It is assumed that
immature predators cannot catch the prey and their foods are given by their parents (mature predators). It is
also assumed that the fishing of immature predators prohibited in the unreserved zone and predator species
are not allowed to enter inside the reserved zone. The local and global stability analysis has been specified.
Biological and Bionomical equilibriums of the system are derived. Mathematical formulation of the optimal
harvesting policy is given and its solution is derived in the equilibrium case by using Pontryagin’s maximum

principle.

Keywords: Prey Predator, Stage Structure, Local and Global Stability, Bionomic Equilibrium, Optimal
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1. Introduction

There are numerous studies on the effects of harvesting
on population growth. In the context of Predator-prey
interaction, some studies that treat the populations being
harvested as a homogeneous resource include those of
Brauer and Soudack [1,2], Dai and Tang [3], Myer-
scough et al. [4], Chaudhuri [5] and Leung [6]. For a first
look at the problem of harvesting from a bioeconomic or
control theory point of view, see the works of Clark [7]
and Levin et al. [8]. But they have not considered stage
structure of species. Some of the stage structured models
using time delay were considered by Aiello and Freed-
man [9], Freedman and Gopalsammy [10], Rosen [11],
Fisher and Goh [12], Cushing and Saleem [13], and some
other authors. In general, stage structured models exhibit
much more complicated dynamics than ordinary models.
Bioeconomic modeling of the exploitation of biologi-
cal resources such as fisheries and fore tries has gained
importance in recent years. The techniques and issues
associated with the bioeconomic exploitation of these
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resources have been discussed in detail by Clark [7,14].
Since most marine fisheries are essentially multi species
in nature, exploitation of mixed species fisheries has
started to draw attention from researchers. Although nu-
merous models on single species fisheries have so far
appeared in the fishery literature, no fully adequate stud-
ies on multispecies fisheries appear to exist.

It is very difficult to construct a realistic model of a
multispecies community. Even if we succeed in formu-
lating such a model, it is quite likely that the model may
not be analytically tractable. Not every part of the catch
is edible and harvesting harms some of the marine spe-
cies which live on the other species in the sea. Thus the
predator species are likely to become extinct with an in-
discrete increase in the harvesting of prey species. There-
fore, how best to harvest an ecologically or economically
interdependent population in the sense of maximizing the
present value of a stream of revenues from them, while
maintaining ecological balance, is an important optimal
control problem for fisheries.

Clark [14] discussed an optimal equilibrium policy for
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the combined harvesting of two ecologically independent
species. Chaudhuri [5,15] formulated an optimal control
problem for the combined harvesting of two competing
species. Models on the combined harvesting of a two
species prey predator fishery have been discussed by
Chaudhuri and Saha Ray [5], Mesterton-Gibbons [13],
Ragozin and Brown [16] etc. Most of the mathematical
models on the harvesting of a multispecies fishery have
so far assumed that the species are affected by harvesting
only

The prey-predator system is an important population
model and has been studied by many authors [17-19]. It
is assumed in the classical predator-prey model that each
individual predator possesses the same ability to attack
prey. Classical continuous population models such as
logistic model and Volterra models overlook age struc-
tures and space structures. Also these models overlooked
the rate at which mature predators attack the prey and the
reproductive rate are also ignored. In [20] a stage struc-
tured model of one species growth consisting of imma-
ture and mature individuals was analyzed. In [21], it was
further assumed that the time from immaturity to matu-
rity is itself state dependent.

In recent years, the optimal management of renewable
resources, which has a direct relationship to sustainable
development, has been studied extensively by Clark [14],
K. S. Chaudhuri [15], T. K. Kar, M. Swarnakamal [22]
and W. Wang, L. Chen [23]. At present people are facing
the problems due to shortage of resources. Extensive and
unregulated harvesting of marine fishes can even lead to
the extinction of several fish species. This problem can be
addressed by arranging marine reserved zones, where
fishing and other activities are prohibited. This marine
reserve not only protects species inside the reserve area
but also increase fish abundance in adjacent areas. The
model of ecological system reflecting these problems has
been given by T. K. Kar et al. [22] and Rui Zhang et al.
[24].

Wendy-Wang et al. [25], considered prey-predator
model with a stage structure in which predators are split
in to immature predators and matured predators. They
also assumed that the matured predators catch the prey
and provide food for the immature predators. Rui Zhang
et al. [24] considered a prey predator fishery model with
prey dispersed in two patch environment, one is free
zone for fishing and other is reserved zone where fishing
is prohibited.

2. The Mathematical Model

Here we consider a habitat where prey and predator spe-
cies are living together. It is assumed that the habitat is
divided into two zones, namely, reserved and unreserved
zones. It is also assumed that predator species are not

Copyright © 2011 SciRes.

allowed to enter inside the reserved zone whereas the
free mixing of prey species from reserved to unreserved
zone and vice-versa is permissible.

