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Abstract 
Number Systems are media for representing numbers; the popular ones being 
the Weighted Number Systems (WNS), which sometimes propagate carries 
during arithmetic computations. The other category, Un-Weighted Number 
Systems, of which the Residue Number System (RNS) belongs, do not carry 
weights but have not yet found widespread usage in general purpose compu-
ting as a result of some challenges; one of the main challenges of RNS is over-
flow detection and correction. The presence of errors in calculated values due 
to such factors as overflow means that systems built on this number system 
will continue to fail until serious steps are taken to resolve the issue. In this 
paper, a scheme for detecting and correcting overflow during RNS addition is 
presented. The proposed scheme used mixed radix digits to evaluate the 
magnitude of the addends in order to detect the occurrence of overflow in 
their sum. The scheme also demonstrated a simplified technique of correcting 
the overflow in the event that it occurs. An analysis of the hardware require-
ments and speed limitations of the scheme showed that it performs consider-
ably better in relation to similar state of art schemes.  
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1. Introduction 

The Residue Number System (RNS) has gained prominence in recent years due 
to its seemingly inherent features such as parallelism and carry-propagation free 
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arithmetic computations. Notwithstanding the fact that, RNS is currently being 
applied in Digital Signal Processing (DSP) intensive computations like digital 
filtering, convolutions, correlations, Discrete Fourier Transform (DFT) compu-
tations, Fast Fourier Transform (FFT) computations and Direct Digital Fre-
quency synthesis [1] [2] [3]; researchers in the area are still working hard 
around the clock in order that the RNS becomes a general purpose processor. 
These efforts have not completely come to fruition because of challenges, in-
cluding conversion to and from RNS and decimal/binary number systems, the 
moduli sets to use, overflow detection and correction, magnitude evaluation, 
and scaling.  

An RNS number X, is represented as 
ii mx X= , where { }1 2, , ,i nm m m m= 

, 
a set of pairwise relatively prime integers such that 1 2 nm m m≠ ≠ ≠  and 

( ) ( )1 2 1 1gcd , , ,gcd , 1nm m m m− =
. The residue set [ ]1 2, , ,i nx x x x= 

 is unique-
ly represented provided X lies within the legitimate range [ ]0, 1M −  where 

1
n

iiM m
=

=∏  is the Dynamic Range (DR) for the chosen moduli set. Let X and Y 
be two different integers within the DR, if X Y , (  are the arithmetic oper-
ations , , ,+ − × ÷ ), results in a value that is outside the legitimate range, then 
overflow is said to have occurred. 

Overflow in general computing occurs if a calculated value is greater than its 
intended storage location in memory [4] [5]; this relates to the DR in RNS which 
situation usually arises during addition and multiplication operations and failure 
to detect it will lead to improper or wrong representation of numbers and calcu-
lated results. Thus detecting overflow is one of the fundamental issues in the de-
sign of efficient RNS systems [6]. 

The conversion of an RNS number into its decimal/binary equivalent number 
(a process called reverse conversion) has long been mainly based on the Chinese 
Remainder Theorem (CRT) and the Mixed Radix Conversion (MRC) techniques 
with few modifications being their variants of recent times. Whiles the former 
deals with the modulo-M operation, the later does not but computes sequentially 
which tends to reduce the complexity of the architecture. Computations can be 
done using the MRC as follows: 

1 2 1 3 1 2 1 2 1n nX e e m e m m e m m m −= + + + +               (1) 

where , 1, 2, ,ie i n=   are the Mixed Radix Digits (MRDs) and computed as 
follows: 

1 1e x=  

( )
2 2

1
2 2 1 1 m m

e x e m−= −  

( )( )
3 3

3

1 1
3 3 1 1 2 2m m m

e x e m e m− −= − −  

  

( )( )( )1 1 1
3 1 1 2 2 1 1

n n n
n

n n nm m m
m

e x e m e m e m− − −
− −= − − − −         (2) 
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The MRDs ie  are within the range 0 i ie m≤ ≤ , and a positive number, X, in 
the interval [ ]0, M  can be uniquely represented. The magnitude of a number 
can become crucial in the determination overflow in RNS. The sign of an RNS 
number is determined by partitioning M into two parts: 0 2X M≤ <     (for 
positive integers) and 2M X M≤ <    (for negative integers). 

