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Abstract 
In this paper we employ an improved Siamese neural network to assess the 
semantic similarity between sentences. Our model implements the function 
of inputting two sentences to obtain the similarity score. We design our mod-
el based on the Siamese network using deep Long Short-Term Memory 
(LSTM) Network. And we add the special attention mechanism to let the 
model give different words different attention while modeling sentences. The 
fully-connected layer is proposed to measure the complex sentence represen-
tations. Our results show that the accuracy is better than the baseline in 2016. 
Furthermore, it is showed that the model has the ability to model the se-
quence order, distribute reasonable attention and extract meanings of a sen-
tence in different dimensions. 
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1. Introduction 

In recent years, semantic processing has attracted a huge amount of research in-
terests [1], since the information scale requires great labor cost; and using such 
technology is far more economical. To be specific, textual understanding, espe-
cially sentence understanding, content search functions, and optimize Question 
Answering systems are important missions. When researchers are facing tons of 
articles, the information generated by machines, which regard the main topic of 
each passage, is useful. In addition, retrieving information sometimes requires 
identifying the meaning of different key sentences. For instance, an excellent QA 
system needs to comprehend the questions and choose the optimal answers from 
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knowledge base. However, in actual, there is still a long way to go. Articles pos-
sessing similar ideas are always different sizes, containing large varieties of syn-
tax. Furthermore, sentences have different lengths and structures. We present an 
approach to the subtask of deriving meaning from text, while aiming to analyze 
the similarity among sentences. That is to say, when given two sentences, the al-
gorithms we present below will provide their level of similarity. 

To address this problem, Jonas and Aditya [2] generated Siamese neural net-
work, a special recurrent neural network using the LSTM, which generates a 
dense vector that represents the idea of each sentence. By computing the similar-
ities of both vectors, the output would be labeled from 0 to 1, where 0 means ir-
relevant and 1 means relevant. Because of the structure of recurrent neural net-
works, especially the Long Short-Term Memory model of Hochreiter and Schmid-
huber [3] can accept the variable length inputs, the length and structure’s prob-
lems can be solved easily. The Siamese neural network performs very well ac-
cording to three evaluation metrics: Pearson correlation (r), Spearman’s ρ, and 
mean squared error for the SICK semantic textual similarity task [2]. Neverthe-
less, drawbacks remain in the Siamese neural network. Because of only employ-
ing the last hidden state’s vector to represent each sentence, the crucial informa-
tion in sentence may be attached less importance, and therefore the final vector 
alone cannot represent the idea of the sentence efficiently. In addition, the simple 
similarity function ( ) ( )( ) ( ) ( )( )1 2 1

, exp T Tg h a h b h a h b= − −  (vectors representing 
the idea of sentence) used in the model may not represent the computation of 
similarity accurately compared with the neural networks.  

As a consequence, attention mechanism comes into being. Attention has been 
largely studied in Neuroscience and Computational Neuroscience. It is particu-
larly originated from visual attention: many animals focus on specific parts of 
their visual inputs to compute the adequate responses and similar to the neural 
computation as we need to select the most pertinent piece of information, rather 
than use all available information. This efficient method has been applied to 
many Deep learning networks like speech recognition, translation, reasoning, 
and visual identification of objects. 

In this paper, we employ the Siamese neural network and develop innovation 
points as follows. We amplify the contribution of important elements in the final 
representation, using an attention mechanism [4]. Each of the intermediate state 
would be set a weight which decides their contribution. Moreover, we rely on the 
dataset download from Stanford web, which includes around 360,000 couples of 
sentences. The dataset is larger and more abundant than the SICK dataset used 
by [2]. Finally, we replace the exponent similarity with a fully connected feed 
forward layer [5] so as to predict the similarity level. The fully connected layer 
(FNN) learns a special function of input variables (vector representing the sen-
tence), making it possible to compare two sentences’ similarity. 

2. Related Work 

Comparison of sentence similarity is a basic and significant task across diverse 
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NLP applications, such as question answering [6], information retrieval [7] [8] 
and paraphrase identification [9] [10]. Most early researches on measurement of 
sentence similarity are based on feature engineering, which incorporates both 
lexical features and semantic features. [6] employed the WordNet based seman-
tic features in the QA match task. [11] provided Microsoft Research Paraphrase 
Corpus (MRPC) for paraphrase identification task. [9] revealed that it is helpful 
for classifying false paraphrase cases with the dependency-based features in 
MRPC. [12] modeled sentence pairs utilizing the dependency parse trees. How-
ever, due to the excessive reliance on the manual designing features, these me-
thods are suffering from high labor cost and non-standardization. 

