
Applied Mathematics, 2011, 2, 1346-1355 
doi:10.4236/am.2011.211188 Published Online November 2011 (http://www.SciRP.org/journal/am) 

Copyright © 2011 SciRes.                                                                                  AM 

Fuzzy Fault Tree Analysis for Fault Diagnosis of Cannula 
Fault in Power Transformer 

Sanjay Kumar Tyagi1, Diwakar Pandey2, Vinesh Kumar2 
1Department of Applied Mathematics, Amity Institute of Applied Sciences,  

Amity University, Noida, India 
2Department of Mathematics, Chaudhary Charan Singh University, Meerut, India 

E-mail: sanjay_tyagi94@rediffmail.com 
Received April 17, 2011; revised July 12, 2011; accepted July 19, 2011 

Abstract 
 
Being one of the most expensive components of an electrical power plant, the failures of a power transformer 
can result in serious power system issues. So fault diagnosis for power transformer is highly important to 
ensure an uninterrupted power supply. Due to information transmission mistakes as well as arisen errors 
while processing data in surveying and monitoring state information of transformer, uncertain and incom-
plete information may be produced. Based on these points, this paper presents an intelligent fault diagnosis 
method of power transformer using fuzzy fault tree analysis (FTA) and beta distribution for failure possibil-
ity estimation. By using the technique we proposed herein, the continuous attribute values are transformed 
into the fuzzy numbers to give a realistic estimate of failure possibility of a basic event in FTA. Further, it 
explains a new approach based on Euclidean distance between fuzzy numbers, to rank the basic events in 
accordance with their Fuzzy Importance Index. 
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1. Introduction 
 
The involvement of a very large number of variables and 
their multiple interrelations make the design of a power 
transformer very complicated. This complicacy in design 
of a power system and variation in operating conditions 
causes the occurrence of a fault to be uncertain and ran-
dom. In present paper we introduce a new approach to 
the fault detection and analysis of a power transformer. 

Fault tree analysis (FTA) is proved to be a very effec-
tive tool to predict probability of hazard caused by a se-
quence and combinations of faults and failure events. A 
fault tree is a pictorial representation of various combi-
nations of faults leading to hazard. In fault tree analysis, 
we first explore a hazard and then look for events caus-
ing this hazard. In conventional FTA the basic events are 
assigned a crisp number. But there are various crucial 
and complex systems of great importance, which imparts 
vague characteristics. Due to the complexity of systems 
and their vague nature, it is very difficult to obtain an 
adequate inference about the failure of these systems. 

In 1965, L. A. Zadeh [1] suggested a paradigm shift 
from a theory of total denial and affirmation to a theory 

of grading to give the concept of fuzzy set. H. Tanaka, L. 
T. Fan, F. S. Lai and K. Toguchi [2] used fuzzy set the-
ory to replace a crisp number by fuzzy number for better 
estimation of failure possibility of top event. D. Singer [3] 
presented fuzzy set theoretic approach to fault tree ana- 
lysis. S. Chen [4] used arithmetic of fuzzy numbers to 
evaluate system reliability. Zong-Xiao Yang, Kazuhiko 
Suzuki, Yukiyasu Shimada and Hayatoshi Sayama [5] 
constructed a fuzzy fault diagnostic system, which uses 
the fuzzy fault tree analysis to represent knowledge of 
the causal relationships in process operation and control 
system. Method proposed by him is applied successfully 
to a nitric acid cooler process plant. Fuzzy set theoretic 
approach for estimating failure rate parameters devel-
oped by D. Pandey and Sanjay Kumar Tyagi [6] provides 
comprehensive results in estimation of variety of pa-
rameters involving human judgment, unreported times, 
vague operating conditions, etc. D. Pandey and Sanjay 
Kumar Tyagi [7] developed a technique that has proven 
successful in other areas of knowledge, fuzzy reasoning, 
in the evaluation and assessment of equipment failure 
modes. In this paper probabilistic consideration of basic 
events is replaced with possibilities, thereby leading to 
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fuzzy fault tree analysis. 