Recently, some techniques have been developed to detect overflow without 
necessarily completing the reverse conversion process; in [7], an algorithm to 
detect overflow in the moduli set ( )2 3,2 1,2 ,2 1,2 3n n n n n− − + +  by adding a 
redundant modulus 2 to this moduli set and making use of ROM and XOR gates 
was proposed. In [8], a method for detecting overflow in the moduli set 

( )2 1,2 ,2 1n n n− +  based on group of numbers is presented where numbers 
within [ ]0, 1M −  are distributed among several groups. Then, by using the 
groupings, the scheme is able to diagnose in the process of addition of two 
numbers, whether overflow has occurred or not. The scheme in [3] evaluated the 
sign of the sum of two numbers X and Y and used it to detect overflow but 
adopted a residue-to-binary converter proposed by [9]. The scheme in [10] pre-
sented a scheme by an Operands Examination Method for overflow detection for 
the moduli set ( )2 1, 2 , 2 1n n n− +  during RNS addition. All these schemes either 
relied on complete reverse conversion process as in the case of [3], or other 
costly and time consuming procedures such as base extension, group number 
and sign detection as in [8] and [10]. 

In this paper, a new technique for detecting and correcting overflow during 
the addition of two RNS numbers for the moduli set { }2 1,2 ,2 1n n n− +  is pre-
sented; the technique evaluates the sign of an RNS number by performing a par-
tial reverse conversion using the mixed radix conversion method. The sign of the 
addends is evaluated using only the MRDs, which is then used to detect the oc-
currence of overflow during RNS addition. The rest of the paper is organized as 
follows: Section 2 presents the proposed method, an anticipated hardware im-
plementation (albeit theoretical) is presented in Section 3 with its realization in 
Section 4. Numerical illustrations are shown in Section 5 whiles the performance 
of the proposed scheme is evaluated in Section 6. The final part of this paper is 
the conclusion in Section 7.  

2. Proposed Method 

Given the moduli set { }2 1,2 ,2 1n n n− + , where 1 2 1nm = + , 2 2nm =  and  

3 2 1nm = − , then 

( )( )2 2 1 2 1n n nM = + −                     (3) 

This implies 

( )( ) ( )( )1 2 1 12 2 2 1 2 1 2 1 2 2n n n n n nM − − −= + − = + −          (4) 

Lemma 1: Given the moduli set { }2 1,2 ,2 1n n n− + , where 1 2 1nm = + , 

2 2nm =  and 3 2 1nm = −  for every integer 1n > , the following hold true [10]: 
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2

1
1 1

m
m− =                            (5) 

3

1
2 1

m
m− =                            (6) 

3

1 1
1 2n

m
m− −=                           (7) 

Therefore, we can re-write (2) as; 

1 1e x=  

( )2 2 1 2 1 22
1 nne x e x x= − = −  

( )( ) ( )1 1
3 3 1 2 3 1 2 2 12 1

2 1 2 nn
n ne x e e x e e− −

−−
= − − = − −            (8) 

Theorem 1: For the given moduli set, any integer 2X M≥  if and only if 
1

3 2 2n ne −= −                            (9) 

or 
1 1

3 22 2 1 AND 2 2n n n ne e− −= − − = −                  (10) 

for any 1n > . 
Proof: If it can be shown that by substituting (9) and (10) into Equation (4) 

that, ( )( )2 1 12 1 2 2n n nX − −≥ + −  then, it implies 2X M≥ . 
Assume (9) is true, then 

( ) ( ) ( )
( )

( )( )

1
1 2

2 2 1
1 2

2 1 1

2 1 2 2 2 2 1

2 1 2 2

2 1 2 2 , 1

n n n n n

n n n

n n n

X e e

e e

n

−

−

− −

= + + + − +

 = + + + − 

> + − ∀ >

 

Also, assume (10) is true, then 

( )( ) ( )( )
( )

( )( )

1 1 2
1

2 2 1 1
1

2 1 1

2 2 2 1 2 2 1 2 2

2 1 2 2 2

2 1 2 2 , 1

n n n n n n n

n n n n

n n n

X e

e

n

− −

− −

− −

≥ + − + + − − +

 = + + − − 

≥ + − ∀ >

         ∎ 

Thus, from (9) and (10), it is possible to determine the sign of an RNS number 
X; whether 2X M≥  (for a negative number) or 2X M<  (for a positive 
number). 

