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Abstract

We prove that as the viscosity and heat-conductivity coefficients tend to zero,
respectively, the global solution of the Navier-Stokes equations for one-dimensional
compressible heat-conducting fluids with centered rarefaction data of small
strength converges to the centered rarefaction wave solution of the corres-
ponding Euler equations uniformly away from the initial discontinuity.
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1. Introduction and the Main Result

We study the asymptotic behavior, as the viscosity and heat-conductivity go to
zero, respectively, of solutions to the Cauchy problem for the Navier-Stokes eq-
uations for a one-dimensional compressible heat-conducting fluid (in Lagran-

gian coordinates):

(1.1)
[ uzj (Hx) [uuxj
e+— +(up) =K|—| +¢& - .
2 ), * v ), Vo,
with (discontinuous) initial data
(u,v,€)(x,0)=(uy,vy.6)(x), x€R, (1.2)

where v,u,0,p=p(e,v) and e denote the specific volume, the velocity, the

DOI: 10.4236/jamp.2018.610180 Oct. 29, 2018

2142 Journal of Applied Mathematics and Physics


http://www.scirp.org/journal/jamp
https://doi.org/10.4236/jamp.2018.610180
http://www.scirp.org
https://doi.org/10.4236/jamp.2018.610180
http://creativecommons.org/licenses/by/4.0/

S. F. Cui

temperature, the pressure and the internal energy respectively, and &,x are the
viscosity and heat conductivity coefficients, respectively. At infinity, the initial

data u,,v,,e, areassumed to satisfy

lim (uo,vo,eo)(x):(ui,vi,ei), (1.3)

x—t0

where u,,v, and e, are given constant states.

The system (1.1), describing the motion of the fluid, is the conservation laws
of mass, momentum and energy.

The asymptotic behavior of viscous flows, as the viscosity vanishes, is one of
the important topics in the theory of compressible flows. It is expected that a
general weak entropy solution to the Euler equations should be (strong) limit of
solutions to the corresponding Navier-Stokes equations with same initial data as
the viscosity and heat conductivity tend to zero, respectively.

For the one-dimensional compressible isentropic Navier-Stokes equations

v, —u, =0,
1.4
wtp(v), :g[ﬂj , .
: v ).
and the corresponding inviscid p-system

v, —u, =0, (15)
5

u, +p(v)x =0,

the vanishing viscosity limit for the Cauchy problem has been studied by several
researchers. In [1] Di Perna uses the method of compensated compactness and
established almost everywhere convergence of admissible solutions (ug,vg) of
(1.4) to an admissible solution of (1.5), provided that (u‘g,vg) is uniformly L*
bounded and V* is uniform bounded away from zero. However, this uniform
boundedness is difficult to verify in general, and the abstract analysis in [1] gets
little information on the qualitative nature of the viscous solutions. In [2] Hoff
and Liu investigate the inviscid limit problem for (1.4) in the case that the un-
derlying inviscid flow is a single weak shock wave, and they show that solutions
of the compressible Navier-Stokes equations with shock data exist and converge
to the inviscid shocks, as viscosity vanishes, uniformly away from the shocks.
Based on [2] [3], Xin in [4] shows that the solution to the Cauchy problem for
the system (1.4) with weak centered rarefaction wave data exists for all time and
converges to the weak centered rarefaction wave solution of the corresponding
Euler equations, as the viscosity tends to zero, uniformly away from the initial
discontinuity. Moreover, for a given centered rarefaction wave to the Euler equ-
ations with finite strength, he constructs a viscous solution to the compressible
Navier-Stokes system with initial data depending on the viscosity, such that the
viscous solution approaches the centered rarefaction wave as the viscosity goes
to zero at the rate |ln €| gl uniformly for all time away from ¢=0. In the va-
nishing viscosity limit, the Prandtl boundary layers (characteristic boundaries)

are studied for the multidimensional linearized compressible Navier-Stokes equ-
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ations by using asymptotic analysis in [5] [6] [7], while the boundary layer sta-
bility in the case of non-characteristic boundaries and one spatial dimension is
discussed in [8] [9]. We mention that there is an extensive literature on the va-
nishing artificial viscosity limit for hyperbolic systems of conservation laws, see,
for example, [1] [3] [10]-[19], also cf. the monographs [20] [21] [22] and the
references therein. We also mention that the convergence of 1-d Broadwell
model and the relaxation limit of a rate-type viscoelastic system to the isentropic
Euler equations with centered rarefaction wave initial data are studied in [23]
[24], respectively. And, in [25], the solution of the Navier-Stokes equations for
one-dimensional compressible heat-conducting fluids with centered rarefaction
data of small strength had been proved exist globally in time, and moreover, as
the viscosity and heat-conductivity coefficients tend to zero, the global solution
converges to the centered rarefaction wave solution of the corresponding Euler
equations uniformly away from the initial discontinuity.