The failure of power may interrupt various important 
operations and make a huge damage to the economy of 
any nation. Power transformer is one of the important 
electricity equipment used in power networks. Thus the 
fault diagnosis and its maintenance in a power transfor- 
mer is the utmost priority of power supply enterprises. 
Fu Ying-Shun, Liu Fa-Zhan, Zhang Wei-Zheng, Zhang 
Quing and Zhang Gui-Xin [8] used rough set theory to 
diagnose faults in a power transformer. Chen Yuliang 
and Zhang Tiejun [9] also investigated the fuzzy fault 
tree method in the machinery equipment fault diagnosis. 
In his theory they used fuzzy mathematics to deal with 
the uncertainty incurred in the failure probability of basic 
events. Tong Wu, Guangyu Tu, Z. Q. Bo and A. Klimek 
[10] also introduced a method of fault diagnosis of power 
transformer. In their work, they used the analysis method 
to process the probability of faults without statistical data 
and developed the methods for the different mode pro- 
bability data conversion to triangle fuzzy numbers. 

Accurate failure statistics is crucial requirement for re- 
liability estimation in power transformer failure. In a si- 
tuation, wherein failure data may not be corrected accu- 
rately due to various reasons, it is more practical to em- 
ploy linguistic terms to express data value for failure of a 
particular event. Since a power transformer may be in- 
stalled under different operating conditions. It seems to 
be impractical to assign a single fuzzy number to the fai- 
lure possibility of the basic events in a fault tree analysis. 
To overcome this problem, in present paper we have 
categorized the operating condition of a power trans- 
former as “Worst Case Condition”, “Conducive Environ- 
ment” and “Highly Conducive Environment” for a power 
transformer to work. By “Worst Case Condition” we mean 
a situation that rarely occurs i.e. in a state of emergency. 
“Conducive Environment” is a normal state where most 
of the transformers are installed. Highly Conducive en- 
vironment is a very special and conducive environment 
created artificially to keep transformer cool and working 
for a very long time. Using statistics of failure of power 
transformer working under different operating conditions 
each basic event is assigned three fuzzy numbers by Ex- 
perts A, B and C. But a single fuzzy number is needed 
for each basic event to evaluate the failure possibility of 
top event. Sanjay Kumar Tyagi, D. Pandey and Reena 
Tyagi [11] developed a technique to get a single fuzzy 
number for each basic event by taking a fuzzy number 
having least variance with all fuzzy number. But in a 
natural way, most of the transformers are installed at the 
places having “Conducive Environmental Conditions”. 
So it is impractical to give equal weightage to the fuzzy 
numbers assigned by Expert A, B and C to each basic 
event, which may result in the underestimation/over- 
estimation of failure possibility of the basic events. 

Beta distribution is widely used to model probability 
distributions of variables or project parameters in many 
areas of operations research like risk analysis for strate- 
gic planning, finance and marketing and in decision ana- 
lysis [12]. Based on beta distribution, here we proposed a 
very precise and pragmatic approach to estimate the fail- 
ure possibility of each basic event in fault tree analysis. 
Three estimates w , c  and h  suggested by three 
experts A, B and C are taken into consideration. It is ob- 
served that the median (a crisp number) of the triangular 
fuzzy numbers assigned to three estimates w , c  and 

h  are statistically independent. And, since beta distri- 
bution is extremely versatile to model variety of uncer- 
tainties. So, it is quite useful to apply beta distribution to 
estimate the parameter “failure possibility” of basic events. 
In our analysis, we generalize this parameter estimation 
method by replacing the crisp numbers with fuzzy num- 
bers to obtain the failure possibility of basic events. So it 
will enable us to give more realistic estimates for failure 
possibility of basic events.  

p p p

p p
p

In FTA the basic events have different importance and 
improving failure possibility of a basic event having 
highest importance will improve the reliability of system. 
H. Furuta and N. Shiraishi [13] proposed the concept of 
fuzzy importance using max-min fuzzy operator and 
fuzzy integral. Monte-Carlo simulation is generally used 
in the determination of importance measure, even though 
computing process is time consuming. Thus for a very 
complex system having large number of components, the 
whole procedure has to be repeated again and again, thus 
not suitable for the fuzzy approach. P. V. Suresh, A. K. 
Baber and V. Venkat Raj [14] proposed another method 
to evaluate an importance measure called fuzzy impor- 
tance measure (FIM). For effective evaluation of the im- 
portance index of each basic events, we have introduced 
a comparatively easier method to calculate fuzzy impor- 
tance index (FII), based Euclidean distance between two 
fuzzy numbers. The FII of different basic events leading 
Cannula Fault are obtained from the proposed method. 
 