The proposed method uses comparison by computing the MRDs of each of 
the addends to determine which half of the RNS range it belongs rather than 
performing a full reverse conversion. To detect overflow during addition of two 
addends X and Y based on the moduli set { }2 1,2 ,2 1n n n− + , a single bit that in-
dicates the sign of that addend is defined. Now, based on this bit, three cases will 
then be considered:  

1) Overflow will definitely occur if both of the addends are equal to or greater 
than half of the dynamic range (M/2). 

2) Overflow will not occur if both of the addends are less than M/2. 
3) Overflow may or may not occur if only one of the addends is equal or 

greater than M/2 and will require further processing to determine whether over-
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flow will occur or not. 
Let the magnitude evaluation of the addends ( ),X Y  be represented by β , 

such that if 1β =  or 0β =  represents a positive number or a negative num-
ber respectively as shown in Equation (11). The evaluation of the undetermined 
case in (3) is also represented by a single bit λ in (12). 

1
3

1 1
3 2

1; 2 2

1; 2 2 1 AND 2 2
0;otherwise

n n

n n n n

e

e eβ

−

− −

 = −
= = − − = −



                 (11) 

and, 

1 11; 2 1
0;otherwise

nx y
λ

 + ≥ += 


                        (12) 

The proposed method will then detect overflow as follows: 

0; 0
1; 1

; 1

X Y

X Y

X Y

overflow
β β
β β

λ β β

+ =
= =

=
⋅
⊕



                     (13) 

where ( ),,+ ⋅ ⊕  refer to the logical operations (OR, AND, XOR), respectively. 
For clarity, “1” means overflow occurs whilst “0” means no overflow. 

Correction Unit 

Let Z be the sum of the two addends. By substituting the individual MRDs for 
both addends (X and Y), Z can be obtained as follows; 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( )( ) ( ) ( )( ) ( ) ( )( )

1 2 1 3 1 2 1 2 1 3 1 2

1 1 2 2 1 3 3 1 2

Z X Y
e X e X m e X m m e Y e Y m e Y m m

e X e Y e X e Y m e X e Y m m

= +

= + + + + +      
= + + + + +

 

by letting ( ) ( )i i ie X e Yψ = + , we shall have 

1 2 1 1 2Z m m mψ ψ ψ= + +                       (14) 

Thus by adding the individual MRDs of the two addends, we obtain the sum Z 
according to (1) without having to compute separately for its MRDs. The value 
of Z obtained from (14) is the correct result of the addition whether overflow 
occurs or not. In case of overflow occurrence, the redundant modulus is em-
ployed by shifting M one bit to the left in order to accommodate the value. 

3. Hardware Implementation 

From Equation (8), the MRD’s 1e , 2e  and 3e  can be represented in binary as; 

1 1, 1, 1 1,1 1,0

1n

n ne e e e e
+

−=
 



 

                      (15) 

2 2, 1 2, 2 2,1 2,0n n

n

e e e e e− −= 



                     (16) 

3, 1 3, 2 3,1 3,03 n n

n

e e e e e− −= 



                     (17) 
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Equations (15) to (17) can further be simplified as follows; 

1 1 1, 1, 1 1,1 1,0

1

n n

n

e x x x x x−

+

= =






                    (18) 

2 2 1 2 12 2

2, 1 2, 2 2,1 2,0 1, 1 1, 2 1,1 1,0

2

2, 1 2, 2 2,1 2,0

n n

n

n n n n

n n

n n

n
n

e x x x t

x x x x t t t t

e e e e

− − − −

− −

= − = +

= +

=

 









             (19) 

where, 

1 1 1, 1, 1 1,1 1,0 1, 1 1, 2 1,1 1,02

1 2 2

1, 1 1, 2 1,1 1,0

2

n

n n

n

n n n n

n n

n

n nx x x x

t x x x x x x x x x− − −

+

− −

   
   = − = − = −
 



=

 
  

 

 



 







     (20) 

and 
1 1

3 3 1 2 2 3 4 2 12 1

2, 1 2,1 2,0 3, 1 3,1 3,0 4, 1 4,1 4,0

2 1

3, 1 3, 2 3,1 3,0

2 2 nn

n

n n

n n n

n

n

n

n

n

n

e x e e t t t

t t t t t t t t t

e e e e

− −
−−

− − −

−

− −

= − − = + +

= + +

=

  