In the present paper we proposed a prey-predator
model by combining the two features by [24,25], in
which prey dispersed in a two patch environment and
predator is not allowed to enter inside the reserved zone.
Also a stage-structure is incorporated in which predators
are split in to immature and mature predators. Here it is
assumed that the prey migrates from unreserved zone to
reserved zone and vice-versa. It also assumed that the
fishing of immature predators is prohibited in the unre-
served zone. This paper deals with the following prey-
predator system

1 lef
— =hx ——— = pxy, —ox +o,x, —qEx (2.1)

dr i
X,
d—;: 1%, —2k—22+01)c1 - 0,X, (2.2)
by _apry;  apiny,w 2.3)
de wy +, Wh T+,

dﬁ: a, %,y Y,w

-d,y,—q,E,y, . 2.4
a W+ 7 2Vr =4, LY, 24)

Here x,(t), x,(t) represents biomass densities of
prey species in the unreserved and reserved areas respec-
tively at a time “¢’. y,(¢), y,(¢f) represents biomass
densities of immature and mature predators in unreserved
area. 7, 1, represents intrinsic growth rates of prey
species in unreserved and reserved areas respectively.
k,, k, represents carrying capacities of prey species in
unreserved and reserved zones respectively. [ repre-
sents capturing rate or capturing efficiency of the preda-
tors. o,, o, represents migration rates from unre-
served to reserved zones and vice-versa. ¢,, ¢, repre-
sents catch-ability coefficients of prey and matured
predators respectively in unreserved zone. E,, E, re-
presents the efforts applied to harvest the prey and ma-
tured predator species respectively in unreserved zone.
d, represents the death rate of mature predators in un-
reserved zone. ¢, represents birth rate of predators. «,
represents conversion coefficient of immature predators
to matured predators. We suppose that the attacking rate
of mature predators at the prey i.e. the loss rate of prey is
By, .

Since mature predators and immature predators may
have distinct consumption rates to the resource, we as-
sume that they consume the resource in the ratio w:l,
where w measures the relative consumption ratio be-
tween one immature predator and one mature predator,
i.e., w:1 gives the allocation ratio of food between one
immature predator and one mature predator. We assume
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that all the weighted individuals share the quantity of
food availability in equal parts. As a result, a fraction of
resource consumed by mature predator is

Bxy, — %2 and a fraction of resource consumed by
wy ),
. . w
immature predators is Sx,y, L
Wy ),

If there is no migration of fish population from the re-
served area to the unreserved area (i.e. o,=0)and

dx, . . .
r—0,—qkE <0,then — <O0. Similarly if there is no
dr

migration of fish population from the unreserved area to
reserved area (ie. o, = 0) and -0, < 0, then

dx
d—2 < 0. Therefore we assume that 7
t

r, —o, >0 throughout our analysis.

-o,—q,E >0,

3. Existence of Equilibria

The steady state equations of (2.1)-(2.4) are

2
nx
X, —'k—l—ﬁ)cly2 —ox, +o,x5,—qEx =0 (3.1)
1
2
nX, —%ﬂ)‘lxl -0,x, =0 (3.2)
2
Y, Wy,
a,pxy, —=—-a,fxy,———=0 (3.3)
wy t Y, wy t Y,
Wy,
& Px,, —]_dzyz -q,E,y, =0 (3.4

wWh t ),

The three possible equilibrium points are

1) G/(x,x,,0,0) (In the absence of predators in un-
reserved zone);

2) G,(x!,x¢,y?,0) (In the absence of mature preda-
tors in unreserved zone);

3) G,(x%,X,,¥,,¥,) (The interior equilibrium).

Case 1): G,(x/,x,,0,0):

In this case, x;, x, are the positive solutions of (3.1)
& (3.2). It may be noted that for x,x, to be positive
we must have

r (’”1 — 0 _qlEl) < (n,—o,)n

3.5
ko)’ ko, G-3)
- -0, —q,E
(2 0'2)(’”1 O, —¢q, 1)<O_1 (3.6)
0,
ﬁ>(”1_01_‘I1E1)' (3.7)

1

Case 2): In the absence of mature predators in the un-
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reserved zone, there will not be any production of im-
mature predators and hence this case coincides with Case
D).

