
Journal of Computer and Communications, 2018, 6, 15-29
http://www.scirp.org/journal/jcc

ISSN Online: 2327-5227
ISSN Print: 2327-5219

DOI: 10.4236/jcc.2018.610002 Oct. 25, 2018 15 Journal of Computer and Communications

An Efficient Overflow Detection and Correction
Scheme in RNS Addition through Magnitude
Evaluation

Peter Awon-natemi Agbedemnab, Stephen Akobre, Edem Kwedzo Bankas

Department of Computer Science, University for Development Studies, Navrongo, Ghana

Abstract
Number Systems are media for representing numbers; the popular ones being
the Weighted Number Systems (WNS), which sometimes propagate carries
during arithmetic computations. The other category, Un-Weighted Number
Systems, of which the Residue Number System (RNS) belongs, do not carry
weights but have not yet found widespread usage in general purpose compu-
ting as a result of some challenges; one of the main challenges of RNS is over-
flow detection and correction. The presence of errors in calculated values due
to such factors as overflow means that systems built on this number system
will continue to fail until serious steps are taken to resolve the issue. In this
paper, a scheme for detecting and correcting overflow during RNS addition is
presented. The proposed scheme used mixed radix digits to evaluate the
magnitude of the addends in order to detect the occurrence of overflow in
their sum. The scheme also demonstrated a simplified technique of correcting
the overflow in the event that it occurs. An analysis of the hardware require-
ments and speed limitations of the scheme showed that it performs consider-
ably better in relation to similar state of art schemes.

Keywords
Number Systems, Weighted Number Systems (WNS), Residue Number
System (RNS), Overflow Detection, Overflow Correction, Faults, Mixed
Radix Digits (MRDs)

1. Introduction

The Residue Number System (RNS) has gained prominence in recent years due
to its seemingly inherent features such as parallelism and carry-propagation free

How to cite this paper: Agbedemnab,
P.A., Akobre, S. and Bankas, E.K. (2018)
An Efficient Overflow Detection and Cor-
rection Scheme in RNS Addition through
Magnitude Evaluation. Journal of Comput-
er and Communications, 6, 15-29.
https://doi.org/10.4236/jcc.2018.610002

Received: August 24, 2018
Accepted: October 22, 2018
Published: October 25, 2018

Copyright © 2018 by authors and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

http://www.scirp.org/journal/jcc
https://doi.org/10.4236/jcc.2018.610002
http://www.scirp.org
https://doi.org/10.4236/jcc.2018.610002
http://creativecommons.org/licenses/by/4.0/

P. A. Agbedemnab et al.

DOI: 10.4236/jcc.2018.610002 16 Journal of Computer and Communications

arithmetic computations. Notwithstanding the fact that, RNS is currently being
applied in Digital Signal Processing (DSP) intensive computations like digital
filtering, convolutions, correlations, Discrete Fourier Transform (DFT) compu-
tations, Fast Fourier Transform (FFT) computations and Direct Digital Fre-
quency synthesis [1] [2] [3]; researchers in the area are still working hard
around the clock in order that the RNS becomes a general purpose processor.
These efforts have not completely come to fruition because of challenges, in-
cluding conversion to and from RNS and decimal/binary number systems, the
moduli sets to use, overflow detection and correction, magnitude evaluation,
and scaling.

An RNS number X, is represented as
ii mx X= , where { }1 2, , ,i nm m m m= 

,
a set of pairwise relatively prime integers such that 1 2 nm m m≠ ≠ ≠ and

() ()1 2 1 1gcd , , ,gcd , 1nm m m m− =
. The residue set []1 2, , ,i nx x x x= 

 is unique-
ly represented provided X lies within the legitimate range []0, 1M − where

1
n

iiM m
=

=∏ is the Dynamic Range (DR) for the chosen moduli set. Let X and Y
be two different integers within the DR, if X Y , ( are the arithmetic oper-
ations , , ,+ − × ÷), results in a value that is outside the legitimate range, then
overflow is said to have occurred.

Overflow in general computing occurs if a calculated value is greater than its
intended storage location in memory [4] [5]; this relates to the DR in RNS which
situation usually arises during addition and multiplication operations and failure
to detect it will lead to improper or wrong representation of numbers and calcu-
lated results. Thus detecting overflow is one of the fundamental issues in the de-
sign of efficient RNS systems [6].