 









          (21) 

where 

( )1 1
2 3 3, 1 3, 2 3,1 3,0 3,0 3, 1 3,2 3,12 1

2 1

2 2n

n

n
n n

nn

n
nt x x x x x x x x x− −

− − −−

−

= = = 




    (22) 

( )1 1
3 1 1, 1, 1 1,1 1,02 1

1 2 1

1
1, 1, 1 1,1 1,0

2 1

2 2

2 2

n

n

n

n n
n n

n

n n
n n

n

t x x x x x

x x x x

− −
−−

+ −

−
−

−

= − = −

 
 



×


= − +








          (23) 

Since, 1x  is a number that is smaller than 2 1n + , two cases are considered 
for 1x . First, when 1x  is smaller than 2n , and second, when 1x  is equal to 
2n  [11]. If 1, 0nx = , we have 

( )1
31 1, 1 1, 2 1,1 1,0 1,0 1, 1 1,2 1,1

2 1

2
n nn

n
n n nt x xx x x x x x−
− − −

−

= − = 




       (24) 

Else if 1, 1nx = , the following binary vector can be obtained as 



1
32 1,

11 2 1

2 2 00 0 011 1
n

n n
n

nn

t x−

−− −

= − × =
 
 
 
 



            (25) 
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Therefore, 3t  is calculated as 

31 1,
3

32 1,

, if 0
, if 1

n

n

t x
t

t x
==  =

                       (26) 

And finally,  

( )4 2 2, 1 2, 2 2,1 2,0 2, 1 2, 2 2,1 2,02 1

2 1

n

n

n n n

n

n

n

t e e e e e ee e e− − − −−

−

= − = − = 




     (27) 

Let γ and ω represent the MRDs of the two integers X and Y respectively. 
Thus from equations (19) to (21), we have 

i i iψ γ ω= +                           (28) 

which implies 
1

1 1 1 1, 1, 1 1,0 1, 1, 1 1,0 1, 1, 1 1,0

1

n

n n n n n n

n

ψ γ ω γ γ γ ω ω ω ψ ψ ψ
+

− − −

+

= + = + =


 









    (29) 

1

2, 1 2, 2 2,0 2, 1 2,0 2, 1 2, 2 22 2 2 ,0

1

n

n n n n n

n

ψ γ ω γ γ γ ω ω ψ ψ ψ
+

− − − − −

+

= + = + =








 



   (30) 

finally, 
1

3, 1 3, 2 3,0 3, 1 3,0 3, 1 3, 2 33 3 3 ,0

1

n

n n n n n

n

ψ γ ω γ γ γ ω ω ψ ψ ψ
+

− − − − −

+

= + = + =








 



   (31) 

and so, Z is implemented as;  

 

2 1

1, 1,0 3,3 1 3,0 4,2 1 4,0

1 3 2

3 1

1 3 4 0 0 0 0 0
n n

n n n

n n n

n

z z z z zZ z z z z
+

− −

+

+

= + + = + +    

  



  (32) 

where, 

1 1z ψ=                           (33) 
2

2
3 2 3 3, 1 3,0 2,2 1 2,0

2

3,3 1 3,3 2 3,1 3,0

2 00 0
n

n
n n

n n

n n

z z z z

z z z z

ψ ψ ψ− −

− −

= + =

=



  

 




         (34) 

2, 1 2,0 2, 12 2 2

2,2 1 2,2 2 2

2,

,1 2,0

000 02
n

n n

n

n

n

n

n

z

z z z z

ψ ψ ψ ψ ψψ

− −

− −= +

=

=


  

 




         (35) 

and, 

4 3 4,2 1 4,23, 1 3, 2 4,1 41 3,0 ,0002 0n
nn

n

n

n

z z z z zψψ ψ ψ− − −= = =


  



     (36) 

4. Hardware Realization 

The hardware realization of the proposed scheme is divided into four parts as 
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shown in Figures 1-4. First is the Partial Conversion Part (PCP) shown in Fig-
ure 1, which evaluates the MRDs based on (18), (19) and (21) with their para-
meters clearly defined according to (20) and (21) - (27). The PCP begins with an 
Operands Preparation Unit (OPU) which prepares the operands in (20), (22) 
and (26) by simply manipulating the routing of the bits of the residues. Also, an 
n-bit 2:1 Multiplexer (MUX) is used for obtaining (26). ADD1 is an n-bit Carry 
Propagate Adder (CPA) and is used to compute (19), meanwhile (21) is obtained 
by using an ( )1n − -bit CPA as ADD2 whose save ( 1s ) and carry ( 1c ) are then 
added using ADD3 which is also an ( )1n − -bit CPA. These MRDs are used to 
determine the sign of the RNS number in Figure 2. Thus, the critical path for 
the PCP unit is made up of one ( )2n  modulo adder and two ( )2 1n −  modulo 
adders. 
 