Recently, because of the huge success of neural networks in many NLP tasks, 
especially the recurrent neural networks (RNN), many researches focus on the 
using of deep neural networks for the task of sentence similarity. [2] proposed a 
Siamese neural network based on the long short-term memory (LSTM) [3] to 
model the sentences and measure the similarity between two sentences. [13] 
combined a stack of character-level bidirectional LSTM with Siamese architec-
ture to compare the relevance of two words or phrases. [14] introduced a Con-
vNet variant which integrates various differences across many convolutions at 
varying scales to infer sentence similarity. [15] proposed the skip-thoughts mod-
el which extends the skip-gram method of word2vec from the word to sentence 
level. [16] generalized the order-sensitive chain-structure of standard LSTMs to 
tree-structured network topologies using Tree-LSTMs. [17] and [18] dealt with 
semantic similarity between community-based question-answer pairs. These 
models, however, model the sentences mainly using the final state of RNN which 
are limited to contain all information of the whole sentence. 

Since [19] and [20] first applied attention mechanism in machine translation suc-
cessfully, attention has been widely used in NLP area, such as text re-construction 
[21] [22] and text summarization [23] [24]. The attention mechanism also been 
introduced to the task of sentence similarity. The early work mainly focused on 
the weighted generation of each attention [25] [26] [27]. Recently the interaction 
between two sentences has been studied. [28] presented CAN network to pay at-
tention on the generation of the hidden state of one sentence with the help the 
other sentence’s hidden states and attention information. [29] uses GAN to ex-
tract the same information between two sentences which are used to measure the 
similarity of two sentences. In this paper, we focus on the generation of attention 
weight and ignore the interaction between sentences. And we propose to use 
fully-connected layer to replace the Manhattan distance measure to improve the 
performance of the attention mechanism. 

3. Methodology 
3.1. Framework 

In this paper, our model is composed of two sub-models: sentence modeling and 
similarity measurement. In the sentence modeling part, we used a Siamese ar-
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chitecture [30] consisting of two sub-networks to get two sentences representa-
tion respectively. Each sub-network also has three layers: word embedding layer, 
LSTM layer and attention layer. As for the similarity measurement part, we use 
the fully-connected layer and logistic regression layer to compute the similarity 
of two sentence representing vectors from the sentence modeling part. The 
complete model architecture is shown as Figure 1. 

The input of our model is two sentences, the words sequence of the first sen-
tence ( )1

1 1 1
1 1 2, , , TX x x x= … , the second words sequence of the second sentence 

( )1

2 2 2
2 1 2, , , TX x x x= … , where 1T  and 2T  are the number of the words of the two 

sentences.  

3.2. Sentence Modelling  

The sentence modeling part can process the sentence from word tokens into a 
fixed length vector. The aim of the sentence modeling part is to learn a function 
which can map a sentence to an appropriate vector which is favor for similarity 
measurement. 

Embedding Layer. The word embedding layer try to map every word token 
in to a fix-sized vector E. The size of E is modelingd . In our model we use the 
300-dimensional GloVe word vectors, which are trained based on the global 
word co-occurrence [31]. 

LSTM/BiLSTM Layer. We use the bidirectional LSTM to model the sentence 
with the input-word embedding vectors E. Due to the gradients vanishing prob-
lem of RNN, we used the LSTM which can learn long range dependencies. Take 
sentence ( )1 2, , , TX x x x= …  as example, RNN update its hidden state th  using 
the recursive mechanism. 
 

 
Figure 1. Siamese LSTM with context-attention mechanism and fully-connected neural 
layer. 
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( )1sigmoidt t th Wx Uh −= +  

The LSTM also sequentially updates a hidden-state representation, but these 
steps also rely on a memory cell containing four components (which are 
real-valued vectors): a memory state tc , an output gate that determines how the 
memory state affects other units, as well as an input (and forget) gate it (and th ) 
that controls what gets stored in (and omitted from) memory based on each new 
input and the current state. 

( )1sigmoidt i t i t ii W x U h b−= + +  

( )1sigmoidt f t f t ff W x U h b−= + +  

( )1tanht c t c t cW x U h bc −= + +  

1t t t t tc i c f c −= +   

( )1sigmoidt o t o t oo W x U h b−= + +  

( )tanht t th o c=   

where ,  ,  ,  ,  ,  ,  ,  i f c o i f c oW W W W U U U U  are weight matrices and 
,  ,  ,  i f c ob b b b  are bias vectors. 
The BiLSTM contains two LSTM: forward LSTM and backward LSTM. The 

forward LSTM read the sentence from 1x  to Tx , while the backward LSTM 
read the sentence fromx𝑇𝑇  to 1x . The two LSTMs take in the word sequence in 
each order and generate two hidden state sequence respectively, fH  from for-
ward LSTM and tH  from backward LSTM. The hidden state f

ih  integrates all 
the information of the words preceding the word ix  and b

ih  integrates the 
information of the words behind the word ix . We obtain the final word anno-
tation of ix  by concatenating the hidden states f

ih  and b
ih . 

