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Abstract 
 
This paper deals with the stability of Takagi-Sugeno fuzzy models with time delay. Using fuzzy weighting- 
dependent Lyapunov-Krasovskii functionals, new sufficient stability criteria are established in terms of Lin-
ear Matrix Inequality; hence the stability bound of upper bound delay time can be easily estimated. Finally, 
numeric simulations are given to validate the developed approach. 
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1. Introduction 
 
Fuzzy control systems have experienced a big growth of 
industrial applications in the recent decades, because of 
their reliability and effectiveness. Many researches are 
investigated on the Takagi-Sugeno fuzzy models [1-17] 
which can associate the flexible fuzzy logic theory and 
rigorous mathematical theory into a unified framework. 
Thus, it becomes a powerful tool in approximating a 
complex nonlinear system. 

Recently, Takagi-Sugeno fuzzy model approach has 
been used to examine nonlinear systems with time-delay, 
and different methodologies have been proposed for ana- 
lysis and synthesis of this type of systems [1,2]. Time de- 
lay often occurs in many dynamical systems such as bio- 
logical systems, chemical system, metallurgical process-
ing system and network system. Their existences are 
frequently a cause of infeasibility and poor performan- 
ces.  

The developed stability approaches can be classified 
into two types. The first one is called as the delay inde- 
pendent stability criteria which do not include any in- 
formation about the size of the time delay, whereas the 
second is called as the delay dependent stability criteria, 
in which the size of the time delay is taken explicitly in 
the formulation. It is generally recognized that delay de- 
pendent results are usually less conservative than delay 
independent ones, especially when the size of delay is 

small.  
Two classes of Lyapunov-Krasovskii functionals are 

used to analysis these systems: quadratic Lyapunov- 
Krasovskii functionals and non-quadratic Lyapunov- 
Krasovskii ones. The use of first class brings much con-
servativeness in the stability test. In order to reduce the 
conservatism entailed in the previous results using quad-
ratic functionals, a fuzzy weighting dependent approach 
is presented recently in [3] for fuzzy systems with fuzzy 
weighting functions. 

In this paper, a new stability conditions for time-delay 
Takagi-Sugeno fuzzy systems by using fuzzy weighting- 
dependent Lyapunov-Krasovskii functionals are pre-
sented. We derive delay-dependent stability conditions 
using recent technique called free-weighting matrix me- 
thod [4]. This criterion is expressed in terms of Linear 
Matrix Inequalities (LMIs) which can be efficiently sol- 
ved by using various convex optimization algorithms 
[6,15]. The proposed approach improves existing ones in 
[4]. 

The organization of the paper is as follows. In Section 
2, we present the system description and problem for-
mulation and we give some preliminaries which are 
needed to derive results. Section 3 will be concerned to 
stability analysis for time-delay T-S fuzzy systems. Illus-
trative example is given in Section 4 for a comparison of 
previous results to demonstrate the advantage of pro-
posed method. Finally Section 5 makes conclusion. 
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Notation: Throughout this paper, a real symmetric ma-
trix  denotes  being a positive definite matrix. 
The superscript “T” is used for the transpose of a matrix. 
And where an ellipsis “ ” denotes a block induced eas-
ily by symmetry.  
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2. System Description and Preliminaries 
 
Consider a T-S fuzzy continuous model with time-delay 
for a nonlinear system as follows: 
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The time derivative of premise membership functions 
is given by: 
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Assumption 1 
The time derivative of the premises membership func-

tion is upper bounded such that kh k , for 

1, ,k r  , where, , 1, ,k k r    are given positive 
constants. 

Lemma 1[4]  
Under assumption 1, the time-delay Takagi-Sugeno 

fuzzy system is stable if there exist positive definite 
symmetric matrices    0,jP  0,Q  0,Z  jY  and  

,jT  1, 2, , ,j r   such that the following LMIs hold. 
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Lemma 2[4] 
Under assumption1, system (2) with  is asym- 
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3. Main Results 
 
Consider the open-loop system (2). The aim of this sec-
tion is to find conditions for the stability of the unforced 
time-delay T-S fuzzy system by using the Lyapunov- 
Krasovskii theory. 