The conversion of an RNS number into its decimal/binary equivalent number
(a process called reverse conversion) has long been mainly based on the Chinese
Remainder Theorem (CRT) and the Mixed Radix Conversion (MRC) techniques
with few modifications being their variants of recent times. Whiles the former
deals with the modulo-M operation, the later does not but computes sequentially
which tends to reduce the complexity of the architecture. Computations can be
done using the MRC as follows:

1 2 1 3 1 2 1 2 1n nX e e m e m m e m m m −= + + + +  (1)

where , 1, 2, ,ie i n=  are the Mixed Radix Digits (MRDs) and computed as
follows:

1 1e x=

()
2 2

1
2 2 1 1 m m

e x e m−= −

()()
3 3

3

1 1
3 3 1 1 2 2m m m

e x e m e m− −= − −



()()()1 1 1
3 1 1 2 2 1 1

n n n
n

n n nm m m
m

e x e m e m e m− − −
− −= − − − −  (2)

https://doi.org/10.4236/jcc.2018.610002

P. A. Agbedemnab et al.

DOI: 10.4236/jcc.2018.610002 17 Journal of Computer and Communications

The MRDs ie are within the range 0 i ie m≤ ≤ , and a positive number, X, in
the interval []0, M can be uniquely represented. The magnitude of a number
can become crucial in the determination overflow in RNS. The sign of an RNS
number is determined by partitioning M into two parts: 0 2X M≤ <    (for
positive integers) and 2M X M≤ <   (for negative integers).

Recently, some techniques have been developed to detect overflow without
necessarily completing the reverse conversion process; in [7], an algorithm to
detect overflow in the moduli set ()2 3,2 1,2 ,2 1,2 3n n n n n− − + + by adding a
redundant modulus 2 to this moduli set and making use of ROM and XOR gates
was proposed. In [8], a method for detecting overflow in the moduli set

()2 1,2 ,2 1n n n− + based on group of numbers is presented where numbers
within []0, 1M − are distributed among several groups. Then, by using the
groupings, the scheme is able to diagnose in the process of addition of two
numbers, whether overflow has occurred or not. The scheme in [3] evaluated the
sign of the sum of two numbers X and Y and used it to detect overflow but
adopted a residue-to-binary converter proposed by [9]. The scheme in [10] pre-
sented a scheme by an Operands Examination Method for overflow detection for
the moduli set ()2 1, 2 , 2 1n n n− + during RNS addition. All these schemes either
relied on complete reverse conversion process as in the case of [3], or other
costly and time consuming procedures such as base extension, group number
and sign detection as in [8] and [10].

In this paper, a new technique for detecting and correcting overflow during
the addition of two RNS numbers for the moduli set { }2 1,2 ,2 1n n n− + is pre-
sented; the technique evaluates the sign of an RNS number by performing a par-
tial reverse conversion using the mixed radix conversion method. The sign of the
addends is evaluated using only the MRDs, which is then used to detect the oc-
currence of overflow during RNS addition. The rest of the paper is organized as
follows: Section 2 presents the proposed method, an anticipated hardware im-
plementation (albeit theoretical) is presented in Section 3 with its realization in
Section 4. Numerical illustrations are shown in Section 5 whiles the performance
of the proposed scheme is evaluated in Section 6. The final part of this paper is
the conclusion in Section 7.

2. Proposed Method

Given the moduli set { }2 1,2 ,2 1n n n− + , where 1 2 1nm = + , 2 2nm = and

3 2 1nm = − , then

()()2 2 1 2 1n n nM = + − (3)

This implies

()() ()()1 2 1 12 2 2 1 2 1 2 1 2 2n n n n n nM − − −= + − = + − (4)

Lemma 1: Given the moduli set { }2 1,2 ,2 1n n n− + , where 1 2 1nm = + ,

2 2nm = and 3 2 1nm = − for every integer 1n > , the following hold true [10]:

https://doi.org/10.4236/jcc.2018.610002

P. A. Agbedemnab et al.

DOI: 10.4236/jcc.2018.610002 18 Journal of Computer and Communications

2

1
1 1

m
m− = (5)

3

1
2 1

m
m− = (6)

3

1 1
1 2n

m
m− −= (7)

Therefore, we can re-write (2) as;

1 1e x=

()2 2 1 2 1 22
1 nne x e x x= − = −

()() ()1 1
3 3 1 2 3 1 2 2 12 1

2 1 2 nn
n ne x e e x e e− −

−−
= − − = − − (8)

Theorem 1: For the given moduli set, any integer 2X M≥ if and only if
1

3 2 2n ne −= − (9)

or
1 1

3 22 2 1 AND 2 2n n n ne e− −= − − = − (10)

for any 1n > .
Proof: If it can be shown that by substituting (9) and (10) into Equation (4)

that, ()()2 1 12 1 2 2n n nX − −≥ + − then, it implies 2X M≥ .
Assume (9) is true, then