 

Figure 1. Partial conversion part (PCP). 
 

 

Figure 2. Magnitude evaluation part (MEP). 
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Figure 3. Overflow detection part (ODP). 
 

 

Figure 4. Overflow correction part (OCP). 
 

Second, is the Magnitude Evaluation Part (MEP) shown in Figure 2, which 
evaluates whether an RNS number is positive or negative according to Equation 
(11). The MEP uses one AND gate and an OR gate. These are both two input 
monotonic gates. Next, is the Overflow Detection Part (ODP) which compares 
the sign bits of the two addends by using an AND gate according to (13) which 
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is then ORed with the evaluated bit of the undetermined case in (12) as shown in 
Figure 3. This is where the scheme detects the occurrence of overflow during the 
addition of two numbers.  

Lastly, in Figure 4 is the Overflow Correction Part (OCP). The OCP evaluates 
the individual MRDs of the two addends separately to achieve the sum Z in (14). 
This is done using five adders; four regular CPAs and one carry save adder 
(CSA). This is computed according to (29) - (36). ADD4, ADD5 and ADD6 add 
separately the MRDs 1 2,e e  and 3e  respectively for the two addends. The re-
sult of ADD4 is of importance because it is used in evaluating the undetermined 
case in (12). 2z  is a result of concatenation as well as 3z  which do not require 
any hardware. ADD7 is a CSA which computes the result of 1 2,z z  and 3z  
whose save ( 2s ) and carry ( 2c ) are added using ADD 8 which is a CPA in order 
to get accurate sum Z whether overflow occurs or not. The schematic diagrams 
for the proposed scheme are presented in Figures 1-4.  

The area (A) and time (D) requirements of the proposed scheme are estimated 
based on the unit-gate model as used in [12] and [13] for fair comparison. In 
this model, each two-input monotonic gate such as AND, OR, NAND, NOR has 
area 1A =  and delay 1D = , each two-input gate XOR/XNOR has 2A D= = , 
The area and delay of an inverter is a negligible fraction of a unit, and it is thus 
assumed to require zero units of area and delay [14]. A 2:1 multiplexer has an 
area 3A =  and delay 2D = ; A full adder has an area of seven gates and a de-
lay of four gates but a CSA has a constant delay. Also, the adder requirements 
based on this model as presented in [14] is adopted for the comparison since the 
adopted adders are similar to the adders used for the proposed scheme. The re-
sults state that an estimation modulo; 

( ) 2
32 : 5 log ,
2

n A n n n = +  
 

 

22 log 3D n= +  

( ) ( )22 1 : 12 3 log 1 ,n A n n n− = + −  

22 log 3D n= +  

Therefore, the hardware requirements of the scheme are as follows: 

1 2 3 2
1523 log 3
2PCP ADD MUX ADD ADDA A A A A n n = + + + = + + 

 
 

( )2 2MEP ANDA A= =  

( )2 2ODP ANDA A= =  

4 5 6 63 14OCP ADD ADD ADDA A A A n= + + = +  

The estimated delay of the scheme will be as follows: 

1 2 3 24 log 5PCP ADD ADD ADDD D D D n= + + = +  

( )2 2MEP ANDA A= =  

( )2 2ODP ANDA A= =  
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4 7 8 9OCP ADD ADD ADDD D A A gates= + + =  

Now, in order to make an effective comparison, the proposed scheme is di-
vided into two: Proposed Scheme I for when the OCP is not included in the 
comparison and Proposed Scheme II for the OCP being included in the compar-
ison. The delay of the OCP overrides the delay of the delays of the MEP and the 
ODP if Proposed Scheme II is consider since they will all be computed in parallel 
and the critical path in that case will be dictated by the OCP. The area for the 
PCP and the MEP is double for two numbers X and Y but this is not the case for 
the delay of the two numbers since they are computed in parallel. Thus, the total 
area and delay of the proposed schemes are: 