2,  f b L
i i i ih h h h R= ∈  

where || denotes the concatenation operation and L the size of each LSTM. 
Therefore, each word ix  can have an appropriate annotation ih  which con-
tains the information from both directions. The BiLSTM structure is shown as 
Figure 2. 

In this paper, we did experiment both on LSTM and BiLSTM. When we use 
LSTM, we model the sentence only use the forward direction. 

,  f L
i i ih h h R= ∈  

Attention Layer. The attention layer can use all the word annotations to form 
the sentence representationr. The attention mechanism can calculate a weight 

ia  for each word annotation ih  according the importance. The final sentence 
representation is the weighted sum of all the word annotations using the atten-
tion weight. In this paper, we adopted a similar attention mechanism as [32]. In 
this layer, a context vector hu  is introduced, which can be interpreted as a fixed 
query. This query helps to identify the informative words and it is randomly in-
itialized and jointly learned with the rest of the attention layer weights. 
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Figure 2. BiLSTM layer for sentence modeling. 
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where hW , hb , and hu  are the learnable parameters. 

3.3. Similarity Measurement 

The similarity measurement model functions as a binary classifier, which can 
learn the hidden function from the sentence representations to the class label. 
Our model is designed as an end-to-end model. The sentence modeling part and 
similarity measurement part can be trained together. 

Fully-Connected Layer. Each sentence modeling part outputs a fix-sized 
vector to represent the sentence respectively. We use one fully-connected layer 
to measure the similarity of the vectors. The input of this layer is the final repre-
sentation: the concatenation of two sentence representations 1r  and 2r .  

4
1 2 ,  Lr r r r R= ∈  

We choose the tanh (hyperbolic tangent) as this layer’s activation function. 
Then the final representation passes through the fully-connected layer and out-
put a vector for the logistic regression layer. 

( )tanh c cc W r b= +  

Logistic Regression Layer. The regression layer took in the vector c and 
output a single value s between the 0 and 1 which stands for the degree of the 
similarity. 

( )sigmoid s ss W r b= +  

If s larger than 0.5, this sentence pair will be classified into relevant; Other-
wise, it will be classified into irrelevant. 

3.4. Assessment & Loss Function 

To evaluate the performance of our model and check the effectiveness of every 
innovation, two metrics are used, namely accuracy (ACC), mean square error 
(MSE). The predicted label is 1 when the output 0.5s ≥ . Otherwise, the pre-
dicted label is 0. For each sentence pair, the loss function is defined by the 
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cross-entropy of the predicted and true label distributions for training: 

( ) ( ) ( )Loss log 1 log 1y s y s= + − −  

where y is the true label, and s is the output which is probability of the label 1 
and (1 s− ) is the probability of the label 0. 

4. Experiment 
4.1. Experiment Design 
4.1.1. Dataset 
In order to assess our proposed ideas, we utilize a large dataset downloaded from 
Stanford Web to train the model. The dataset includes 367,373 couples of sen-
tences and the corresponding labels range from 0 to 1. It is separated in subsets, 
test set and training set, randomly. In general, training set has 330,636 couples 
and test set has 36,737 couples. The labels set by human represent the similarity 
between sentences. For instance, the relevant sentences “Children smiling and 
waving at camera” and “There are children present” are labeled by “1” and the 
irrelevant sentence “A person on a horse jumps over a broken down airplane.” 
and “A person is at a diner, ordering an omelette.” are labeled by “0”. 

Moreover, considering about whether our model is sensitive to the word or-
der, we modify the dataset approximately, disorganizing the word order. The 
new dataset is named Disorder Set. It is showed as Table 1.  

The experiment is done by training the Disorder Set and testing the normal 
word order dataset. If the result accuracy is far lower than training by normal 
dataset, we can conclude that our model is able to manage the word order in 
sentences. 

4.1.2. Experiment Flowchart  
We use the back propagation, which has random gradient descent and small 
batches whose size is 64, to shrink the cross-entropy loss. It is together with the 
Adam optimizer [33]. The gradients are clipped at unit criterion. 

