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Abstract 
 
A new class of distributions over (0,1) is obtained by considering geometrically weighted sum of independ-
ent identically distributed (i.i.d.) Bernoulli random variables. An expression for the distribution function (d.f.) 
is derived and some properties are established. This class of distributions includes U(0,1) distribution. 
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1. Introduction 
 
Uniform distribution plays an important role in Statistics. 
The existence of uniform random variable (r.v.) over the 
interval (0,1), using B(1,1/2) r.v.s is indicated in [1]. As a 
generalization, in this paper we consider the following 
geometrically weighted sum of i.i.d. Bernoulli r.v.s 
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where jZ s  are i.i.d. B(1,p) r.v’s. The remainder of the 
paper is organized as follows. In Section 2 we obtain the 
characteristic function of X and give an interpretation for 
the variable X. In Section 3 we derive the distribution 
function of X and prove some of its properties. In Section 
4 we discuss the existence of the density function. In 
Section 5 distribution of sum of a finite number of vari-
ables is considered and the graphs of its probability mass 
function (p.m.f.) and distribution function (d.f.) are given 
in the Appendix. 
 
2. The Characteristic Function and an 

Application of the Model 
 
2.1. The Characteristic Function 
 
Let ( ) F t P X t   be the d.f. of X. Then by the defi-
nition of X we have 

       1 1 1 1( ) 0 0 1 1

1
(1 ) .

2 2 2

F t P X t Z P Z P X t Z P Z

X X
P t p P t p

       

           
   

(2) 

Hence the characteristic function (c.f.) ( )t  of X 
satisfies the equation 

2( ) (1 ) ( 2) e ( 2)itt p t p t      . 

That is,  
2( ) ( 2) 1 eitt t p p       . 

Repeating this and replacing t by 2t  each time, we 
get, for n = 1, 2, . 
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The reproductive property of the characteristic func- 
tion exhibited by (3) is comparable to the characteristic 
function of an infinitely divisible distribution. For details 
one may refer to Section 7 of [2].  

Since ( 2 ) 1  as  nt n    we have 
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Note that if p = 0, this infinite product is 1, and, if p = 
1, the infinite product is . Thus p = 0 results in X be- 
ing degenerate at 0 while p = 1 implies that X is degene- 
rate at 1. If p = 1/2, then the product term in (4) is 
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Thus if p = 1/2 then X has U(0,1) distribution. 
 
2.2. An Application 
 
This resulting distribution can be used as a model in a 
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situation similar to the following. Suppose a particle has 
linear movement on the interval [0,1]. To capture the 
particle suppose the following binary capturing tech-
nique of dividing the existing interval into two equal 
halves is used. Suppose initially there are two barriers 
put at 0 and 1. After one unit of time a barrier is put at 
the midpoint of 0 and 1. Further the interval in which the 
particle is found is divided into two equal halves by 
placing a barrier at their midpoint and the process is con-
tinued. The intervals containing the particle keep on 
shrinking and finally shrink to X, the point at which the 
particle is captured in the long run. The behavior of the 
particle is known only to the extent that at the moment of 
placing a barrier after exactly one unit of time the parti-
cle is on the right side of the inserted barrier with prob-
ability p. 
 
3. Main Results 
 
3.1. Notation 
 
It is known that every number t,  has a binary 

representation through  as 

0 t 

, 0 or 1 
1n na a
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 we refer t as a finite binary termi- 

nating number and such a number can be represented by 

 for some . However such a 
number also can be represented as 
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It is to be noted that the right tail of the sequence {ai} 
is of the form (0,0,0  while that of the sequence {bi} is 
of the form (1,1,1,  In the following as a matter of 
convention we do not consider representation with the 
right tail of the form (1,1,1, ). Under such a convention, 

 corresponds to a unique binary sequence 

)
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 , then we shall 

denote this relation as , (BR to mean the binary 

representation). 
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3.2. Properties 
 
Theorem 1: 

Let  and  
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  , . Then 

the d.f. of X defined in (1) is given by  

01,2, , 0k s 
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  and 
r
 be the rth non-zero element  ka

in the sequence  , 1, 2,ia r   . Let  be the number 
having the binary representation 1 2 rk  
and 0

rt
,a a( , ,0,0, )a 

0t  . It is to be noted that r  is a finite binary 
terminating number. If t is not a finite binary terminating 
number then the sequence  increases to t . If t is a 
finite binary terminating number then we note that r

t

t t
 rt

  
for some finite r. For example, let  have a binary rep-
resentation 00010011000  and 

t

1 2 3 44, 7, 8, 11k k k k     so that 1

BR

t   (001000 , 

2

0 )
BR

t   (0001 100 300 0 ), 
BR

t   (000100110   

so on. We note that 1ia

00 ) and

  for , ,i k k   and 0 1 2 3, k
otherwise. Note that 
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Thus F does not have a jump at tr and    rF t F t . 
ng number. WLet t be not a finite binary representi e 

note that 
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Thus in general for r = 1, 2, 3 , we have 

  ( 1) 1r r  
1 .rk
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will have 

In fact F does not have jump at ant t, (0 < t < 1). 
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rv =  1 2, ,v v  whe e vi = ai+1, i = 1, 2, . 

Theorem 2: 
If u and v have binary representations (a , a , ,
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2
 conditional distribution of X given u ≤ X ≤ v is that of 

 nu X .

 Proof: Follows by the definition of X.  
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4. Nonexistence of Density Function 
 
We have proved that the distribution function of X is 

given by  Let the 

left derivative and the right derivative of F at t exist. 
These be denoted by
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nowhere differentiable in [0,1]. 
 
5. Distribution of Sum of a Finite Numb r of 

Bernoulli Random Variables 
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Appendix  

The graphs of p.m.f and d.f. of Xk for different values of p. 

Probability mass function Distribution function 

k = 5 k = 10 k = 5 k = 10 
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