Case 3): Solving (3.1), (3.2), (3.3), & (3.4), we get

_ 1
xl :m(al +a2)(d2 +q2E2) (38)
_  k 4r,0x,
Z:i{(rz— 2)+\/(r2—0'2)2+%:| (3.9)
- 22 - X -
yl:a2ﬂflw ("1_0'1_‘11E1)x1_ i, +0,%, | (3.10)

=2

_ 1 _ X _
¥, =,B—)_C{(rl—0'1—q1El)xl— lkl +O'2x2}. (3.11)
1

1

For y, and Yy, both to be positive, we must have

—2
%

(”1 — 0 _qlEl)fl +0,%, > (3.12)

4. Qualitative Analysis of the Model
4.1. Local Stability Analysis

Let us now suppose that system (2.1)-(2.4) has a unique
equilibrium G, (X,,X,,7,,7,) -

o Jn Sy Iy
J= Ju Jn Iy Iy 4.1
Sy Iy Ty Jy
Jou Jo i Ju
where
2rXx, _ —-X, O,X.
Jn:’ﬁ_#_ﬁh_o'l_%El: kll_%
1 1 X
Jy =073
J. = alﬂ)_’zz _azﬁJ_’l)_’QW.
31 T — — — — s
wyty, wy ty,
J L By,w
aT = - >
wy +y,
Jp, =0,
2rX. -LX, OX,
J,=p BN 5 Thh OGN ;.
n=h i, 2 _k2 T 32
Jp=0; Ji3=0; Jy=0;
S AP afER )W
3= — E—
W +3) (W, +7,)
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_ azﬁE(J_’z)ZW .
3= J—
(wy, +y2)2
Jiy ==P%;
Jyuy=0;

_ 2a1ﬂfl}_’1)_’2w+ o, A%, (yz)z _ azﬁfl(yl)zwz .

J - >

oW n) w5,

J _aZIBf](.)_}])zwz —d _ E __aZIB‘ZW)_}l;Z

4 = — _— 2 T hLEy = —  _ 2
(Wy1+yz) (Wy1+y2)

The characteristic equation of the Jacobian matrix of
2.1)-24) at G;(X.%,,7,7,) s
A +ad +a,A va;d+a, =0 4.2)
where
= hh  BX | Ohh | 0%
k, k, X X

£x,y,w
+]—22(a1y2 ta,n +a2y2) >0

2 2
_| hihXX, | hoX | 1Koy,
, = + +

kk, kx, kyx,

2
" B X )y, W

a, B2 x . W
-i—%p(oc1 +a,)]
p
+ rzﬂx1XQJ’2W+O'1ﬂx12J’2W+ ’ﬁﬂx12J’2W+ o, Bx, y,w
kzpz xzpz klpz pz

'[alJ’Z Ty, azyl] >0

2 2
KEXX, FO,X 1,0, X
a3=(1212+111+222J
kk, kx, xky

2 2

.|:(a] +a2)ﬁx1yzzw+a2ﬂle’1y2W:|
p p

p g k, X,

2 2
+a2ﬂ x1y1yzw{(al +a2)ﬂx1;2 w+(r2x2 +le1 J}>O

4

3.2 3.2
a, w KX, OX,
a _Bf W 1);')}2 (051+012)[22+—1 1J>0.

P 2 Xy
Now,
| RN KhX 0%, O
1 k, k, X X5
Bxy,w
+1—22(a1y2+a2y1+a2y2) ;
p
—A+ (ﬂxl);ZWJB
p
where
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_hnxt

nX, X, O,X, OX
A—(”+22+ 2% 11}.

H =

k, k, X
B=ay, +a,y +

2
nnxx,  hox

>

X5
a,),

2
10,X,

KK, Kx,

2 2
hoX " 10X

2

KK,

Kx, K,x

K,x,

2 2
+|:I’2ﬂx1x2yzw+ o, fx, y2W+ n8x, y2W+ O'zﬂxzyzwj|

K2p2

2.2 32
L X Yy, W
+ 4

x,p’ K, p’ P’

'(a1YZ ta,y, + azyl)

[2(051 + 0!2)] +

LR

= C+[%j’4(al)ﬁ +a,p, + o)
+a2ﬂ2x12i11y23w2 2, +a,) + DDA
p
where
c = L% RoX | 1O,X;
kk, kx, k,x,

2 2
nowx, | 1oyX,

KX X
a3=[1212+

2
n AL

4

Again,

kik,

p

p

3

kx, xky

|

p

ﬁxl)’22W n azﬂx1Y1y2W:|
2
p

{(0{1 +a,) .
p
{(al B +(ﬁ+ﬂﬂ

k, X,

3.2 3.2
a, Bx iy, w KX, OX
a _ B xnnw (al+a2){ e 1J>O.

2 Xy

(alaz—a3)=A-C+A2(%JB

2.2 32
P X Yy, w
tA——F—

2 +a,)

2
a, [ x w(rx, o,x
+ BNy, (1 1, % 2}

p

k, X

B+ﬁ2x12y22W2 AB?