Compared with grid and random search, we employ the Bayesian optimiza-
tion [34] method to find optimal hyper-parameter values in a comparative short 
time. Our LSTM layers’ size is 50, BiLSTM’s size is 100, and embedding layer’s 
size is 300. Furthermore, dropout 0.2 are set at recurrent connections of the 
LSTMs. Lastly, a L2 regularization of 0.0001 is added at the loss function. 

4.2. Results 

To check the effect of our innovations for the model we compare our model with 
the baseline model displayed in the [2]. The baseline model uses the single direc-
tional LSTM without the attention mechanism to model the sentences and apply 
the Manhattan distance to measure the similarity of the sentence representa-
tions. What’s more, to evaluate each innovation’s contribution, the ablation me-
thod is used. We did the experiment on the baseline model, three sub-models 
and the final model respectively. The three sub-models are the BiLSTM model,  

https://doi.org/10.4236/jilsa.2018.104008


Z. M. Chi, B. Y. Zhang 
 

 

DOI: 10.4236/jilsa.2018.104008 128 Journal of Intelligent Learning Systems and Applications 
 

Table 1. Disorder sentences dataset. 

Disorder Sentences Dataset Label 

Play on with a a the beach boy. 
The little on couple a a herself play girl by watch beach. 

1 

A performing trick uniformed railed is skier a yellow object across a. 
In is sports winter engaging somebody. 

0 

… … 

 
LSTM model with FNNM, LSTM model with attention mechanism. The final 
model is LSTM model with FNNM and attention mechanism. Table 2 shows the 
performance of various models on the dataset SNLI. The best result obtained is 
marked in bold. 

We can see that the BiLSTM model performs worse. Compared with the base-
line model, the accuracy of BiLSTM decreases 2.4% and the MSE rises 0.02. 
Therefore, the backward reading can destroy the model’s sentence modeling 
ability. The influence of word order will be discussed in the Section 4.3.1.  

To avoid the negative influence of BiLSTM, we test the effectiveness of atten-
tion and FNN by using LSTM. From Table 2, a significant improvement on the 
Acc and MSE can be observed in LSTM with FNN model compared with base-
line model. And the performance of LSTM with attention mechanism model 
became worse. However, when we add attention mechanism to the model with 
FNN, the accuracy increases 0.6%. We analyzed the representation of the sen-
tence from each model, we found that the representation from the model with 
attention contains many information. The Manhattan distance is not suitable to 
judge the similarity of two vectors. However, the fully-connected layer can learn 
a more complex function that is better to measure the vectors’ similarity. There-
fore, when we use the fully-connected layer, the attention can help to improve 
the performance. Therefore, the rationality of FNN and attention can be proven 
in the experiments. 

What is more, we can see that the LSTM with both FNN and attention me-
chanism get the best performance, obtaining the improvement is up to 4.2% on 
accuracy and the decrease up to 0.031 on MSE compared with the baseline mod-
el. 

4.3. Analysis 
4.3.1. Sequence Order Analysis 
The LSTM model is famous for its ability to model the sequential dependen-
cies of the sentence. Therefore, we tried to use BiLSTM, which integrates the 
sequential information of both forward and backward direction, to improve 
the performance on the task of measuring the sentence similarity. However, 
the three evaluation-metrics both got worse on the BiLSTM model shown on 
Table 3. The only difference is the considering the backward reading order in 
the BiLSTM. 
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Table 2. Experiments result. 

Model Acc (%) MSE 

(Mueller and Thyagarajan, 2016) 81.9 0.134 

BiLSTM 79.5 0.154 

LSTM + FNN 85.5 0.111 

LSTM + attention 81.4 0.137 

LSTM + FNN + attention 86.1 0.103 

 
Table 3. Sequence order test on LSTM model. 

Dataset Acc (%) MSE 

Original Set 81.9 0.134 

Disorder Set 81.0 0.140 

 
This finding gave our motivation to check the LSTM’s ability of modeling the 

word order. We created the Disorder Set whose sentences in training set have a 
random word order in training set and sentences in test set have a normal order. 
We trained our model on the disordered training set and check its performance 
on the normal order test set. At first, we checked the performance of the baseline 
model. Table 3 shows the results. 

From Table 3, we can see that the performance of the model trained on the 
Disorder Set got 0.9 percent decrease on the ACC and a little increase on the 
MSE. In other words, the model can do well without order information. 

Then we do the same experiment with the final model—LSTM with attention 
and FNN to check the model’s ability to model the sequence order. The result is 
shown in Table 4 and Figure 3.  