2. Triangular Fuzzy Numbers and Their 

Arithmetic 
 
(a) Triangular Fuzzy Number: A fuzzy number A  is 
termed as triangular fuzzy number if the membership 
function of fuzzy number A is shown as follows 

1
1 2

2 1

3
2

3 2

if

( ) if

0 otherwise
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x a
a x a

a a

a x
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In our study, we will use a triplet ( ) to denote 
a triangular fuzzy number. 

1 2 3, ,a a a

(b) Operations on triangular fuzzy numbers: The 
addition of triangular fuzzy number 1 2 3( , , )A a a a  and 

 is defined as:   1 2 3( , , )B b b b

 1 1 2 2 3 3, , A B a b a b a b           (2) 

Thus the addition of two triangular fuzzy numbers is 
again a triangular fuzzy number. 

Similarly subtraction of two triangular fuzzy numbers 
is also a triangular fuzzy number and it can be given by 
the following expression:  

 1 3 2 2 3 1, , A B a b a b a b             (3) 

The multiplication of two fuzzy numbers 1 2 3( , , )A a a a  
and  denoted as A*B can be defined as: 1 2 3( , , )B b b b

1/22
1 1 1

1/22
1 2 1

( )

( ) ( )

0

A B

D D x P T P x Q

otherwise

x D D x R U Q x R 
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          




   (4) 

where 

 1 2 1 2 1T a a b b  

 1 2 1 2 1U a a b b  

   2 1 2 1 2 2 1T a a a b b b   

  
, , 

, 


 2 3 2 1 3 2U b a a a b b    1 , 

2
1

12

T
D

T
 , 2

2
12

U
D

U
  , , , 1 1P a b 2 2Q a b 3R a 3b . 

It is evident that the resulting fuzzy number *A B   is 
not a triangular fuzzy number. But in most of the cases, 
computation with resulting fuzzy numbers becomes very 
tedious. Thus it is necessary to avoid the second and 
higher degree terms to make them computationally easy 
and therefore the product of two fuzzy numbers is re-
duced to a triangular fuzzy number (P, Q, R) or (a1b1, 
a2b2, a3b3). 
 
3. Basics of Possibility Theory 
 
Using fuzzy set theory, L. A. Zadeh [15] formulated pos-
sibility theory in term of fuzzy set. This was an attempt 
to give a mathematical representation of linguistic un-
certainty, i.e. the uncertainty associated with imprecise 
and vague information. In contrast to the objective char-
acter of the probability theory, the possibility theory pro-
vides tools for the modeling of subjective probabilities 
[16]. It is based upon the concept of the possibility dis-
tribution. There is a direct connection between possibil-
ity and fuzzy sets. This connection can be explained as 
follows:  

Let X denote a variable, taking values from a universal 
set R and let us consider the equation X x , where 
x R  be used to describe the fact that the value of X  

is x.  
Now, we consider a fuzzy set F on R that expresses an 

elastic constraint on values to be assigned to X. Then for 
a particular value x R , F(x) gives the degree of com-
patibility of x with the concept described by F. Also for a 
given proposition X is F based upon fuzzy set F, it will 
be more realistic to interpret F(x) as the degree of possi-
bility that X x . So for a given fuzzy set F on R and 
the proposition “X is F” the possibility  of ( )Fr x
X x  for each x R  is numerically equal to the de-

gree F(x) to which x belongs to F i.e.  

( ) ( )Fr x F x  for all x R . 

The function  defined by the equation 
given above is clearly a possibility distribution function 
on R. For a given F , the associated possibility measure 
(PosF) is defined for all 

: [0,Fr X 

r

1]

( )A P X  by the equation  

( ) sup ( )F F
x A

Pos A r x


 . 