+C(’Bxly2WJ

3.3 43
GPX Yy, W
+ 6

Therefore,

2

p

p

4

p

2(a, +a,)B+

293,222 2
a Xy, w
—
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4. @ fi 5y w [ nx, +
ky

B 4.3 4.3
Az_azﬂ X 35’1)’2 w (@, +0!2)B:|+|:A-C2['BXIJ2/ZWJ.B}
p P

5

p

(qya, —ay)a; = [AZ [%

545 4
A.azﬂ NNV, W
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+
Xy

(a] +a2)Bz:|

Xy

oY

3.2 3 2
4-C- aLpx yl)’2w (al+a2):|

3

p

i

4.C- [szz GIXIJ Y ERAL j:|
2

B 204 3.2 4 3
A'aZﬂxlpi}l yZW Z(al 2)[

XL
kl

[ xl yz

4-C- azﬂ x] y])’z

Ca2ﬂ3x12y1Y22W2

3

p

4

=
o

|

2, +a, )B}

0%

X

B 205 4.2 6 4
4.% Bx J;l Yo W 2(0!1+052)2:|
p

r 204 3.2 4 3

a, X’y v, w nX,

S22 (o +ay)| 4+
p k,

[ 2p4 2 2 2
a4 Xy, w

[
kl

3

33}

445 4
C.azﬂ X NV, W
8

_A-C- Bx’y’w

[ 2p6.5 .2 75
XYy, w
9

[ 2p5 4.2 5
a Bxy vy, w

C. @’ By yy)

[ 3p5.3.3.3 3
Xy, w

2

p

6

p

p

o

2 +a, )B2 }

0,%,

X

|

2, +a,) B}

rzxz

2

)
=
=

X

Xy

k2

Xy

2(051 + az)B[ .

2

Xy

O-lxl

X

%

2

5

p

4

p

¥

3 36 4.3 5 4
w Bi|+|:a2:3 X 35’1 W (a]+a2):|
p

(

X,

k2
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U]X]
+ —

Xy

)

(4.3)

Again,

a’a, = { ﬂxl }:2 +2A.—ﬂle;ZWB}
p p

3.2 3 2
.(rzxz +O'1X1J[a2ﬂ N N, W j(a +a,)
3 1 2
p

k, X,

2 2| KX O
=aa,=4 [—+ (o + )

2 X

,(azﬂaxlzylyiwz sz [a2ﬂ5x14y1y25w4 ]

3 7

p p

4.3 43

X, OX a

1% 9N g )24 B )5’1)’2 w
ky X p

-B(e, +a2)(r2x2 +ﬂj

2 X,

4.4

By combining first four terms of the right hand side of

(4.3) with the first three terms of right hand side of (4.4),
it can easily be established that

(q,a, —a)a, —ara, >0.
Since a,> 0, it is clear that
2 2 >0
a,(aa,a, - aya, — ay) .

Hence G, (fl,)_cz,)_/l,)_/z) is locally asymptotically sta-
ble. So by Routh-Hurwitz criteria, it follows that all ei-
gen values of (3.2) have negative real parts if andonly if
a, >0,a, >0, a,>0, a,(a,a,-a,)>a a, and
a,(aa,a, —ala, —a;)>0.

Hence, G;(X,,X,,¥,,”,) is Locally asymptotically
stable. Thus the four populations remain stable under the
conditions we have obtained in the above study. The fact
can also be proved numerically. We have solved the
above system for a set of parameter values. The parame-
ter values also satisfy the condition for existence of the
interior equilibrium point G;(X,,X,,¥,,”,) . The real
data is very difficult to obtain. So we use a set of the
hypothetical parameter values as follows: r, = 1.6; r, =
12 k] 270 k2 250 o] = 04 Oy = 04 q1 = 30 q> =
32;E;1=0.02; E;=0.082; 0, =1.9; a, = 2.1; = 0.06; w

= 0.7; d, = 0.22. The time series of the populations are
shown in the Figure 1. The Figure 1 shows that the
populations are finite for long time and the system is
stable.

4.2. Global Stability Analysis
Theorem I. The Equilibrium point G,(x;,x;,0,0)

globally asymptotically stable.
Proof: let us consider the following Lyapunov function
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Figure 1. Stable time series evolution of the prey and pre-
dator populations of the model system (2.1)-(2.4).