The result shows that the accuracy decrease is 1.3 percent and MSE also has a 
more increase without the order information. This phenomenon indicates that 
our model considers more sequence order, compared with the baseline. Without 
the word order information, model judged the similarity of two sentences even 
worse. 

4.3.2. Sentence Representation 
The sentence representation space is a multi-dimension vector, each dimension 
measures different meaning. Now we study the geometry of it. Because the 1l  
metric is the combination of differences of each word, we assume that particular 
characteristics can be represented by encoding specific hidden units (the dimen-
sion of the sentence representation). The trained model computes the similarity 
of sentences by comparing the difference of entire characteristics. 

We choose several dimensions of sentence representation space to support the 
idea. The figures showed in Figure 4 describe the values that different sentences 
possess among these dimensions of Th . 

The hidden unit showed in the top figure learns to distinguish the affirmation  
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Figure 3. Comparison of sequence order modeling between LSTM and final model. 

 

 
Figure 4. Analysis on the sentence representation vectors. 

 
Table 4. Sequence order test on final model. 

Dataset Acc (%) MSE 

Original Set 86.1 0.103 

Disorder Set 84.8 0.111 

 
and negation, differentiating sentences with words like “not” or “nobody” from 
the positive sentences, no matter what the rest mean. In the bottom figure we 
can see the sentences with same theme will cluster together. The sentence mod-
eling part learns to detect the theme of the sentence, such as “vegetable”, “ani-
mal”, “music”, “politics” and so on. Therefore, from this analysis, we found that 
the sentence representation actually extracts many features for classification. 

4.3.3. Attention Distribution 
The aim of incorporating the attention mechanism for the task is to let the mod-
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el give the more important word more attention. The method we use is to leve-
rage all the word annotations to model sentence instead of the traditional way, 
only using the final word annotation. The final sentence representation is the 
weighted sum of all word annotations according to their importance. In this 
way, the key point is the weight calculation. In our model, how to distribute the 
weights to the words is determined by parameters hW , hb , and hu  which are 
automatically learned from the training data. To check the rationality of these 
weights, we randomly choose several sentence pairs to test it. Figure 5 displays 
the weights of the words in on sentence. The height of the bar above the word 
stands for the relevant value of the weight for this word’s annotation. 

In Figure 5, we can see that the words “parade” and “woman” are assigned 
larger weights while “Hispanic” and “Latin” get the relevant smaller weights. 
This phenomenon compiles our intuition that the words “parade” and “woman”, 
compared with the words “Hispanic” and “Latin”, play a more important role in 
determining sentence similarity. The same phenomenon can be found in other 
sentence pairs, so we can conclude that weights are actually distributed to those 
words which are the key points to determine the relevance of the two sentences. 
In this way, an appropriate sentence representation is learned according to the 
final goal that to find the relevance of sentences. Therefore, the effectiveness of 
attention can get a good explanation. 

5. Conclusions and Future Work 

In this paper, we focused on the task of the measurement and the similarity between 
two sentences. We employed a Siamese network and generated two innovations, 
including attention mechanism layer and fully connected layer. The dataset we  
 

 
Figure 5. Attention weights distribution among the words in sentence pair. 
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used is huge and comprehensive, which benefits the training process. In the ex-
periment, the model with both innovations achieved the best performance. Fi-
nally, we analyzed our model comprehensively, including the ability of modeling 
the sequence order, sentence representation and attention distribution. The re-
sults showed that our innovation is reasonable and effective. 

There still remain plenty of work and limitations to deal with. First, we find 
the performance of extracting the sentence word order is not good enough by 
training the dataset with disorder sentences. Compared with the model trained 
with normal order sentences, the performance of model trained with disorder 
sentences only has 1.3% decrease in accuracy which is not large enough. Al-
though our model performs better than origin Siamese network, there still needs 
a lot of works. In ideal, we want the network to perform distinctively when train-
ing by normal sentences or disorder sentences, which indicates that the model 
can truly extract the word order. Furthermore, the evaluation of sentence simi-
larity should be improved. All labels in dataset are labeled by human, so there 
are plenty of subjective factors inside. For example, two sentences with opposite 
emotions and similar scenes can be labeled to be irrelevant or relevant, depend-
ing on different judgments. What’s more, we didn’t consider the interaction be-
tween two sentences when we model two sentences. When comparing the simi-
larity of two sentences, it is in line with our intuition that the sentence modeling 
process should take the other sentence into account. The next work we will do is 
to consider the other sentence’s hidden states while calculating the weights in 
attention mechanism, which may decrease the operation and training time pos-
sibly. We will explore all these works in future. 
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