However, in those paper, x is generally dependent of &, while in this pa-
per, we will show the dissipation limit in the case that k¥ and & are indepen-
dent of each other.

Our aim in this paper is to study the relation between the solution
(u’“‘e,v’(’e,e”’g)(x,t) of the Navier-Stokes equations for a compressible heat-
conducting fluid (1.1) and the solution (u,v,e)(x,t) of the corresponding in-

viscid Euler equations:

v, —u, =0,
u +p =0,
P 2 (1.6)
[e+u—j +(up) =0,
2) *
with the initial data
(u,v,e)(x,O):(ﬁo,ﬁo,éo)(x), xeR, (1.7)
satisfying
lim (#7,,7,,8, )(x) = (u.,v..e,), (1.8)

x—>to0
with the same constant states (u.,v,,e.) asin (1.3).

It is convenient to work with the equations for the entropy s and the absolute

temperature 6. The second law of thermodynamics asserts that
Ods = de + pdv.

We assume, as is customary in thermodynamics, that given any two of ther-
modynamics variables p,e,8,s and p, we can obtain the remaining three va-
riables. If we choose (v,0) as independent variables and write
(p.e,s)=(p.e.s)(v,0), we deduce that

e, (v,0
s, (v,@) =D, (V,H), Sy (V,G) = %, e, (v,@) =0p, (v,0) - p(v,H).
Then, a straightforward calculation gives
0 92 2
s, =K|—=| +K x2+5u", (1.9)
vl ) vl ve
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and

2
g 1 2P (0) K (@j £ 5% (1.10)
x e&(

! eg(v,H) xzeg(v,H) 7 v,H)T'

We may also choose (v,s) asindependent variables and write
p=p(v.s), 0=0(v,s).

Thus, instead of (1.1), we shall study the system (1.1),, (1.1), and (1.9), or
(1.1),, (1.1), and (1.10). Namely, we shall consider

v,—u, =0,
u
u+plv,s) =¢|—1|,
(), [v j (1.11)
0. 0? u
S, =K = | +Kk—5+e—,
vl ). v ve

with initial data

(u V., S ), x<0,

(u,v,s)(x,O):(uo,vo,so)(x)={ T (1.12)

(u v S), x>0,

+9 Vo 4

where u,,v, and s, are the constant states. The corresponding inviscid Euler

equations read:

v,—u, =0,
u, +p(v,s) =0, (1.13)
s, =0.

We assume in this paper that the pressure p is a smooth function of its argu-
ments satisfying
pv(v,s)<0<pw(v,s), v>0. (1.14)

Notice that the condition (1.14) assures the system (1.13) has characteristic
speeds

Ah=—y-p,. =0, 4 =\-p,,

and there are two family of rarefaction waves for the Euler equations (1.13). For
illustration, we describe only the 1-rarefaction waves, and thus assume
s* =s_=5 . The case for the 3-rarefaction waves can be dealt with similarly.

Suppose the end states (u,,v,,5) can be connected by 1-rarefaction waves.
The centered 1-rarefaction wave connecting (u_,v_,s) to (u,,v,,5) is the
self-similar solution (u,v,s)(x,?) =(ur,v’,s’)(x/t) of (1.13) defined by (see,
e.g., [26] [27])

(1.15)
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which is uniquely determined by the system (1.13) and the rarefaction wave ini-
tial data

(u ,V ,F), x<0,

(u,v,s)L_O=(u6,v§,s(§)(x)={ o (1.16)

(u,,v,,5), x>0.

s Vo

For the internal energy e(v,0), we assume

e, (v,0)>0 for v,0>0. (1.17)