V(XUXz):(xl —x —x ln(x—i]J+ll [xz—x;—x; ln(x_iJJ
X X,
T _5 X _ _
V(x,%,3,0,) = 5 =X —XIn| — | |+]| x, -X, -X, In
X

:>d_V= X —X %4_[1 X, =X, ﬂ +1, n—-n dyl
dt X, dt X, dt » dt

%

dv _ o,X,
jE:(Xl_xl)[”l_k_l_ﬂ 2_0-1+x_1_q1 } , (x,

X _ _
_Z\JJ+12 (Jﬁ =y -»h (%\D*‘% (Jﬁ -
X, M

iy (J’z yzjdyz
3
Y2 d

M. N. SRINIVAS ET AL.

Differentiating V' w.r.to “¢” we get
[ X —x %+l X, =%, | dx,
@t ox Jd ' x, Jde

. X0 . . . .
Choosing [, ==—2 | after a little algebraic manipulation,

we get,
dv I N2 0,0 o2
e T
ok,

0,

" (xl*xz — XX, )2 <0.
X1 XXy
Therefore G, (x/,x,,0,0) is globally asymptotically
stable.
Theorem II. The equilibrium point G;(X,,X,,3,,¥,)
is globally asymptotically stable.
Proof: let us consider the following Lyapunov function

(2]

O X

_ X
xz){rz _h% o
k

2 X

o

— Vs Vs
+1 - a, fBx,y, ——=———a, fx w———— |+ x— d,—q,E
Z(yl yl)|: i lyzyl(Wy1+y2) P (Wy1+J’2):| 3(y2 )|: F I(Wy1+y2) 2T 2:|
S Y ) - ) o | 2 | () [ (- F)| — (3, - ) oy | R
a 17 % A 1 2 % 2 =W 1\ =% i, 2 1 x, %,
_\ o fx Y. _ X X,y
+12(J’1_J’1) lﬁ e [&_{_ZJ"'ls(J’z_yz)azﬂW[ 1% - _1 1_ :|
wy +y )\ v Wy, +2,) (W, +,)
LT
Choosing /, = 20-2; 12=L; 13:—Wy1 _y2
X0 Q aHwy
dV i —\2 Gz(xl_fl) - = - —\_h%0, —\2
——(x, =X ) +——(x,x, —xx, )= B(x, —X -5, )- X, — X
dt kl( 1 1) N ( XX — X 2) ﬂ( 1 1)()’2 yz) szlo_l( 2 2)
X,0, (xz_fz) — - 1 a,fx,, - - -
+ o —=(xx, - %X )+—| ————=—(y, — -
o, 1 %7, ( 1% X, 1) a, J’1J_/1(WJ’1+)’2)(yl yl)(yzyl ylyZ)
Wy +%, - NI X ), NN Rapdl
+—_aﬂwy—y( R — __—__j
LWy, { (27%) i +1) 7)) 9 +5,) (0, +7,)
dv % v 5hX,0, —\2 v B, _ —\2
—= - (x-x) - X, —X,) - XX —xx,) —— - <0.
dr kl( 1 1) kz)—clo_l( 2 ) x1x2)_c1( 2% 1 2) yl)_}l(wyl+y2)(y2y1 y1y2)
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Therefore  G,(X,,%,,7,,7,)
cally stable.

is globally asymptoti-

5. Qualitative Bionomic Phenomena

It is the study of the dynamics of living resources using
economic models. Let ¢, be the fishing cost per unit
effort for prey species, ¢, be the fishing cost per unit
effort for matured predator species, p, be the price per
unit biomass of the prey, p, be the price per unit bio-
mass of the predator (matured). Therefore net revenue or
economic rent at any time given by R =R, +R, where
R=(pgx—c)E , R, =(p,q,y, —¢,)E, ; here R re-
presents Net Revenue for the prey; R, represents Net
revenue for matured predator species.
The bionomic equilibrium

(s ()0 0o () (B, o(E, ), ) is given by the

following equations
rx?
X, —'Tl—ﬁxlyz —ox, +0,x,—qEx, =0 (5.1)
1

2
nX

X, — +0,x,—0,x, =0 (5.2)
2
alﬂxlyg _ azﬂx1y1yzw =0 (53)
wyi+y, wy,+y,
w_dﬁ’z -4,E,y,=0 5.4
wyi+y,

R= (qulxl _cl)El +(p2q2y2 _cz)Ez =0. (5.5

In order to determine the bionomic equilibrium we
come across the following cases.

Case I. If for the matured predator, fishing cost is
greater than the revenue (¢, > p,q,», ), then fishing of
matured predator is not feasible. Hence fishing of prey
population remains operational (¢, < p,g,x, ).