 
4. Fuzzy Operators 
 
Now using algebraic operations on fuzzy numbers (tri-
angular or trapezoidal), we can obtain fuzzy operators 
corresponding to Boolean operators “AND”, “OR” etc. 
Let 1 2 n  are the possibility functions of the 
basic events i = . Then fuzzy “AND” and 
“OR” operators denoted by ANF and ORF respectively, 
can be defined as:  

,p p p 
1, 2, , n

1 2
1

( , , , )
n

y n
i

p ANF p p p p


     i
 

where  denotes the fuzzy multiplication. 
Now let ’s are represented by triangular fuzzy 

numbers i.e. 
ip

1 2 3( , , )i i i ip a a a , where i = 1, 2, ,n. 
Then  
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  (6) 

 
5. Proposed Algorithm to Evaluate Failure 

Possibility of Basic Events 
 
In this proposed algorithm, fuzzy numbers are used in-
stead of crisp numbers to represent failure probability of
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occurrence of each basic event in fault tree analysis. For 
the sake of simplicity, triangular fuzzy numbers are used 
to define the failure possibility of the basic events. Also a 
triangular fuzzy number is capable to capture the impre- 
cision of experts’ assessments, the vagueness of unreli- 
able data and easy to compute. 

Step 1: First identify an undesirable top event (Haz- 
ard), intermediate events and the basic events leading to 
top event by exploring history concerned with the failure 
of that event. And connect these events using logical 
gates “AND” and “OR” to find the pictorial representa- 
tion of occurrence of top event.   

Step 2: We observe that the basic events are follow- 
ing different statistical property of sampled data collec- 
ted for a particular event. So the data for the occurrence 
of the basic events are collected by three experts A, B 
and C taking observations under prescribed conditions 
classified as “Worst Case Condition”, “Conducive Envi- 
ronment and “Highly Conducive Environment” respec- 
tively.  

Step 3: Using sampled data collected by the experts A, 
B and C the possibility of occurrence of basic events are 
assigned different fuzzy numbers. 

Step 4: It is a well known fact that mostly a system is 
operated under “Conducive Environment”. So it is as-
sumed that the data collected for the failure of a basic 
event follows a skewed Beta distribution. Thus a tech-
nique based on beta distribution is used to find a single 
fuzzy number to the failure possibility of a basic event. If 

,  and are fuzzy numbers as-
signed to a basic event i  by Expert A, B and C taking 
observations in “Worst Case Condition”, “Conducive 
Environment” and “Highly Conducive Environment” re- 
spectively. Then the failure possibility of the basic event 

 may be given as 

( )w ip E

iE

( )c ip E ( )h ip E
E

( ) 4p E ( ) ( )
( )

6
w i c i h i

i

p E p E
p E

 

  

 .    (7) 

Step 5: The fuzzy number thus obtained for different 
basic events are used to compute failure possibility of top 
event. 
 
6. Fuzzy Importance Index (FII) 
 
In fault tree analysis, ranking of basic events as per their 
importance play a vital role. To improve reliability of a 
system, it is better to improve the reliability of a basic 
event, having greater importance instead of the events 
with less importance. Let T  be the failure possibility 
of top event and 

iT  denote the failure possibility of 
occurrence of top event, if the basic event i  does not 
happen. In other words we can say 

iT  be the failure 
possibility of top event, when failure possibility of basic 
event  is a crisp number (0 0 0). The distance of  

from  will determine the importance of a basic event 
.  

p
p

E
p

iE Tp

iTp
iE
A basic event i  will be of greater importance than 

the other basic event 
E

jE , if the distance between T  
and 

iT  is greater than that of T  and 
p

p p
jT . The dis- 

tance between two fuzzy numbers may be obtained by 
using Hamming or Euclidean distance. The fuzzy impor- 
tance of each basic event may be quantified as Fuzzy 
Importance Index (FII). 

p

FII( ) = Distance of  from  iE Tp
iTp

If the failure possibilities of the basic events are trian-
gular fuzzy numbers, then the failure possibility of top 
event will also be a triangular fuzzy numbers. Here we 
denote  and 

iT  by the triplets  and 
 respectively. Thus the FII( ) for a basic 

event  may be defined as follows. 

Tp
,i i iu

iE

p ( , , )l m u

iE( , )l m

2 2 2

II( ) ED( , )

( ) ( ) ( )

ii T T

i i i

E p p

l l m m u u



     

 F
   (8) 

Thus for basic events Ei and Ej, if  
then the precipitation of basic event i will be more 
sensitive than that of event 

FII( ) FII( )i jE E
E

jE  to improve system reli-
ability. Using this method we can rank the basic events 
in accordance with their importance index. And improve 
the reliability of the system by preventing the failure of a 
component of greater importance.  