For the sake of convenience, throughout this paper we denote

a=lu,—u |+, v

In this paper, we prove that the solution of system (1.11) with the centered
rarefaction wave initial data (1.16) of small strength o exists for all time and
converges to the centered rarefaction wave of the Euler equation (1.13) as x,¢&
tends to zero respectively, uniformly away from the initial discontinuity. More
precisely, the main result of this paper reads:

THEOREM 1.1. Let the constant states (u,,v,,5) be connected by a centered
1-rarefaction wave (u’(x/t),v’(x/t),s"(x/t)) defined by (1.15). Assume that
(1.14) and (1.17) hold. Then, for & small enough, the compressible Navi-
er-Stokes equations (1.11) with the rarefaction wave initial data (1.16) have a
global piecewise smooth solution (u’(’g (x,t),v’(’g (x,t),s’("g (x,t)) , such that

K,

1) u*°,0°° are continuous for >0, v and u

K&
X b

iformly Hoélder continuous in the set x<0,/>7 and x>0,/>7 for any

K,E K&
vi©,05° are un-

>0 5wt ulfvie,0°,05° are HoOlder continuous on compact set

t 27 xx 2 Txt

(x,t),x #0,¢>0 . Moreover, the jumpsin v at x=0 satisfy
‘[v"’g (O,I)]‘ <C exp(-Cyt/e),

and so does the other jumps, where C,,C, are positive constants independent
of tand &,and [] denotes jumps in what follows.
2) The solution (u’(’g,v’(’g,s’("g) converges to the centered rarefaction wave

(u",v’,s’) as £ >0,k >0 uniformly away from ¢=0, ie, for any positive

(7 (x.t) v (x,8),5% (x.1)) _(ur (fjv (éjs @B

K.,& K.

3) For any fixed £¢>0 and x>0, the solution (u’("g,v €S ’5) approaches

h, we have

lim sup
£-0,k0 xeR,(>h

the centered rarefaction wave (u’,vr,s") uniformly as time goes to infinity, Ze.,

((r)(t)(ﬁ)-( (7} (7) Hj

To prove Theorem 1.1 and to overcome the difficulties induced by non-isentropy

limsup =0.

11— IE]RI

of the flow, we shall adapt and modify the arguments in [25], but we do not use
the natural scaling argument, and we do not assume that x=0(¢).
We point out here that in view of Theorem 1.1, an initial jump discontinuity

at x=0 can be allowed in (1.2). The evolution of this jump discontinuity is an
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important aspect in our analysis. It has been shown in [28] that the discontinuity
evolution follows a curve % =—[u]/[v] in x-plane, and the jump discontinuity
in v,u, and 6 _ decays exponentially in time, while the discontinuity in zand
6 are smoothed out at positive time, see [28] for details. We shall exploit this
fact in the proof of Theorem 1.1.

In Section 2 we reformulate the problem and give the proof of Theorem 1.1,
while Section 3 is dedicated to the derivation of a priori estimates used in Section
2.

Throughout this paper, we use the following notation:

R =(=0,0), R =(0.0) [ =] Laays [-r =l oy

0 ©
T S T A

2. Reformulation and the Proof of Theorem 1.1

In this section, we will reduce the proof of Theorem 1.1 to the nonlinear
time-asymptotic stability analysis of rarefaction waves for the system (1.11) un-
der non-smooth perturbations.

First, we derive some necessary estimates on the rarefaction waves of the Euler
equations (1.13) based on the inviscid Burgers equation, in particularly, we con-
struct an explicit smooth 1-rarefaction wave which well approximates a given

centered 1-rarefaction wave. We start with the Riemann problem for the Burgers

wt+(w—2j =0,
2 . (2.1)

equation:

where w;(x) is given by

w., x<0,
Wo(x):{w x>0

s
If w_<w,, then the problem (2.1) has the centered rarefaction wave solution
W (x,t)=w"(x/t) given by
w, x/t<w,
w(x,t)=1x/t, w.<x[t<w,,
w, x/t=w,.

+9
To construct a smooth rarefaction wave solution of the Burgers equation
which approximates the centered rarefaction wave, we set for §>0,

w++w_+w

wy (x) = w(5x) = : ;W- tanh (5x)

2
and for each & >0, we solve the following initial value problem
2
w, + R 0,
) -

w(x,O) =W; (x)
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Next, we state certain properties that will be used later.