Thus, when E, =0 and ¢, < p,q,x, we have

c
(xl)w: —,
b,

f—;z{(rz—oz>+J<rz—az)+

Since ¢, < pigx, < Pk, » ((y2 ), - (E, )3@) will be
any point on the line

Pk,

c
o+ By, +q,E = ’”1[ _—IJ
Pak

+—02p1q1k2 {(r2 —02)+\/(r2 -0,)+

2nq

4r,0,.c,
Pigk,
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CaseIL. If ¢, > p,q,x, i.e., the costis greater than the
revenue in the prey fishing, then the prey fishing will be
closed (i.e. E,= 0). Only matured predator fishing re-
mains operational (i.e. ¢, < p,q,¥,)

¢
(y2 )oo = ? .
P49,
Substitute this value in (5.1), we get
1| Bey(x), ).,
(), =— 2—‘)+al(xl>w—n<xl)m£1—( ) ] :
0, P9, k,

Here (x,)_ is the positive solution of

a,x; +a,x] +ax, +a, =0 (5.6)
where
2
o
a4 =——=5>0;
k'ky0,
2rr. c
a,=— 1 rl_o_l_ﬂz :
k ko2
17,0, b4,

Now if {rl—o]— pe, } <0 (or) {rl—o]— pe, } >0,
p

P4

and (7‘2—0'2)(}”] -0, - pe, J<O']O'2.
P29,

Then Equation (5.6) has a unique positive solution

x =(x),

For (x,)  tobe positive, we must have
(), >k - Lk ok
P29>1 i
Substitute the value of (x,) in Equation (5.4), we
get
(Ez)oc :i azﬂ()ﬁ)w (yl)go W_dz
@[ wn),+(),
(£,), >0, Provided 2%P0)
o, +a,
where w= M .
a, (.Vl )Oc

AM
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CaselIL. If ¢ > p,q,x,, ¢, > p,q,),, then the cost is
greater than revenues for both the species and the whole
fishery will be closed.

Case IV. If ¢, < pqx,, ¢, <p,q,»,, then the reve-
nues for both the species being positive, then the whole
fishery will be in operation.

In this case

(x), =—— (5.7)
b4,
c
(3,), =—2. (5.8)
P>4,
Substitute (4.7) and (4.8) in (4.1), (4.2), (4.4) we get
k, 4no¢
x,), =—|(r,—-0,)+ |(r,—0,)+—— 5.9
0. o) fln-e) B2 )
(El)fr—l{l 4 }— pe, 01, %8P (s
ol pak] are, 4 e
(E2 )Qc :L|:a2ﬂ(x1)wyl_w_d2i| (5.11)
9> Wy +y,
(E), >0 if
i|:1_ cl :|+O-2(x2)oopl> ﬂcz +i (512)
q, Piak, q9,¢ 999, 4
(E), >0 it 4% Fa (5.13)
o, +a, pq,

The Non-trivial Bionomic equilibrium point

()00 () 2)s (B, (Ey ), ) exists if (5.12) and
(5.13) hold.

6. Optimal Harvesting Policy

In this section we study optimal harvesting policy of the
system (2.1)-(2.4). Also in this section we employ the
Pontryagin’s maximum principle to obtain a path of op-
timal harvesting policy so that if the fish populations
inside and outside the reserve zones, are kept along this
path, then the regulatory agency is assured to achieve its
objective. We consider the following present value J of a
continuous time-stream
J:J.P(xl,xz,yl,yz,El,Ez,t)e"” dr (6.1)

0

where P is the net revenue given by
P(x, %y, 31,95, B, Ey )
= (Pl‘lelEl _ClEl)"'(pz%)’zEz _czEz)

and O denotes the instantaneous annual rate of dis-

(6.2)

Copyright © 2011 SciRes.

count, the aim of this section is to maximize . sub-
jected to the state Equations (2.1)-(2.4).

Firstly we construct the following Hamiltonian func-
tion

H=ec" [plqlxl _cl]El +e™ [p2q2y2 _CZ]EZ

X
+4,| KX, [l_k_lj_ﬂxl)ﬁ —0X, +0,X, _‘I1E1x1:|
1

+4,| X, (1—;—2j+o]xl —O'sz:l (6.3)

2

Yy wy
+4 | &, Xy, 2 -, %), : :|
wy+y, wy+y,

N

wy
| iy, ———=d,y, —q,E,y, :|
L Wyt Y,

where A4,,4,,4,,4, are additional unknown functions
called the adjoint variables, E,,E, are the control vari-

ables satisfying the constraints 0<E, <(E,) ;
0<E,<(E,) ,and

()= e (plqlxl -G )_ Aqx
¢, (1) =¢" (g, —¢,)— A4q,¥, are called the switch-

ing functions.
We aim to find an optimal equilibrium

((xl )5 ,(x2 )5 :()4 )5 »(yz )5 ,(El )5 ,(E2 )5) to maximize

Hamiltonian H .