() () ()
()

()()

1
1 2

2 2 1
1 2

2 1 1

2 1 2 2 2 2 1

2 1 2 2

2 1 2 2 , 1

n n n n n

n n n

n n n

X e e

e e

n

−

−

− −

= + + + − +

 = + + + − 

> + − ∀ >

Also, assume (10) is true, then

()() ()()
()

()()

1 1 2
1

2 2 1 1
1

2 1 1

2 2 2 1 2 2 1 2 2

2 1 2 2 2

2 1 2 2 , 1

n n n n n n n

n n n n

n n n

X e

e

n

− −

− −

− −

≥ + − + + − − +

 = + + − − 

≥ + − ∀ >

 ∎

Thus, from (9) and (10), it is possible to determine the sign of an RNS number
X; whether 2X M≥ (for a negative number) or 2X M< (for a positive
number).

The proposed method uses comparison by computing the MRDs of each of
the addends to determine which half of the RNS range it belongs rather than
performing a full reverse conversion. To detect overflow during addition of two
addends X and Y based on the moduli set { }2 1,2 ,2 1n n n− + , a single bit that in-
dicates the sign of that addend is defined. Now, based on this bit, three cases will
then be considered:

1) Overflow will definitely occur if both of the addends are equal to or greater
than half of the dynamic range (M/2).

2) Overflow will not occur if both of the addends are less than M/2.
3) Overflow may or may not occur if only one of the addends is equal or

greater than M/2 and will require further processing to determine whether over-

https://doi.org/10.4236/jcc.2018.610002

P. A. Agbedemnab et al.

DOI: 10.4236/jcc.2018.610002 19 Journal of Computer and Communications

flow will occur or not.
Let the magnitude evaluation of the addends (),X Y be represented by β ,

such that if 1β = or 0β = represents a positive number or a negative num-
ber respectively as shown in Equation (11). The evaluation of the undetermined
case in (3) is also represented by a single bit λ in (12).

1
3

1 1
3 2

1; 2 2

1; 2 2 1 AND 2 2
0;otherwise

n n

n n n n

e

e eβ

−

− −

 = −
= = − − = −



 (11)

and,

1 11; 2 1
0;otherwise

nx y
λ

 + ≥ += 


 (12)

The proposed method will then detect overflow as follows:

0; 0
1; 1

; 1

X Y

X Y

X Y

overflow
β β
β β

λ β β

+ =
= =

=
⋅
⊕



 (13)

where (),,+ ⋅ ⊕ refer to the logical operations (OR, AND, XOR), respectively.
For clarity, “1” means overflow occurs whilst “0” means no overflow.

Correction Unit

Let Z be the sum of the two addends. By substituting the individual MRDs for
both addends (X and Y), Z can be obtained as follows;

() () () () () ()
() ()() () ()() () ()()

1 2 1 3 1 2 1 2 1 3 1 2

1 1 2 2 1 3 3 1 2

Z X Y
e X e X m e X m m e Y e Y m e Y m m

e X e Y e X e Y m e X e Y m m

= +

= + + + + +      
= + + + + +

by letting () ()i i ie X e Yψ = + , we shall have

1 2 1 1 2Z m m mψ ψ ψ= + + (14)

Thus by adding the individual MRDs of the two addends, we obtain the sum Z
according to (1) without having to compute separately for its MRDs. The value
of Z obtained from (14) is the correct result of the addition whether overflow
occurs or not. In case of overflow occurrence, the redundant modulus is em-
ployed by shifting M one bit to the left in order to accommodate the value.

3. Hardware Implementation

From Equation (8), the MRD’s 1e , 2e and 3e can be represented in binary as;

1 1, 1, 1 1,1 1,0

1n

n ne e e e e
+

−=
 



 

 (15)

2 2, 1 2, 2 2,1 2,0n n

n

e e e e e− −= 



 (16)

3, 1 3, 2 3,1 3,03 n n

n

e e e e e− −= 



 (17)

https://doi.org/10.4236/jcc.2018.610002

P. A. Agbedemnab et al.

DOI: 10.4236/jcc.2018.610002 20 Journal of Computer and Communications

Equations (15) to (17) can further be simplified as follows;

1 1 1, 1, 1 1,1 1,0

1

n n

n

e x x x x x−

+

= =






 (18)

2 2 1 2 12 2

2, 1 2, 2 2,1 2,0 1, 1 1, 2 1,1 1,0

2

2, 1 2, 2 2,1 2,0

n n

n

n n n n

n n

n n

n
n

e x x x t

x x x x t t t t

e e e e

− − − −

− −

= − = +

= +

=

 