Theorem 1  
Under assumption 1, the time-delay Takagi-Sugeno 

fuzzy system is stable if there exist positive definite 
symmetric matrices    0,jP  0,Q  0,Z  ,TX X  

jY  and Tj  such that the following LMIs 
hold. 
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Proof  
Let consider the fuzzy weighting-dependent Lyapunov– 

Krasovskii functional as  

  1 2tV x V V V              (10) 

where    , ,tx x t 0      , and 
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 are arbitrary matrices with appro-
priate dimensions, 1,2, ,j   . With (14), the time de- 
rivative of  tV x  with respect to t along solutions to (2) 
is given by:  
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where the inequality is caused only by 
    0and .t d t     

Based on (5), it follows that 
1
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X  symmetric matrix of proper dimension. Adding X  
to (15), and by substitution of  x t  with state Equation 
(2), we have  
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Proof  
Let consider the fuzzy weighting-dependent Lyapunov- 
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7. Numerical Examples 
 
In order to show the improvements of proposed approa- 
ches over some existing results, in this section, we pre- 
sent two numerical examples, which concern the feasi- 
bility of a time delay T-S fuzzy system. Indeed, we com- 
pare our fuzzy weighting-dependent Lyapunov-Krasov- 
skii approach (Theorem 1 and Theorem 2) with the 
Lemma 1 in [2].  

Example 1. Consider the following T-S fuzzy system 
with time-delay: 
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The purpose is to compute the maximum value of 0  
such that the fuzzy system is stable. Table 1 lists the 
computation results using delay-dependent conditions in 
Theorem1, and in Theorem 2 ( 0.1  ) compared with 
the existing delay-dependent method in Lemma1 in [2], 
for different values of d. It is seen from Table 1 that the 
largest values of 0  are obtain by using our methods. 

Example 2. Consider the time delay T-S fuzzy system 
(29). 
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This example shows that the stability cannot be tested 
by quadratic methods while can be verified by our fuzzy 
weighting-dependent methods in Theorems.  

The purpose is to compute the maximum value of 0  
such that the fuzzy system is asymptotically stable. 

Table 2 lists the computation results for different val-
ues of d under the same upper bound 0.8i   . It 
reveals from Table 2 that Theorem 1 and Theorem 2 
with 0.1   produces better results than Lemma 1 and 
Lemma 2.  
 
8. Conclusions 
 
This paper provided new conditions for Delay-dependent 
 
Table 1. Comparison results of maximum τ0 for Example 1. 

 Methods d = 0 d = 0.02 d = 0.1 d = 0.9

Lemma 1 0.6185 0.5618 0.4809 0.4513

Theorem 1 0.6185 0.5618 0.4810 0.4530β = 1 

Theorem 2 +∞ +∞ 0.5500 0.4689

Lemma 1 0.6248 0.5630 0.4814 0.4537

Theorem 1 0.6248 0.5630 0.4817 0.4562β = 0.5

Theorem 2 +∞ +∞ 0.5500 0.4695

 
Table 2. Comparison results of maximum τ0 for Example 2. 

 Methods d = 0 d = 0.5 d = 0.9 

Lemma 1 0.3883 0.3225 0.2518 

Lemma 2 +∞ 0.5221 0.2844 

Theorem 1 +∞ 0.6933 0.3058 
β = 0.8 

Theorem 2 +∞ +∞ 0.8133 
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stability problems of time-delay Takagi-Sugeno fuzzy 
systems in terms of a combination of the LMI approach 
and the use of fuzzy weighting-dependent Lyapunov- 
Krasovskii functionals.  

The stability conditions proposed in this note are less 
conservative than some of those in the literature, which 
has been illustrated via examples. 
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