LEMMA 2.1. (S. JIANG [25]) For each & >0, the problem (2.2) has a unique
global smooth solution wj (x, t) , such that

D) w<wi(xt)<w,, ow;(x,t)>0 for xeR,1>0,5>0.

2) For any 1< p<oo, there is a constant C(p) depending only on p, such

that
o.ws (1)], < C(P)min{(w+ —w )5 (w, —w )" t"“/P},
s ()], < C(p)min{(w+ )5 S %}
05 (5, = C(P)min{(m )& 5 %}
3)

lim sup|w; (x,0)—w" (x,t)| =0.

1>+0 R

Now, set w, =4 (v.,5), and we define V' (x,7),U(x,1),S(x,1),0(x,t), the

smooth approximation (vr u',s', e ) , by
A (V(x,t),?) =W (x,t), U(x,t) =u, +IVV(x,z) (_pv (z,?) dz.,
S(x,t)=5, O(x,1)=0(V(x.1),5).

Then, it is not difficult to see that V' (x,7),U(x,t),S(x,1),0(x,t) satisfy

V.-U,=0,
U, +p(V,®)X =0,
S, (V,0)=0, (2.3)
®t +MU)( :0,
€o

and due to Lemma 2.1, the following lemma holds for
V(x,1),U(x,t),8(x,1),0(x,1).

LEMMA 2.2. (S. JIANG [25]) The functions V(x,7),U(x,t),S(x,t) and
O(x,t) constructed above satisfy:

1) V,=U,>0 forall xeR,z20.

2) For any 1< p<oo, there is a constant C(p) depending only on p, such

that
V,U_,0) (1), <C(p)mini{as?,a" Ve, (2.4)
[(7,.0..0,)(-.1)],, <C(p)min{
||(V‘(x’Uxx’®xx)(.’t)||LP = C(p)mln {aé‘zl/‘”,é‘ll/p %}7 (25)
[V U @) (1)), < C(p)min{aé“/p,a“/p %} 2:6)
3)
limsup (V,U,S,@)(x,t)—(vr,u",s’,é”)(x,t)‘ =0. (2.7)
D% yeR
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4)
(V,.U,.0,)(x.1)

<C|(r,.U,.0,)(x.1)|. (2.8)

Consequently, from Lemmas 2.1 and 2.2, it follows that (V,U,®)(x,t) con-
verges to (v",ur,Hr)(x,t) as t > oo,

The proof of Theorem 1.1 is broken up into several steps. We start with the
observation that by making use of the smooth rarefaction wave (V,U,0)(x,t)

constructed above (e.g. one may take 6 =1), one can decompose the solution
(9,0 of (1.1, (1.9) and (1.10) into

(o, 0)(x,0)=(v—-V,u-U,0-0)(x,t), &(x,t)=s(x,1)-5.

Substituting the above decomposition into (1.1), (1.9) and (1.10), we obtain
the system for the functions ¢,y,9,&:

(0,_1//X :0’

(2.9)

with initial data
(P.v..£)(x.0) = (@0 W0 &) = (Vo = Voot Uy, 0, = Oy 5, =5), (2.10)

where (@,,v,.¢,.&,) and its derivatives are sufficiently smooth away from
x=0 butupto x=0 and ((po,!//0,¢0,§0)eL2(R), @, €L (R’)ﬁLz (R*).

We shall show that the Cauchy problem (2.9), (2.10) possesses a unique global
solution (@,y,¢,&)(x,¢) in the same function class as for (u’{"g,v’("g,ﬁ’(’g) in
Theorem 1.1. Moreover, (¢,y,¢) goes to zero uniformly as ¢ — 0. This con-
vergence then yields Theorem 1.1 due to Lemmas 2.1 and 2.2.

LEMMA 2.3. (Hoff [28]) Suppose that N (0) is suitably small so that there
exist two positive constants v and v with v<v, (x) <v for all xeR.
Then, there is a constant 7 >0, such that the Cauchy problem (2.9), (2.10) has
a solution (@,p,¢) on Rx [O,T] in the same function class as for
(u'“’g,v'“":,é’”‘g) in Theorem 1.1. Moreover, @,,¢ satisfy

1) There exists a positive constant C such that
2 2 T
swp([(o.0-0) +lo. (O )+, Wovo)0)

2) There is a positive constant C, such that

sup [ 8O 0 YO )+ N80
<C{N(0)+5"}.