 (19)

where,

1 1 1, 1, 1 1,1 1,0 1, 1 1, 2 1,1 1,02

1 2 2

1, 1 1, 2 1,1 1,0

2

n

n n

n

n n n n

n n

n

n nx x x x

t x x x x x x x x x− − −

+

− −

   
   = − = − = −
 



=

 
  

 

 



 







 (20)

and
1 1

3 3 1 2 2 3 4 2 12 1

2, 1 2,1 2,0 3, 1 3,1 3,0 4, 1 4,1 4,0

2 1

3, 1 3, 2 3,1 3,0

2 2 nn

n

n n

n n n

n

n

n

n

n

n

e x e e t t t

t t t t t t t t t

e e e e

− −
−−

− − −

−

− −

= − − = + +

= + +

=

  

 









 (21)

where

()1 1
2 3 3, 1 3, 2 3,1 3,0 3,0 3, 1 3,2 3,12 1

2 1

2 2n

n

n
n n

nn

n
nt x x x x x x x x x− −

− − −−

−

= = = 




 (22)

()1 1
3 1 1, 1, 1 1,1 1,02 1

1 2 1

1
1, 1, 1 1,1 1,0

2 1

2 2

2 2

n

n

n

n n
n n

n

n n
n n

n

t x x x x x

x x x x

− −
−−

+ −

−
−

−

= − = −

 
 



×


= − +








 (23)

Since, 1x is a number that is smaller than 2 1n + , two cases are considered
for 1x . First, when 1x is smaller than 2n , and second, when 1x is equal to
2n [11]. If 1, 0nx = , we have

()1
31 1, 1 1, 2 1,1 1,0 1,0 1, 1 1,2 1,1

2 1

2
n nn

n
n n nt x xx x x x x x−
− − −

−

= − = 




 (24)

Else if 1, 1nx = , the following binary vector can be obtained as



1
32 1,

11 2 1

2 2 00 0 011 1
n

n n
n

nn

t x−

−− −

= − × =
 
 
 
 



 (25)

https://doi.org/10.4236/jcc.2018.610002

P. A. Agbedemnab et al.

DOI: 10.4236/jcc.2018.610002 21 Journal of Computer and Communications

Therefore, 3t is calculated as

31 1,
3

32 1,

, if 0
, if 1

n

n

t x
t

t x
==  =

 (26)

And finally,

()4 2 2, 1 2, 2 2,1 2,0 2, 1 2, 2 2,1 2,02 1

2 1

n

n

n n n

n

n

n

t e e e e e ee e e− − − −−

−

= − = − = 




 (27)

Let γ and ω represent the MRDs of the two integers X and Y respectively.
Thus from equations (19) to (21), we have

i i iψ γ ω= + (28)

which implies
1

1 1 1 1, 1, 1 1,0 1, 1, 1 1,0 1, 1, 1 1,0

1

n

n n n n n n

n

ψ γ ω γ γ γ ω ω ω ψ ψ ψ
+

− − −

+

= + = + =


 









 (29)

1

2, 1 2, 2 2,0 2, 1 2,0 2, 1 2, 2 22 2 2 ,0

1

n

n n n n n

n

ψ γ ω γ γ γ ω ω ψ ψ ψ
+

− − − − −

+

= + = + =








 



 (30)

finally,
1

3, 1 3, 2 3,0 3, 1 3,0 3, 1 3, 2 33 3 3 ,0

1

n

n n n n n

n

ψ γ ω γ γ γ ω ω ψ ψ ψ
+

− − − − −

+

= + = + =








 



 (31)

and so, Z is implemented as;

 

2 1

1, 1,0 3,3 1 3,0 4,2 1 4,0

1 3 2

3 1

1 3 4 0 0 0 0 0
n n

n n n

n n n

n

z z z z zZ z z z z
+

− −

+

+

= + + = + +    

  



 (32)

where,

1 1z ψ= (33)
2

2
3 2 3 3, 1 3,0 2,2 1 2,0

2

3,3 1 3,3 2 3,1 3,0

2 00 0
n

n
n n

n n

n n

z z z z

z z z z

ψ ψ ψ− −

− −

= + =

=



  

 




 (34)

2, 1 2,0 2, 12 2 2

2,2 1 2,2 2 2

2,

,1 2,0

000 02
n

n n

n

n

n

n

n

z

z z z z

ψ ψ ψ ψ ψψ

− −

− −= +

=

=


  

 




 (35)

and,

4 3 4,2 1 4,23, 1 3, 2 4,1 41 3,0 ,0002 0n
nn

n

n

n

z z z z zψψ ψ ψ− − −= = =


  



 (36)