 
7. Case Study: Failure Possibility of 

Cannula Fault in Power Transformer 
 
7.1. Fault Tree Analysis of Cannula Fault 

 
The fault tree of Cannula Fault in power transformer is 
taken as an analytical example to explain the proposed 
algorithm of fault diagnosis process. The fault tree of 
Cannula fault in power transformer is shown in Figure 1. 

Codes’ meaning of basic and intermediate events of 
Cannula Fault are as follows: 

Top event T: Cannula Fault;  
Intermediate Events:  

1M : Cannula Overheating;  

2M : Inside Discharging;  

3M : Outer Insulated Flashover;  

4M : Deterioration of Insulation;  

5M : High Contact Resistance; 

6M : Abnormal Overvoltage.  
Basic Events: 

1E
E

: Over loading;  

2

E
: Natural Aging;  

3

E
: Insulated Damping;  

4

E
: Connector Loosening;  

5 : Interface Oxygenating; 

Copyright © 2011 SciRes.                                                                                  AM 
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Figure 1. Fault tree of Cannula Fault. 
 

6E
E

: Nicerless Encapsulation;  

7

E
: Outer Short Circuit;  

8

E
: Copper Pole Contact Cable;  

9

E
: Nicerless Dipping;  

10

E
: Unshielded & imperfect grounding;  

11

E
: Structure unreasonable;  

12

E
: Lightning Conductor Failure;  

13

E
: Near Lightning Spot;  

14

E
: High Energy Lightning;  

15

E
: Annimal;  

16

E
: Dumping Flashover Murry;  

17

E
: Overvoltage by Human Error;  

18

The Boolean expression corresponding to this fault 
tree can be given as below. 

: Human Error Fault. 

1 18 2T M E M M    3

8

, 

1 1 4 6 7 5M E M E E M E       

2 9 3 10 8M E E E E    , 

3 11 6 16 11M E M E E    , 

4 9 3M E E  , 5 4 5M E E  , 

6 17 13 12 14M E M E E    .  

According to the data from reference (Tong Wu, Guan-
gyu Tu, Z. Q. Bo and A. Klimek [10]), the accurate prob- 
ability value of basic events in fault tree with statistical 

data is fuzzified and listed in Table 1. 
Employing the proposed technique to evaluate the best 

fuzzy number for failure possibility of each basic event 
assigned by all three experts, we obtain a unique fuzzy 
number for each basic event. Fuzzy numbers thus ob-
tained for each basic event are listed in Table 2. 

The approximated Fuzzy numbers listed in Table 2 to 
represent the failure possibility of the basic events are 
shown in Figure 2. 

Using fuzzy operators and triangular fuzzy number 
approximated to be the possibilities of each basic event, 
we calculate the possibility of top event. The possibility 
of top event is resulted as a triangular fuzzy number 
(0.862, 0.933, 0.970) expressed as follows and shown in 
Figure 3. 

0.862
if 0.862 0.933

0.071( )
0.862

if 0.9332 0.970
0.037

T

x
x

x
x

x



      


    (9) 

 
7.2. Fuzzy Importance Index of Basic Events in 

Cannula Fault Diagnosis 
 
To illustrate proposed method of Fuzzy Importance In-
dex (FII), we implement it to the Fault Tree Analysis of  
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Table 1. Fuzzy numbers for failure possibility of basic events assigned by experts A, B and C. 

Basic Event E1 

Expert A (About 0.06) Expert B (About 0.09) Expert C (About 0.11) 

0.035 0.06 0.08 0.07 0.09 0.12 0.075 0.11 0.14 

Basic Event E2 

Expert A (About 0.065) Expert B (About 0.09) Expert C (About 0.10) 

0.04 0.065 0.085 0.065 0.09 0.12 0.06 0.10 0.13 

Basic Event E3 

Expert A (About 0.08) Expert B (About 0.12) Expert C (About 0.15) 

0.06 0.08 0.11 0.09 0.12 0.16 0.10 0.15 0.18 

Basic Event E4 

Expert 1 (About 0.07) Expert 2 (About 0.10) Expert 3 (About 0.13) 