( ) 22 2 46 15log 10PCP MEP ODPTOTAL IA A A A n n= + + = + +  

( ) 24 log 7PCP MEPTOTAL ID D D n= + = +  

and, 

( ) 22 2 109 15log 24PCP MEP ODP OCPTOTAL IIA A A A A n n= + + + = + +  

( ) 24 log 16PCP OCPTOTAL IID D D n= + = +  

5. Numerical Illustrations 

This subsection presents numerical illustrations of the proposed scheme. 
Checking overflow in the sum of 49 and 21 using RNS moduli set {3, 4, 5} 

( ) ( )5 4 3 101100 1149 4,1,1 100,01,01RNS RNSX = = =  

( ) ( )5 4 3 101100 1121 1,1,0 001,01,00RNS RNSY = = =  

( ) ( )( ) ( ) 101100 11101100 11
100,01,01 001,01,00 000,10,01 RNSRNS

Z = + =  

A reverse conversion of ( ) 101100 11000,10,01 RNS
 will result in the decimal 

number 10. Whilst the sum of the decimal numbers 49 and 21 is 70 which is ob-
vious of overflow occurring. 

Checking for RNS overflow using the proposed technique 

( )2 10049 01 100 001e = − =    

( ) ( )( ) 2
3 1111

49 01 01 10 01 01 10 2 2e = − − = − = = −  

which implies, ( )49 1β =  from (11). 
Also,  

( )2 100 100100
21 01 | 001| 01 11 000e = + − = + =  

( ) ( )( ) 2
3 1111

21 11 01 10 11 100 11 01 2 3e = − − = − = = −  

But ( )2 21 000e = , which implies ( )21 0β =  from (11). 
Therefore, from (13) overflow λ=  and needs further processing. 
Since ( ) ( ) 2

3 349 21 10 01 11 2 2e e+ = + = > − , the scheme detects overflow oc-
curring after processing. 

Correction unit 
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( ) ( )( ) ( )( )( )
( )

100 001 01 00 101 10 01 101 100

1000110 70 decimal

Z = + + + + +

= =
 

Checking overflow in the sum of 10 and 11 using RNS moduli set {3, 4, 5} 

( ) ( )5 4 3 101100 1149 4,1,1 100,01,01RNS RNSX = = =  

( ) ( )5 4 3 101100 1111 1,3,2 001,11,10RNS RNSY = = =  

( ) ( )( ) ( ) 101100 11101100 11
000,10,01 001,11,10 001,01,00 RNSRNS

Z = + =  

RNS to decimal conversion of ( ) 101100 11001,11,10 RNS  will result in the de-
cimal number 21, which is correct result of 10 + 11. 

Checking for RNS overflow using the proposed algorithm 

( ) 2
2 10010 10 000 10 2 2e = − = = −    

( ) ( )( ) 2
3 1111

10 01 000 10 10 10 10 00 2 3e = − − = − = < −  

which implies, ( )10 0β =  since ( ) 2
3 10 00 2 3e = < − , from (11). 

Also,  

( ) 2
2 100 100100

11 11 | 001| 11 11 10 2 2e = + − = + = = −  

( ) ( )( ) 2
3 1111

11 10 001 10 10 10 10 00 2 3e = − − = − = < −  

this implies, ( )11 0β =  since ( ) 2
3 10 00 2 3e = < − , from (11). 

Thus, from (13) 0overflow = , which implies no overflow has occurred ac-
cording to the proposed scheme after processing. 

Correction unit 

( ) ( )( ) ( )( )( )
( )

000 001 10 10 101 00 00 101 100

010101 21 decimal

Z = + + + + +

= =
 

6. Performance Evaluation 

The performance of the proposed scheme is compared to schemes in [3] and [8]; 
the scheme in [8] does not contain a correction unit; the scheme by [3] has a 
correction unit but is not included in the comparison. And so both schemes do 
not have the correction component in the comparison. Table 1 shows the analy-
sis of the proposed scheme with that of similar state-of-the art schemes.  

As shown in Table 1, the proposed scheme for detecting overflow (Proposed 
Scheme I) in the given moduli set is very cheap in terms of hardware resources  
 
Table 1. Area, delay comparison. 