4. Hardware Realization

The hardware realization of the proposed scheme is divided into four parts as

https://doi.org/10.4236/jcc.2018.610002

P. A. Agbedemnab et al.

DOI: 10.4236/jcc.2018.610002 22 Journal of Computer and Communications

shown in Figures 1-4. First is the Partial Conversion Part (PCP) shown in Fig-
ure 1, which evaluates the MRDs based on (18), (19) and (21) with their para-
meters clearly defined according to (20) and (21) - (27). The PCP begins with an
Operands Preparation Unit (OPU) which prepares the operands in (20), (22)
and (26) by simply manipulating the routing of the bits of the residues. Also, an
n-bit 2:1 Multiplexer (MUX) is used for obtaining (26). ADD1 is an n-bit Carry
Propagate Adder (CPA) and is used to compute (19), meanwhile (21) is obtained
by using an ()1n − -bit CPA as ADD2 whose save (1s) and carry (1c) are then
added using ADD3 which is also an ()1n − -bit CPA. These MRDs are used to
determine the sign of the RNS number in Figure 2. Thus, the critical path for
the PCP unit is made up of one ()2n modulo adder and two ()2 1n − modulo
adders.

Figure 1. Partial conversion part (PCP).

Figure 2. Magnitude evaluation part (MEP).

https://doi.org/10.4236/jcc.2018.610002

P. A. Agbedemnab et al.

DOI: 10.4236/jcc.2018.610002 23 Journal of Computer and Communications

Figure 3. Overflow detection part (ODP).

Figure 4. Overflow correction part (OCP).

Second, is the Magnitude Evaluation Part (MEP) shown in Figure 2, which
evaluates whether an RNS number is positive or negative according to Equation
(11). The MEP uses one AND gate and an OR gate. These are both two input
monotonic gates. Next, is the Overflow Detection Part (ODP) which compares
the sign bits of the two addends by using an AND gate according to (13) which

https://doi.org/10.4236/jcc.2018.610002

P. A. Agbedemnab et al.

DOI: 10.4236/jcc.2018.610002 24 Journal of Computer and Communications

is then ORed with the evaluated bit of the undetermined case in (12) as shown in
Figure 3. This is where the scheme detects the occurrence of overflow during the
addition of two numbers.

Lastly, in Figure 4 is the Overflow Correction Part (OCP). The OCP evaluates
the individual MRDs of the two addends separately to achieve the sum Z in (14).
This is done using five adders; four regular CPAs and one carry save adder
(CSA). This is computed according to (29) - (36). ADD4, ADD5 and ADD6 add
separately the MRDs 1 2,e e and 3e respectively for the two addends. The re-
sult of ADD4 is of importance because it is used in evaluating the undetermined
case in (12). 2z is a result of concatenation as well as 3z which do not require
any hardware. ADD7 is a CSA which computes the result of 1 2,z z and 3z
whose save (2s) and carry (2c) are added using ADD 8 which is a CPA in order
to get accurate sum Z whether overflow occurs or not. The schematic diagrams
for the proposed scheme are presented in Figures 1-4.

The area (A) and time (D) requirements of the proposed scheme are estimated
based on the unit-gate model as used in [12] and [13] for fair comparison. In
this model, each two-input monotonic gate such as AND, OR, NAND, NOR has
area 1A = and delay 1D = , each two-input gate XOR/XNOR has 2A D= = ,
The area and delay of an inverter is a negligible fraction of a unit, and it is thus
assumed to require zero units of area and delay [14]. A 2:1 multiplexer has an
area 3A = and delay 2D = ; A full adder has an area of seven gates and a de-
lay of four gates but a CSA has a constant delay. Also, the adder requirements
based on this model as presented in [14] is adopted for the comparison since the
adopted adders are similar to the adders used for the proposed scheme. The re-
sults state that an estimation modulo;

() 2
32 : 5 log ,
2

n A n n n = +  
 

22 log 3D n= +

() ()22 1 : 12 3 log 1 ,n A n n n− = + −

22 log 3D n= +

Therefore, the hardware requirements of the scheme are as follows:

1 2 3 2
1523 log 3
2PCP ADD MUX ADD ADDA A A A A n n = + + + = + + 

 

()2 2MEP ANDA A= =

()2 2ODP ANDA A= =

4 5 6 63 14OCP ADD ADD ADDA A A A n= + + = +

The estimated delay of the scheme will be as follows:

1 2 3 24 log 5PCP ADD ADD ADDD D D D n= + + = +

()2 2MEP ANDA A= =

()2 2ODP ANDA A= =

https://doi.org/10.4236/jcc.2018.610002

P. A. Agbedemnab et al.

DOI: 10.4236/jcc.2018.610002 25 Journal of Computer and Communications

4 7 8 9OCP ADD ADD ADDD D A A gates= + + =

Now, in order to make an effective comparison, the proposed scheme is di-
vided into two: Proposed Scheme I for when the OCP is not included in the
comparison and Proposed Scheme II for the OCP being included in the compar-
ison. The delay of the OCP overrides the delay of the delays of the MEP and the
ODP if Proposed Scheme II is consider since they will all be computed in parallel
and the critical path in that case will be dictated by the OCP. The area for the
PCP and the MEP is double for two numbers X and Y but this is not the case for
the delay of the two numbers since they are computed in parallel. Thus, the total
area and delay of the proposed schemes are:

() 22 2 46 15log 10PCP MEP ODPTOTAL IA A A A n n= + + = + +

() 24 log 7PCP MEPTOTAL ID D D n= + = +

and,

() 22 2 109 15log 24PCP MEP ODP OCPTOTAL IIA A A A A n n= + + + = + +

() 24 log 16PCP OCPTOTAL IID D D n= + = +

5. Numerical Illustrations

This subsection presents numerical illustrations of the proposed scheme.
Checking overflow in the sum of 49 and 21 using RNS moduli set {3, 4, 5}

() ()5 4 3 101100 1149 4,1,1 100,01,01RNS RNSX = = =

() ()5 4 3 101100 1121 1,1,0 001,01,00RNS RNSY = = =

() ()() () 101100 11101100 11
100,01,01 001,01,00 000,10,01 RNSRNS

Z = + =

A reverse conversion of () 101100 11000,10,01 RNS
 will result in the decimal

number 10. Whilst the sum of the decimal numbers 49 and 21 is 70 which is ob-
vious of overflow occurring.

Checking for RNS overflow using the proposed technique

()2 10049 01 100 001e = − =

() ()() 2
3 1111

49 01 01 10 01 01 10 2 2e = − − = − = = −

which implies, ()49 1β = from (11).
Also,

()2 100 100100
21 01 | 001| 01 11 000e = + − = + =

() ()() 2
3 1111

21 11 01 10 11 100 11 01 2 3e = − − = − = = −

But ()2 21 000e = , which implies ()21 0β = from (11).
Therefore, from (13) overflow λ= and needs further processing.
Since () () 2

3 349 21 10 01 11 2 2e e+ = + = > − , the scheme detects overflow oc-
curring after processing.

Correction unit

https://doi.org/10.4236/jcc.2018.610002

P. A. Agbedemnab et al.

DOI: 10.4236/jcc.2018.610002 26 Journal of Computer and Communications

() ()() ()()()
()

100 001 01 00 101 10 01 101 100

1000110 70 decimal

Z = + + + + +

= =

Checking overflow in the sum of 10 and 11 using RNS moduli set {3, 4, 5}

() ()5 4 3 101100 1149 4,1,1 100,01,01RNS RNSX = = =

() ()5 4 3 101100 1111 1,3,2 001,11,10RNS RNSY = = =

() ()() () 101100 11101100 11
000,10,01 001,11,10 001,01,00 RNSRNS

Z = + =

RNS to decimal conversion of () 101100 11001,11,10 RNS will result in the de-
cimal number 21, which is correct result of 10 + 11.

Checking for RNS overflow using the proposed algorithm

() 2
2 10010 10 000 10 2 2e = − = = −

() ()() 2
3 1111

10 01 000 10 10 10 10 00 2 3e = − − = − = < −

which implies, ()10 0β = since () 2
3 10 00 2 3e = < − , from (11).

Also,

() 2
2 100 100100

11 11 | 001| 11 11 10 2 2e = + − = + = = −

() ()() 2
3 1111

11 10 001 10 10 10 10 00 2 3e = − − = − = < −

this implies, ()11 0β = since () 2
3 10 00 2 3e = < − , from (11).

Thus, from (13) 0overflow = , which implies no overflow has occurred ac-
cording to the proposed scheme after processing.

Correction unit

() ()() ()()()
()

000 001 10 10 101 00 00 101 100

010101 21 decimal

Z = + + + + +

= =

6. Performance Evaluation

The performance of the proposed scheme is compared to schemes in [3] and [8];
the scheme in [8] does not contain a correction unit; the scheme by [3] has a
correction unit but is not included in the comparison. And so both schemes do
not have the correction component in the comparison. Table 1 shows the analy-
sis of the proposed scheme with that of similar state-of-the art schemes.

As shown in Table 1, the proposed scheme for detecting overflow (Proposed
Scheme I) in the given moduli set is very cheap in terms of hardware resources

Table 1. Area, delay comparison.