0.04 0.07 0.10 0.07 0.10 0.14 0.085 0.13 0.16 

Basic Event E5 

Expert A (About 0.064) Expert B (About 0.094) Expert C (About 0.11) 

0.04 0.064 0.09 0.07 0.094 0.13 0.075 0.11 0.14 

Basic Event E6 

Expert A (About 0.13) Expert B (About 0.15) Expert C (About 0.17) 

0.095 0.13 0.16 0.11 0.15 0.18 0.14 0.17 0.20 

Basic Event E7 

Expert A (About 0.17) Expert B (About 0.20) Expert C (About 0.22) 

0.14 0.17 0.20 0.17 0.20 0.24 0.175 0.22 0.25 

Basic Event E8 

Expert A (About 0.08) Expert B (About 0.11) Expert C (About 0.13) 

0.045 0.08 0.11 0.07 0.11 0.15 0.095 0.13 0.16 

Basic Event E9 

Expert A (About 0.065) Expert B (About 0.10) Expert C (About 0.14) 

0.035 0.065 0.08 0.07 0.10 0.14 0.095 0.14 0.17 

Basic Event E10 

Expert A (About 0.55) Expert B (About 0.09) Expert C (About 0.11) 

0.035 0.06 0.08 0.07 0.09 0.15 0.075 0.11 0.14 

Basic Event E11 

Expert A (About 0.16) Expert B (About 0.20) Expert C (About 0.23) 

0.135 0.16 0.20 0.16 0.20 0.24 0.195 0.23 0.265 

Basic Event E12 

Expert A (About 0.045) Expert B (About 0.07) Expert C (About 0.095) 

0.015 0.045 0.07 0.04 0.07 0.10 0.065 0.095 0.13 

Basic Event E13 

Expert A (About 0.04) Expert B (About 0.06) Expert C (About 0.085) 

0.015 0.04 0.07 0.035 0.06 0.09 0.055 0.085 0.12 

Basic Event E14 

Expert A (About 0.05) Expert B (About 0.08) Expert C (About 0.11) 

0.025 0.05 0.08 0.05 0.08 0.12 0.075 0.11 0.14 

Basic Event E15 

Expert A (About 0.065) Expert B (About 0.10) Expert C (About 0.14) 

0.040 0.065 0.085 0.07 0.10 0.14 0.095 0.14 0.17 

Basic Event E16 

Expert A (About 0.175) Expert B (About 0.20) Expert C (About 0.24) 

0.14 0.175 0.20 0.17 0.20 0.235 0.20 0.24 0.28 

Basic Event E17 

Expert A (About 0.11) Expert B (About 0.14) Expert C (About 0.18) 

0.075 0.11 0.14 0.10 0.14 0.17 0.145 0.18 0.22 

Basic Event E18 

Expert A (About 0.24) Expert B (About 0.28) Expert C (About 0.33) 

0.20 0.24 0.28 0.24 0.28 0.315 0.29 0.33 0.37 
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Table 2. Fuzzy numbers approximated for failure possibility of basic events. 

Basic Event E1 Basic Event E7 Basic Event E13 

0.065 0.088 0.117 0.166 0.198 0.235 0.035 0.061 0.092 

Basic Event E2 Basic Event E8 Basic Event E14 

0.06 0.088 0.116 0.07 0.108 0.145 0.05 0.08 0.117 

Basic Event E3 Basic Event E9 Basic Event E15 

0.087 0.118 0.155 0.065 0.101 0.13 0.069 0.101 0.136 

Basic Event E4 Basic Event E10 Basic Event E16 

0.068 0.1 0.137 0.065 0.088 0.137 0.17 0.203 0.237 

Basic Event E5 Basic Event E11 Basic Event E17 

0.066 0.092 0.125 0.162 0.198 0.238 0.102 0.142 0.173 

Basic Event E6 Basic Event E12 Basic Event E18 

0.113 0.15 0.18 0.04 0.07 0.10 0.242 0.282 0.318 

 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0
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Figure 2. Failure possibilities of basic events. 
 

 

 

Figure 3. Failure possibility of Cannula Fault. 
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The fuzzy importance index for each basic event i , 
obtained by using the following expression is listed in 
Table 4 and shown in Figure 4. 