Sdr<C{N?(0)+6").

2
dr
+
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3) There are constant C,,C, >0 independent of 7, such that

L] =[ ]

PROPOSITION 2.4. (A priori estimate)Let the assumptions in Lemma 2.3 be
satisfied. Assume that the Cauchy problem (2.9), (2.10) has a solution
(o.w.9)(x,t) on Rx[0,T] for some >0, in the same function class as in

< C exp{-Ct}

Lemma 2.3. Denote

2

+

4+

v, (O +[e. ()

Then, there are positive constants 77, and Cindependent of ¢, such that for
each fixed ¢, if

NZ(to,t):=lsupt{||(go,y/,¢)(t)||2+ o (t i }, 0<t, <t.
<5<

N*(t.t,)<m,
then the following estimates hold

N (ty,t,)+ [ [(0.00.08.)(7)
<CN? (1,1, +C€LO(” RN +||V/x||)(f)df

9. )(f)df+Cg+C/c+C51/4,
(?)dr
<C{|| o 8) () +(0ovt) ()]

+ngt0(||(¢,v’y/x7Wm’¢x’¢m) 4 +

+Cxk t(
fo

A

2
dr

+Cx ,;(||(¢x,¢x) ’

XX

sup ||(!//X,

fo

51/4}

i)(t“)df

(¢ )[) (7)di + o+ Cx

Y,

s

(0..9,)

Proof of Theorem 1.1. By the systems (2.3) and (2.9), Lemma 2.2,

Cauchy-Schwarz’s and Sobolev’s inequalities, we easily find that

[N ORI

which together with Lemma 2.3 yields 11msup| ) l//(x,t),¢(x,t))|—>0.

2
xdt<oo,

Hence, In view of Lemma 2.2, we have proved Tileorem 1.1.

O

3. Uniform a Priori Estimates

In this section we derive the key a priori estimates given in Proposition 2.4. First,

we introduce the normalized entropy:
2 2
n(v,u,s,V,U,S) = (e(v,9)+%j—[e(V,®)+U7j
~{-p(V.0)(v=V)+U(u-U)+0O(s-5)},

where we have used the fact that ¢, (v,s)=—p(v,0), ¢, (v,5)=0.

An easy computation implies that 7 satisfies the equation:

DOI: 10.4236/jamp.2018.610180

2150 Journal of Applied Mathematics and Physics


https://doi.org/10.4236/jamp.2018.610180

S. F. Cui

n, +{(p(v,9)—p(V,®))y/}x +(.9®V/)3 +K®¢XZJ

7 vO?

Op, (V,0 Op, (V,0
—UX{pV(V,G))w—p@(V,@) o )¢+ o )5}
€o €o
= 8%+K% + SM-HC& (3.1)
v vl ). v vO
U V. 2 U N
+(_gt//c0x2 s, pyU. 400, ¢4 : )
v v vO Vo vO
2 2
LU wUY, 40 ov. o)
vO v v92 Vv:o v6*

Employing (3.1), one has
LEMMA3.1. Suppose that the assumptions of Proposition 2.4 hold. Then,

v ) < ) J(6)e

<C(llowr )0 = M0 ] I (7)) o

t ) (3.2)
+ CEN(tO,t)2/3 LO ||(¢x,l//x,¢x) i (f)df
+CxN (1.0 [ (0,0, (7) d.
PROOF. Integrating (3.1) with respect to fand x, we get
Y10 A (N0 T R (GL
s (3.3)
sc[”(;a,v,,q;)(to)” @Rjj,
where
R, :L; [( ))W)x +(e%+x%]xj(x,f)dxdf,
R2=I'L(g )(xt)dxdt
R=[].(e(u. WI )+K( 1)) () e,

R_LOL( (|UX¢ g )+K( 0 ¢|+|0 ))(x,z)dxdf.

Recalling the definition of N(7,,7) and applying Lemma 2.2, for given

a,R; can be estimated as follows.