Scheme Area Delay

[8] () 276 33 2 logn n n+ 26log 23n +

[3] 37 18n + 216 log 13n n+ +

Proposed I 246 15log 10n n+ + 24log 7n +

Proposed II 2109 15log 24n n+ + 24log 16n +

https://doi.org/10.4236/jcc.2018.610002

P. A. Agbedemnab et al.

DOI: 10.4236/jcc.2018.610002 27 Journal of Computer and Communications

and faster than the scheme by [8] but requires a little hardware resources than
the scheme by [3] albeit slower than the Proposed Scheme I. However, the com-
plete proposed scheme (Proposed Scheme II) for detecting and correcting over-
flow requires more hardware resources than the other compared schemes but
faster than both schemes by [3] and [8].

Clearly, Proposed Scheme I completely outperforms the similar state-of-the-art
scheme by [8] for detecting overflow, but the trust of this work is to detect and
correct overflow anytime it occurs; in so doing it has made tremendous gains in
speed as shown in Table 1.

Table 2 shows a detailed analysis of the complexities and delay of the pro-
posed scheme with that of the similar state-of-the-art schemes.

Table 2 reveals interesting results theoretically, from the analysis it is clear
that the Proposed Scheme I requires less resources than what is required by [8].
From the table, smaller values of n shows that Proposed Scheme II requires more
resources than that by [8] but drastically improves upon this requirements up to
over 51% better than [8] for higher values of n (i.e. n > 4), this is clearly shown
in the graph in Figure 5. The analysis from the table also shows that whilst for
smaller values of n (say n = 1), the Proposed Scheme I is better than the scheme
by [3] in terms of hardware resources, it tends to require up to about 18% re-
sources more than that by [3].

From Figure 5, the scheme by [8] sharply increases for higher values of n fol-
lowed by the Proposed Scheme II whilst the scheme by [3] requires the lesser
resources. Regarding the delay, the proposed schemes (Proposed I and Proposed
II) completely outperforms both schemes by up to over 35% than the scheme by
[8] and over 90% faster than the scheme by [3] as shown in Table 2 and in Fig-
ure 5. It is worth noting that whiles the scheme by [3] performs better in terms
of hardware resources, it tends to be the worst performer for speed and the

Table 2. Area, delay analysis for various values of n.

n
AREA DELAY

[8] [3] Proposed I Proposed II [8] [3] Proposed I Proposed II

1 76 57 56 133 23 29 7 16

2 185 96 117 257 29 46 11 20

4 436 174 224 490 35 79 15 24

8 1004 330 423 941 41 144 19 28

16 2272 642 806 1828 47 273 23 32

32 5072 1266 1557 3587 53 530 27 36

64 11,200 2514 3044 7090 59 1043 31 40

128 24,512 5010 6003 14,081 65 2068 35 44

256 53,248 10,002 11,906 28,048 71 4117 39 48

512 114,944 19,986 23,697 55,967 77 8214 43 52

Total 212,949 40,077 47,833 112,422 500 16,543 250 340

https://doi.org/10.4236/jcc.2018.610002

P. A. Agbedemnab et al.

DOI: 10.4236/jcc.2018.610002 28 Journal of Computer and Communications

Figure 5. Graphs of area and delay analysis of the various compared schemes.

percentage difference shows that Proposed I is more efficient. It is clear from the
graphs that in terms of delay, the scheme in [3] sharply increases with increasing
values of n whiles the marginal increase of the rest of the schemes are minimal.

7. Conclusion

Detecting overflow in RNS arithmetic computations is very important but can be
difficult, more so, if it has to be corrected. In this paper, an ingenious technique
of detecting overflow by use of the MRC method through magnitude evaluation
as well correcting the overflow when it occurs was presented. This technique did
not require full reverse conversion but used the MRDs to evaluate the sign of a
number to detect the occurrence of overflow. With this technique, the correct
value of the sum of two numbers is guaranteed whether overflow occurred or
not. The scheme has been demonstrated theoretically to be very fast than simi-
lar-state-of-the-art scheme but required a little more hardware resources. How-
ever, the Proposed Scheme I, which is the one without the correction component
completely outperformed the scheme in [8] in terms of both area and delay re-
quirements. Also, results from Table 2 and Figure 5 showed that for higher
values of n, the Proposed Scheme II also outperformed the scheme by [8]. Future
works will focus on simulating the theoretical results and implementing it on
FPGA boards.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this pa-
per.