Since Hamiltonian A 1is linear in the control vari-
ables E|,E,, the optimal control can be extreme con-
trols or the singular controls, thus we have
By = (B s » When ()0
ie.,when A4 (t)e” < p, —i;

4%

E =0,when ¢(t)<0

i.e., when A (t)e” > p, —i;
4%

EZ = (EZ )max > when ¢2 (t) >0

i.e.,when A,()e” < p, - G .
UERe)

E,=0,when ¢,(1)<0

, c
ie., when 4,()e” > p, ——2;

),
when ¢(1)=0, A4(t)e” = p, _c_l;
4%
or
Ao (6.4)
OE,

AM
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when ¢,()=0, A,()e” = p, ——2—;
9,
or
aH
6.5
& (6.5)

In this case, the optimal control is called the singular
control, and (6.4), (6.5) are the necessary conditions for
the maximization of Hamiltonian H .

By Pontrayagin’s maximal principle, the adjoint equa-
tions are

v __an
dt ox,
-t 21 X
=—|e"pqE +A| 1 - — By, -0, —q,E
1
2
+0,0, + s [alﬂ(J’z) _apwny, J+/14 (‘Zzﬂw)ﬁyzj
wy +y, wy+y, wnty,
(6.6)
da, oH 2r,x,
== + - - 6.7
a or, {’110'2 4 [”2 k, O, j:| (6.7)
a, __oH
dt oy,
=2 (_ alﬂxlhz“z’ _ azﬂxd’zw);z ] (6.8)
(wyy +3,) (wy, +3,)
+2, [aZﬂxlyZWyZZ J
(wy, +,)
dﬂ, aH
dr 8y2

_|:e_51P2‘I2E2 +4(=px)

6.9

0‘1ﬂx1(ZY1J’zW+J’zZ) a, Bx,w’ 69)
+4 2 - 2
(wn +»,) (wy, + ;)

o]

Considering the interior equilibrium G, (fl,fz,fl,fz)
and Equations (6.4), (6.7), can be written as

& ) =™

1 [azﬂxlwzylz _
4
(wy, +J’2)2

nLX, OX, c
where 4 =22+—L1; 4, =[p1 ——1_]0'2 .
2 X 1%
We can calculate that

Az -ot
= c .
& A+0

(6.10)

Copyright © 2011 SciRes.

Similarly, by considering the interior equilibrium
G;(X,,X,,¥,7,) and Equations (6.5), (6.8), can be wri-

d
tten as d—ﬂ:— A4, =—e4,

where
a4, WXy, |

>

Wy, + ¥,

c a ﬂwfiz
. z_J )
9, (wy1 +y2)
We can conclude that

-5t
A= A+5 ’

A_

6.11)

Similarly, by considering the interior equilibrium
G, (%,,%,,7,7,) and Equations (6.10), (6.11), (6.6) can

a4

be written as o WA, =—e % 4,
t

where
A5:ﬁ+_o'z_f2;
k, X
A A
A =pqE +—2—0c +——(a,7, —a, Wy,
s = D191 A+6 1 A3+5( Va2 P yl)

c a4, W, y.
' (pz B 2_ J{ 2_ 1_ 2 J
q,), wy, +y,
We can conclude that

-5t
A= A+5 ’

(6.12)

Similarly by considering the interior equilibrium
G, (x,,%,,7,,7,) and Equations (6.10), (6.11), (6.6) can

da
be written as d_t4 — QA =—e"" 4

where
a, fxw*y?
= Zlf : _y12 —d, —q,E, ;

(WJ’1 +y2)

4 = p,q,E, — 4 px + 4 [azfxlvzyz]'
A +0 A +0\ wy +,
We can calculate that
PR Ty (6.13)
4,+6

It is obviously that A,(¢),4,(¢), 4 (¢),4,(¢) are bound-
edas t—>o.
Substitute (6.12) in (6.4), we obtain a singular path
c A
=t (6.14)
g% As+0

Substitute (6.13) in (6.5), we obtain a singular path

AM
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c
P (6.15)
9y, 4 +6
Using
_  k 2 4r,oX,
X, =i{(rz—az)+\/(rz—0'2) +%}
_ 1 _ X _
b :ﬂ_fl|:(ri_61_q1El)xl_ 1k]1 +szz}’

A,4,,4;,,4,,45, 4, 4;, A, can be written as

1
1 1 dr,ox, |?
A4, zz(r2 —0'2)+5{(r2 -0,) +%}
-
. 10X, — _
8 {(rz —az)+\/<rz ~o)’ +”,§”}
2

0,’1"1‘0(2
c
A4, = p, p ? 2
— (ri_al_qlEl)fl_ = +O—2_2}
ﬂx1|: k,
nY, | oyk, 2 4nox "
4= T g i ot 4 2O
k2%, k,

k, 2X,
+ p,— &%, |:0(22,5Wf1:|
2 —2
_ rXx _ a +a
qz{(”z_gz_qlEJ)ﬁ_ lkl +0'2x2:| ( : 2)
1
2 —
o, A, PX
A7:;ﬂ12—d2—q2E2
(o +a,)
A al fxw
— E _ 6 f‘*’ 4 2 1 .
4 = PaaoEs As+5ﬁ1 A3+5[al+azj

Thus (6.14) and (6.15) can be written as

c A
F(x)= S S DU
(XI) (H q,%, j A5+0

Copyright © 2011 SciRes.