R jq (1,0)+p(V.0)+¢ ":}/1+K[¢¢D(f)dxdf:0,

R,<Cfl ( Pl 0, ) )4
C . (| 1/2 1/2 )
scj;g( )y/X o )( )dr
O k(N (1.0, +||® ||4“)< )di

<ce(n totj||l,, [ (7)ai + ")
1iG )dt+51/4)

+Cr(N ()]
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re<Cf!(lol"* 01", )(7)ai
cce] () ot Jw.rf ) @)ai
ccx (el Kool 0.1 ) (1)
<[ (M)l <o) (7)ai
gjt;(Nt Do)+, ||8/3)(f)df
o] (¥l +Jo. (i)
sc(Wlun] J6 (e +o%)
g(Nt t;||w I (7)di +5")
(N0 fons ) ()i + ).

+Ck N

and

R <Cef (w80 Jwodo oI U7 ) (7) e

ok Koo " l0.]) (7)o
<caf N () wx,aﬁx,conllz Hwrl f()a
+ O (N (1t (o8 ) +l0,()a
P g ()i + 6

+Cre N (t0st)" [ [ ) ()0 + 8%},

SC&‘{N(IO 1)

where we have used Sobolev’s inequality:
el oy < Cl1 DUl gy 1< p <, for all w e € (R")
Holder’s inequality:
T P

forlSp,qSoo,l+l:1,ueL"(U),veLq(U).
P q

Young’s inequality:
1 1
"”V"Ll(u) < ;"”"Z’(u) + ;”V”Z‘f(u)

for 1< p,g< oo, l+l=1, uel’(U),vel' (U).
P 49
and the following inequality:

Jow @), ai < sw o (), I, Jew (),

<cs™ o ( f||Lp di

dt

¥4
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Substituting the above estimates for R,,(j=1,--,4) into (3.3), we obtain
(3.2). This completes the proof.

O
LEMMA3.2. Suppose that the assumptions of Proposition 2.4 hold. Then
2 t 2 (A A
o, (1)], + el (7)di
< C{I((/Jx,t//)(to) O+ ovov) i(f)df+5} (3.4)
+Cef (v )L (7) d.

PROOF. Multiplying the second equation of (2.9) by & , one obtains
v

2
e o, | () 2 vep. vl (Ul
2\ v v N v v v
t

2 2
J{ﬂpv(Vﬁ)JFW_X} od. (vﬁ){tszx B t//t//xVx)
v v

2
v v v

(3.5)

2V, (p.(20)=p, (.0))+0, (1, (+.0)-p, (V.0))}

: U Uy, V., U
H{_%WM%%JH(_@ o QU (vl oU.)

V2 VS V2 V3 VS V3

Integrating (3.5) with respect to x,7 over (,,t)xR,we infer
2 t 2 /A ~
o.(t) i+L0 C(F)di

<c{flo. ) 0

with

?,

2 2
+ +
+ +

2 t
+
+ ty

(v..9,)

2 . (3.6)
W((p,qj)m)(;)dn;fej},

Ry :_J';L(W;VX
Re=[ [.(lvU.0,

R7 = -[t; .Lr (|l//”¢x

) (x.7)dxdi,

)(x.7 ) dxd?,

+Vpy,

v 0:|)(x.)dxdi,

+

R, :f [ |[U.9?|(x.7)dvdi R, = £R,,
A
R, = gj; [, (Vo |+UV.0,])(x.7) dxdi,
R, =€It; L( Vw.ol+U.@! )(x,f)dxdf,

where R j,( j=5,--,1 1) can be bounded as follows, using Sobolev’s imbedding
theorem and Lemma2.3 (iii) (see [25] for detail).

R, < CI;IIWXIF (7)di +c, R <C[ (0w, “(7)di+c,
R <Cf (0w, v.) “(F)di+c, R<Cf o[ (7)di + .,

R <Cef |(pov v, [ (7)di+ce,  R,<Ce [ e (7)di +ce.
Ry <Cef |(v.0,) *(7)di +Ce.
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Inserting the estimates for R,(j=5,---,11) into (3.6), we arrive at

(7)d

2 2 t
v, +],

" (7)dr.

2 t
+
fo

2. (1)].
(@0w)(t)

+ Cg.[t;

P,

£C{ +

i(f)dfm} (3.7)

(¢x’(//x’l//xx)

+

(0,127,

Finally, combining Lemma 3.1 with Lemma 3.2, we conclude
v g.0)OF + 1 (V7. (000 )i
<l 9 +o. (O + ]l () + 5 (3.8)

+Cef! (#)di + [ |(0.s9,)

(0,.v.-8,)

(0 tvov.) " (F)di +ce.