https://doi.org/10.4236/jcc.2018.610002

P. A. Agbedemnab et al.

DOI: 10.4236/jcc.2018.610002 29 Journal of Computer and Communications

References
[1] Omondi, A. and Premkumar, B. (2007) Residue Number Systems: Theory and Im-

plementation, vol. 2. Imperial College Press, London. https://doi.org/10.1142/p523

[2] Agbedemnab, P.A. and Bankas, E.K. (2015) A Novel RNS Overflow Detection and
Correction Algorithm for the Moduli Set {2^n−1,2^n,2^n+1}. International Journal
of Computer Applications in Technology, 110, 30-34.
https://doi.org/10.5120/19403-0925

[3] Younes, D. and Steffan, P. (2013) Universal Approaches for Overflow and Sign De-
tection in Residue Number System Based on {2n − 1, 2n, 2n + 1}. The Eighth Inter-
national Conference on Systems, Seville, 27 January-1 February 2013, 77-81.

[4] Daabo, M.I. and Gbolagade, K.A. (2012) RNS Overflow Detection Scheme for the
Moduli set {M − 1, M}. Journal of Computing, 4, 39-44.

[5] Daabo, M.I. (2015) Overflow Detection Schemes for Residue Number System Ar-
chitecture. PhD Thesis, University for Development Studies, Tamale, Ghana.

[6] Debnath, R.C. and Pucknell, D.A. (1978) On Multiplicative Overflow Detection in
Residue Number System. Electronics Letters, 14, 129-130.
https://doi.org/10.1049/el:19780088

[7] Askarzadeh, M., Hosseinzadeh, M. and Navi, K. (2009) A New Approach to Over-
flow Detection in Moduli Set 2n−3, 2n−1, 2n+1, 2n+3. 2009 Second International
Conference on Computer and Electrical Engineering, 1, 439-442.
https://doi.org/10.1109/ICCEE.2009.197

[8] Rouhifar, M., Hosseinzadeh, M., Bahanfar, S. and Teshnehlab, M. (2011) Fast Over-
flow Detection in Moduli set {2^n-1,2^n,2^n+1}. International Journal of Comput-
er Science Issues, 8, 407-414.

[9] Piestrak, S.J. (1995) A High-Speed Realization of a Residue to Binary Number Sys-
tem Converter. IEEE Transactions on Circuits and Systems. Part II: Analog and
Digital Signal Processing, 42, 661-663. https://doi.org/10.1109/82.471401

[10] Siewobr, H. and Gbolagade, K.A. (2014) RNS Overflow Detection by Operands
Examination. International Journal of Computer Applications in Technology, 85,
1-5. https://doi.org/10.5120/14938-2906

[11] Molahosseini, A.S., Navi, K., Dadkhah, C., Kavehei, O. and Timarchi, S. (2010) Effi-
cient Reverse Converter Designs for the New 4-Moduli Sets {2^n−1, 2^n, 2^n+1,
2^(2n+1)−1} and {2^n−1, 2^n+1, 2^n, 2^(2n)+1} Based on New CRTs. IEEE
Transactions on Circuits and Systems I: Regular Papers, 57, 823-835.
https://doi.org/10.1109/TCSI.2009.2026681

[12] Zimmermann, R. (1999) Efficient VLSI Implementation of Modulo (2^n±1) Addi-
tion and Multiplication. Proceedings 14th IEEE Symposium on Computer Arith-
metic, Adelaide, 14-16 April 1999, 158-167.

[13] Chang, C.H., Low, J. and Yung, S. (2011) Simple, Fast, and Exact RNS Scaler for the
Three-Moduli Set {2 ^n−1, 2^n, 2^n+1}. IEEE Transactions on Circuits and Sys-
tems I: Regular Papers, 58, 2686-2697. https://doi.org/10.1109/TCSI.2011.2142950

[14] Sousa, L. (2015) 2^n RNS Scalers for Extended 4-Moduli Sets. IEEE Transactions on
Computers, 99, 1-14.

https://doi.org/10.4236/jcc.2018.610002
https://doi.org/10.1142/p523
https://doi.org/10.5120/19403-0925
https://doi.org/10.1049/el:19780088
https://doi.org/10.1109/ICCEE.2009.197
https://doi.org/10.1109/82.471401
https://doi.org/10.5120/14938-2906
https://doi.org/10.1109/TCSI.2009.2026681
https://doi.org/10.1109/TCSI.2011.2142950

	An Efficient Overflow Detection and Correction Scheme in RNS Addition through Magnitude Evaluation
	Abstract
	Keywords
	1. Introduction
	2. Proposed Method
	Correction Unit

	3. Hardware Implementation
	4. Hardware Realization
	5. Numerical Illustrations
	6. Performance Evaluation
	7. Conclusion
	Conflicts of Interest
	References