Scheme Area Delay 

[8] ( ) 276 33 2 logn n n+  26log 23n +  

[3] 37 18n +  216 log 13n n+ +  

Proposed I 246 15log 10n n+ +  24log 7n +  

Proposed II 2109 15log 24n n+ +  24log 16n +  
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and faster than the scheme by [8] but requires a little hardware resources than 
the scheme by [3] albeit slower than the Proposed Scheme I. However, the com-
plete proposed scheme (Proposed Scheme II) for detecting and correcting over-
flow requires more hardware resources than the other compared schemes but 
faster than both schemes by [3] and [8]. 

Clearly, Proposed Scheme I completely outperforms the similar state-of-the-art 
scheme by [8] for detecting overflow, but the trust of this work is to detect and 
correct overflow anytime it occurs; in so doing it has made tremendous gains in 
speed as shown in Table 1. 

Table 2 shows a detailed analysis of the complexities and delay of the pro-
posed scheme with that of the similar state-of-the-art schemes.  

Table 2 reveals interesting results theoretically, from the analysis it is clear 
that the Proposed Scheme I requires less resources than what is required by [8]. 
From the table, smaller values of n shows that Proposed Scheme II requires more 
resources than that by [8] but drastically improves upon this requirements up to 
over 51% better than [8] for higher values of n (i.e. n > 4), this is clearly shown 
in the graph in Figure 5. The analysis from the table also shows that whilst for 
smaller values of n (say n = 1), the Proposed Scheme I is better than the scheme 
by [3] in terms of hardware resources, it tends to require up to about 18% re-
sources more than that by [3]. 

From Figure 5, the scheme by [8] sharply increases for higher values of n fol-
lowed by the Proposed Scheme II whilst the scheme by [3] requires the lesser 
resources. Regarding the delay, the proposed schemes (Proposed I and Proposed 
II) completely outperforms both schemes by up to over 35% than the scheme by 
[8] and over 90% faster than the scheme by [3] as shown in Table 2 and in Fig-
ure 5. It is worth noting that whiles the scheme by [3] performs better in terms 
of hardware resources, it tends to be the worst performer for speed and the  
 
Table 2. Area, delay analysis for various values of n. 

n 
AREA DELAY 

[8] [3] Proposed I Proposed II [8] [3] Proposed I Proposed II 

1 76 57 56 133 23 29 7 16 

2 185 96 117 257 29 46 11 20 

4 436 174 224 490 35 79 15 24 

8 1004 330 423 941 41 144 19 28 

16 2272 642 806 1828 47 273 23 32 

32 5072 1266 1557 3587 53 530 27 36 

64 11,200 2514 3044 7090 59 1043 31 40 

128 24,512 5010 6003 14,081 65 2068 35 44 

256 53,248 10,002 11,906 28,048 71 4117 39 48 

512 114,944 19,986 23,697 55,967 77 8214 43 52 

Total 212,949 40,077 47,833 112,422 500 16,543 250 340 
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Figure 5. Graphs of area and delay analysis of the various compared schemes. 
 
percentage difference shows that Proposed I is more efficient. It is clear from the 
graphs that in terms of delay, the scheme in [3] sharply increases with increasing 
values of n whiles the marginal increase of the rest of the schemes are minimal. 

7. Conclusion 

Detecting overflow in RNS arithmetic computations is very important but can be 
difficult, more so, if it has to be corrected. In this paper, an ingenious technique 
of detecting overflow by use of the MRC method through magnitude evaluation 
as well correcting the overflow when it occurs was presented. This technique did 
not require full reverse conversion but used the MRDs to evaluate the sign of a 
number to detect the occurrence of overflow. With this technique, the correct 
value of the sum of two numbers is guaranteed whether overflow occurred or 
not. The scheme has been demonstrated theoretically to be very fast than simi-
lar-state-of-the-art scheme but required a little more hardware resources. How-
ever, the Proposed Scheme I, which is the one without the correction component 
completely outperformed the scheme in [8] in terms of both area and delay re-
quirements. Also, results from Table 2 and Figure 5 showed that for higher 
values of n, the Proposed Scheme II also outperformed the scheme by [8]. Future 
works will focus on simulating the theoretical results and implementing it on 
FPGA boards.  
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