Comparing with the standard energy estimate for the compressible Navi-
er-Stokes equations, we refer (3.8) to the basic energy estimate.

Next, we proceed to estimate higher order derivatives of y,¢ in the space
r (to,t;Lz (Ri)) )
LEMMA 3.3.Suppose that the assumptions of Proposition 2.4 hold. Then,

v O+ vl (7)ai
<cflev )@l +lv. (x)

(0.0, (7)di + Ce.

()d7 (3.9)

i+ ((px9¢x’l//xﬂl//xx)

2 t
+Ce¢
+ 1o

+ CKL; |

PROOF. Multiplying the second equation of (2.9) by —y__, one obtains

2 2
(WX J _(l//t(//x)x—i_gﬂ
t

2 %

V.
wx szl//)ﬁx + g X!//x l//XX

2

=(p,(v.0)0, + P, (v.0)4,)v.. +¢

v (3.10)
U
e Xi);‘//xx e {pv(v,H)—pV (V’®)}l//xx
U VU
+0,{py (v.0) = po (V.®)}v, & XXVW”” g Vx;//n,

which, by integrating with respect to xand ¢ leads to

oo (0 +f; ol (7) i
<. @) +] [ (vw,), (x.7) vz

SR (e SN G 610
U,p.v.)(x.7)dxdi

)(x.7) dxd?,

2
+
+

o] [ fow. sl

+Cof [l

The terms on the right hand side of (3.11) can be bounded as follows (see [25]

U]+

Uy,

l//,XJC
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for detail),
o5 ), (e axdi < (el ol + ol + ) (7)ai.
SLOL ¢X(//xt//u)|(x,t)dxdtSC5 ( )(f)df,

ol o)) (i) dxdi < Caf, (Jvral: + 5 (000)

WXX WX

+N(t 1)

X7 x

(7).

V) (.7) dxdd < Ce . () di + Ces.

1o d+

Substituting the above estimates into (3.11), we obtain (3.9).

Similarly, we can bound the derivatives of ¢ as follows.
LEMMA 3.4Assume that the assumptions of Proposition 2.4 hold. Then,

to i+5)
)( )di

)(f)df+C£+Cic.

X

SC(" gp,l//,¢ t
+Ce ((¢ WV )

+Ck t0(| P, i+

(3.12)

Vs

(4.8,

PROOF. Multiplying the third equation of (2.9) by —¢_, then integrating
with respect to xand ¢ utilizing (3.7) and (3.8), we deduce that

b (O + ] oIl (7) et
< ¢x(o L+ Cef v [} i +C[ [ (84,), (x.F)dxdi
+CKH|¢ coxx(xf) v (x.F ) dxd?
. xt)dxdt
+CKL,L (V.60 +[0,0.])(x.7) dvdi
+CSI;L|¢xv||‘/’xe|(x’£)dde+Cg.[t;L|¢yx||Uf|(x,f)dxdf (3.13)

+CKL;-L¢ ( ~*

xx

o) (.7 dxd?,
where the right hand side can be estimated as follows (see [25] for detail),

J ). (9., )+ (Il + o + ) 7).
<[, L. L (7)di,

¢x¢x¢m|(x,f)dxdf Sg 18l (F)di + CoeN (a.) [

8f;J Vb,
el I L @)+ Can )] (oo v ) )
[ 11U gl (lol+1]) (.7 ) e

<L (7)o + €l 7, (0.0)](7)

(x,f)dxdf
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+|0.0,

wf, [L1ol(

K ¢t
SE.LO "¢“

V.4, )(x.7) dxd?

(7)di,

(x.F)dxai < £ [, [ (7)a + Coo]] I,

2(f)di + Cxaj; l(o..4.)

f, Lol (i),

el LV F)sdl < o (1) oo™

¢XX

and

8| (7)di +Cxs'.

<], [lg.l(le.r.

Substitution of the above estimates into (3.13) gives Lemma 3.4 immediately.
O

~ ~ K t
+|@,,])(x,7) dxd SELO

Now, combining Lemma 3.1 - 3.4, we obtain Proposition 2.4.
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