There exists a unique positive root X, =(x;)s; of
F(X)=0 in the interval 0<X, <k If the following
hold F (0) <0, F (k) >0, F'(x)>0 for X, >0, and
Similarly There exists a unique positive root y, =(y,)s
of G(7,)=0 in the interval 0<y, <k, If the fol-
lowing hold G (0) < 0, G (k,) > 0, G'(3,)>0 for
y,>0.

For X =(x)s, ¥, =()s>
we get

k 4r,0,X,
(xy)s :2—3[(;’2 —0'2)+\/(r2 _02)2 +%}

(yz)()‘ — a2w(yl)§ ;
Q)
) L (r -0, - E))_c ——rl()_cl)z‘y+0'(f)
ylﬁ_azﬂ)_ClW 1 1 L)X k, 2% )5
1
E)y=——
(&) q,(x))s
'{’i(xl)s(l_%]_ﬂ(xl)a(%)s_0'1(x1)a‘_o'2(x2)5:|
1 a,B(x)s(1)s(y,)sw
E); = —d,(»,)s
(5) 42()’2)a'|: w(n)s +(12)s 02) :|
e (B, = {azﬁ(xog(yl)aw_ 4
4 [ wn)s +()s

Hence once the optimal equilibrium,
()5 (x%)5,()g5 (1) 5) is determined, the optimal

harvesting effort (E,); and (E,); can be determined.

From (6.3), (6.4), (6.10), (6.11), (6.12) and (6.13), we
found that A.(#) where i =1, 2, 3,4, do not vary with
time in optimal equilibrium. Hence they remain bounded
as t—> .

7. Computer Simulation Discussion

We have considered a system of two populations at dif-
ferent stage structure. The stability of the interior equi-
librium point is studied and it is shown that the system is
stable. We have shown the stability results analytically
and also numerically. We can also considered a delayed
model system to take into account of the gestational de-
lay of the matured predator population. It is natural that
the consumption on the prey by the predator needs some
time to contribute to the biomass of the predator. So we
use delay differential Equation (7.1) to study such phe-

nomena.
2
rX
1 1%
=nx - —pBxy, —ox, +0,%, —q,Ex,
dt k,
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2
2

X
- = —2k—22+01x1 - 0,X, (7.1)
% _ alﬂxd’; _ & Bx,3,y,w
e wy +y, wn+»,
dy, a,pBx(t—7)yy,w
d_2= : 1( ) = —d,y, —q,Eyy, .
t Wh T+,

Delay differential equation models are studied exten-
sively in the study of several ecological systems by K.
Das and N. H. Gazi [26,27]. All those systems are two
and three dimensional systems. Since the present model
is four dimensional system, the analytical study of the
system is difficult to tractable and the expression for the
delay parameter values will be complicated for which the
system is stable. So, we solve the system numerically
only. The numerical solutions are shown in the Figures
2-5. The Figures 2 and 3 show the stable solution of

37

36

35

341

33+

x2- reserved prey

32

31

30+

29 . . . .
5 10 15 20 25 30 35 40
x1- unreserved prey

Figure 2. The stable phase portrait of prey in unreserved
zone verses prey in reserved zone for delayed model system
(7.1).
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g 30 g
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@ 10 g

% 5
) )

0 50 100 0 50 100

time time

150

150
100 100

50 50

Immature predators in patch |
Matured predators in patch |

0 50 100
time time

Figure 3. The stable time series evolution of the prey and
predator populations of the delay model system (7.1) for 7 <
10.
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Figure 4. The unstable time series evolution of the prey and
predator populations of the delay model system (7.1).

X 106
12

10+

Matured predators in patch |

0 | | | | | | | | |
0 0.2 0.4 0.6 0.8 1 1.2 14 1.6 1.8 2

Immature predators in patch |

x 10

Figure 5. Unstable phase-portrait of the predator popula-
tions for the delayed model system (7.1) with delay pa-
rameter value 7 > 10.

the populations for 7 < 10 while the Figures 4 and 5
show that the system is unstable for 7 > 10.
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