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Abstract 
 
(2 + 1) dimensional Boussinesq and Kadomtsev-Petviashvili equation are investigated by employing Jacobi 
elliptic function expansion method in this paper. As a result, some new forms traveling wave solutions of the 
equation are reported. Numerical simulation results are shown. These new solutions may be important for the 
explanation of some practical physical problems. The results of this paper show that Jacobi elliptic function 
method can be a useful tool in obtaining evolution solutions of nonlinear system. 
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1. Introduction 
 
It is well known that the nonlinear physical phenomena 
are related to nonlinear partial differential equations, 
which are employed in natural and applied science such 
as fluid dynamics, plasma physics, biology, etc. Their 
solution spaces are infnite-dimensional and contain di-
verse solution structures. In the past few years, wide va-
riety of the powerful and direct methods to find all kinds 
of analysis solutions of nonlinear evolution equations 
had been developed [1-13]. The basic purpose of them is 
to construct new solitary wave solutions and periodic 
solutions. (2 + 1) dimensional Boussinesq and Kdomtsev- 
Petviashvili (BKP) equation is an important nonlinear 
partial differential equation in mathematical physics, 
which had been mentioned in literatures [14-16]. The 
equation belongs to a symmetry and integrable system. 
The aim of this paper is to apply the Jacobi elliptic func-
tion expansion method [11] to solve (2 + 1) dimensional 
BKP equation. The general BKP equation has the form 

y xU W  

x yV W  

6( ) 6( )t xxx yyy x yW W W WU WV       (1) 

where ,  and  are the 
functions about 

( , , )U x y t
,

( , , )V x y t ( , , )W x y t
x y t, and . , ,y x yWU V , are the deriva-

tives of ,x y  and , respectively. t

2. Transformed Boussinesq and 
Kadomtsev-Petviashvili Equation and 
Jacobi Elliptic Function Expansion 
Method 

 
In this section, we will apply the Jacobi elliptic function 
expansion method to BKP equation. 

Using a wave variable, we obtain the transformed 
wave solutions as: ( , , ) ( )U x y t U  , ( , , ) ( )V x y t V  , 
and ( , , )W x y t W ( ) , where x y ct    c,  is non-
zero constant.  

Plugging ( )U   ( )V  , and ( )W   and integrating (1) 
once with respect to   and considering the constants of 
integration to be zero, we obtain the transformed BKP 
equation: 

0U W  , 

0V W  , 

2 6 6W cW UW VW 0    .        (2) 

The above equations are an ordinary differential equa-
tion. Fu and Liu gave an example in Jacobi elliptic func-
tion expansion method [11] to find the solutions for the 
ordinary differential equation. According to the method, 
the ansatz solutions for (2) are supposed as  

2
0 1 2 ( )U a a sn a sn ;            (3a) 

2
0 1 2 ( )V b b sn b sn ;   

2

          (3b) 

0 1 2 ( )W c c sn c sn ;              (3c) 
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where sn  is Jacobi elliptic function, 0 1 2 0 1  

2 0 1  and 2c  are the expansion coefficients to be 
determined later. Substituting (3) into (2) yields a system 
of algebraic equations.  

, , , , ,a a a b b
, ,b c ,c

2 2
0 1 2 0 1 2( ) ( )a a sn a sn c c sn c sn         0

0

2

 (4a) 

2 2
0 1 2 0 1 2( ) ( )b b sn b sn c c sn c sn          (4b) 

 
 
 



2
0 1 2

2
0 1 2

2
0 1 2

2
0 1 2 0 1 2

2 ( )

( )

6 ( )

( ) ( )

0

c c sn c sn

c c c sn c sn

c c sn c sn
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
 

 

 

  

 

  

  

    





 (4c) 

Solving the above first two Equations (4a) and (4b), 
we obtain . 0 0 0 1 1 1 2 2 2

Equating the coefficients of Jacobi elliptic function 
; ;a b c a b c a b c     

sn  (4c) for the to zero with the above results and the 
follow relation 

2 2 2 2( ) 1 ( ) ; ( ) 1 ( )cn sn dn m sn 2       ,   (5) 

we have 
2

0 0 2

1 1 1 0 1

2 2
1 2 2 2 2 0 2

2
1 1 1 2

2 2
2 2 2

12 4 0;

2 2 24 0;

12 8 4 4 24 0;

2 2 24 0;

4 8 12 0;

ca a a

a ca ma a a

a a ca ma m a a a

ma m a a a

ma m a a

  

   

     

  

  

 (6) 

where dn , cn  and  are different kinds 
of Jacobi elliptic functions and modulus of Jacobi elliptic 
function, respectively. 

 (0 1)m m 

Solving (6), we obtain 
2

0 1
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2 3
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and 
2
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m m
a c m m
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With the help of (5), we rewritten (3) as the follow 
three kinds of Jacobi elliptic functions: 

Case [I] 

2
0 2

;

( )

U V W

U a a sn

 

 
            (7) 

Case [II] 

 2
0 2

;

1 ( ) ;

U V W

U a a cn 
 

  
            (8) 

Case [III] 

2

0 2 2

;

1 ( )
.

U V W

dn
U a a

m



 

 
   

 

            (9) 

 
3. Periodic Traveling Wave Solutions for 

Boussinesq and Kadomtsev-Petviashvili 
Equation 

 
When the modulus of Jacobi elliptic function  
and , Jacobi elliptic functions asymptotically 
transformed into periodic trigonometric and hyperbolic 
traveling wave solutions: 

0m 
1m 

0m  , 

sn sin ; cos ; 1cn dn             (10) 

1m   

tanh ; sech ; sechsn cn dn         (11) 

With the relation (10) and (11), Equations (7)-(9) are 
transformed into 

2
0 2

0; ;

(sin ) ;

m U V W

U a a 

  

 
             (12) 

2
0 2

1; ;

(tanh ) ;

m U V W

U a a 

  

 
            (13) 

The simulation results of (7) and (13) are given with 
the help of Mathematica software in Figures 1 and 2 for 
some special local parameter. From the Figures 1 and 2, 
we know that the amplitude of the wave is stable. These 
wave solutions may further help us to find some new 
physical phenomena. 
 
4. Discussions and Conclusions 
 
Some new analytical solutions of BKP equation are ob- 
tained by successfully employing Jacobi elliptic function 
expansion method in this paper. When the modulus of 
Jacobi elliptic function  and , the Jacobi 
elliptic functions asymptotically transformed into peri- 
odic trigonometric and hyperbolic traveling wave solu- 
tions. The results obtained in this paper are new solutions 
in the representation of Jacobi elliptic function and soli- 
tary wave solutions. These new solutions may be impor- 
tant for the explanation of some practical physical prob- 
lems. These solutions may help us to learn more about 
the complex nonlinear evolutions systems. The Jacobi 
elliptic function expansion method in its present form is 
a successful, direct and concise tool in obtaining a serials 

0m  1m 
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Figure 1. Jacobi elliptic function solutions Equation (7) is shown for U with x  (–2, 2), y  (–2, 2), m = 0.2, from left to right t 
= –0.2, t = 0, t = 0.2, respectively. 
 

 

Figure 2. Hyperbolic function solutions Equation (13) is shown for U with x  (–3, 3), y  (–3, 3), m = 1, from left to right t = 
–0.2, t = 0, t = 0.2, respectively. 
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of nonlinear equations. Of course, this method can be 
also applied to other nonlinear wave equations. Seeking 
new more general traveling wave solutions of nonlinear 
equation is still an interesting subject and worthy of fur-
ther study. 
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