ECannula Fault in power transformer. The failure possibi- 
lity of top event calculated herein is (0.852, 0.933, 0.970) 
and denoted as (l, m, u). We use 

iT  to denote the fail-
ure possibility of top event, when basic event i  does 
not happen. To calculate failure possibility 

iT (li, mi, ni) 
the failure possibility for basic event i  is assigned a 
triangular fuzzy number (0, 0, 0) i.e. a crisp number zero. 
The failure possibility (li, mi, ni) of top event for each 
basic event , thus obtained is listed in Table 3. 
 

P
E

P
E

iE

  2 2FII ( ) ( ) ( )i ii l l m m u u      2i     (10) 

In Figure 4 the height of the columns represents the 
FII of each basic event. Here we see that the columns are 
of varying height, proving that the basic events possess 
different FII. 

Table 3. Possibility of top event when basic event Ei does not happen. 

Basic Event (Ei) Possibility of top event when basic event Ei does not happen ( ) 
iTP

E1 (0.852, 0.927, 0.966) 

E2 (0.852, 0.927, 0.966) 

E3 (0.834, 0.914, 0.958) 

E4 (0.852, 0.926, 0.966) 

E5 (0.852, 0.926, 0.966) 

E6 (0.844, 0.921, 0.964) 

E7 (0.834, 0.917, 0.961) 

E8 (0.840, 0.916, 0.959) 

E9 (0.852, 0.926, 0.966) 

E10 (0.852, 0.0927, 0.966) 

E11 (0.835, 0.917, 0.961) 

E12 (0.856, 0.928, 0.967) 

E13 (0.857, 0.929, 0.967) 

E14 (0.854, 0.927, 0.966) 

E15 (0.851, 0.926, 0.966) 

E16 (0.833, 0.916, 0.961) 

E17 (0.846, 0.922, 0.964) 

E18 (0.817, 0.907, 0.957) 

 
Table 4. Fuzzy importance index of basic events. 

Basic Event (Ei) Fuzzy Importance Index (FII) 

E13 0.005 

E12 0.006 

E14 0.008 

E1 0.010 

E2 0.010 

E4 0.010 

E5 0.010 

E9 0.010 

E10 0.010 

E15 0.011 

E17 0.017 

E6 0.019 

E8 0.026 

E11 0.029 

E7 0.030 

E16 0.031 

E3 0.032 

E18 0.050 
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Figure 4. Fuzzy Importance Index (FII) of basic events. 

 
8. Conclusions and Discussion of Result 
 
In present paper, we introduce a novel approach to ap-
proximate the failure possibility of basic events, if more 
than one fuzzy number is assigned to a particular basic 
event by different experts. The possibilities of basic 
events are considered to be triangular fuzzy numbers. 
Three fuzzy numbers are assigned to each basic event by 
the Experts A, B and C. These experts collect data of 
failure for each component in three different operating 
conditions “Worst Case Condition”, “Conducive Envi-
ronment” and “Highly Conducive Environment”. Unlike 
previous techniques, we investigate the operating condi-
tions rigorously and assess the weightage of each of them. 
Taking view of this, we use the parameter estimation 
method used in PERT method and generalize it by re-
placing crisp numbers with fuzzy numbers, to obtain 
most likely fuzzy number to represent the failure possi-
bility of basic events. The proposed method seems to be 
very pragmatic and preclude underestimation/overesti- 
mation of failure possibility for basic events. 

Also it is a well known fact that all basic events do not 
contribute equally in failure of a system i.e. the occur-
rence of top event. Thus it is important to assess the im-
portance of each basic event. Herein we employ a very 
effective and computationally easy technique based on 
Euclidean Distance between fuzzy numbers.  

The proposed methods are implemented to the Can-
nula Fault in Power Transformer. We have eighteen ba-
sic events leading the occurrence of top event. Using 
proposed technique to calculate FII of basic events, we 
list them in Table 4 in ascending order of their FII and 

put in Figure 4. We conclude that the basic event 18  
having highest FII, causes precipitation of system more 
rapidly than the basic event 13  with least FII. There-
fore the reliability of Cannula and hence of Power 
Transformer may be improved by preventing occurrence 
of basic event . 

E
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