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ABSTRACT 

An image consists of large data and requires more space in the memory. The large data results in more transmission 
time from transmitter to receiver. The time consumption can be reduced by using data compression techniques. In this 
technique, it is possible to eliminate the redundant data contained in an image. The compressed image requires less 
memory space and less time to transmit in the form of information from transmitter to receiver. Artificial neural net- 
work with feed forward back propagation technique can be used for image compression. In this paper, the Bipolar 
Coding Technique is proposed and implemented for image compression and obtained the better results as compared to 
Principal Component Analysis (PCA) technique. However, the LM algorithm is also proposed and implemented which 
can acts as a powerful technique for image compression. It is observed that the Bipolar Coding and LM algorithm suits 
the best for image compression and processing applications. 
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1. Introduction 

Image compression plays an important role in communi- 
cation and medical applications. The main aim of image 
compression is to remove the redundancy from image 
data in such a way that it allows the same image reconstr- 
uction at the receiver end. There are mainly two types of 
image compression techniques, lossy and lossless. In me- 
dical applications like X-ray and EGS images, the images 
are compressed by lossless compression methods becau- 
se each bit of information is important. On other hand, 
digital or video images are compressed by lossy compre- 
ssion techniques [1-3]. For such type of compression, tr- 
ansform coding techniques like cosine transform, wavelet 
transform are very effective techniques, which give bet- 
ter results but it process the data in serial manner and 
hence requires more time for processing [4]. The artifi- 
cial neural network is a recent tool in image compression 
as it processes the data in parallel and hence requires less 
time and therefore, it is superior over any other technique. 
Thus, the bottleneck type artificial neural network gener-
ally used to solve an image compression problem discus- 
sed in [5-8]. It is important to transform an image data 
efficiently, which is to be compressed by neural network. 

The data can be transformed by techniques like Principal 
Component Analysis (PCA), which is based on factorize- 
tion techniques developed in linear algebra. Authors pro- 
posed the Bipolar Coding and Levenberg-Marquardt (LM) 
algorithm with back propagation neural network for im-
age compression. 

Rest of the paper is organized as follows. Section 2 pro- 
vides the information regarding the architecture of bottle- 
neck type artificial feed forward neural network. Section 
3 provides the information about PCA, concept for image 
compression and the PCA algorithm. Section 4 presents 
the training algorithm for feed forward back propagation 
neural network. The proposed Bipolar Coding algorithm 
is explained in Section 5. In Section 6, the Levenberg- 
Marquardt algorithm is explained. Performance parame- 
ters, results and discussion are presented in Section 7. Fi- 
nally, section 8 presents the conclusion and future work. 

2. Artificial Neural Network Architecture 

A neural network architecture as shown in Figure 1 is 
used for solving the image compression problem. In this 
type of architecture, input from the large number of input 
neurons is fed to a less number of neurons in hidden 
layer, which is further fed to large number of neurons in  
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Figure 1. Bottleneck type feed forward neural network. 
 
output layer of the network. Such type of network is re-
ferred as bottleneck feed forward neural network. One of 
the most important types of feed forward network is the 
multilayer back propagation neural network [9,10].  

The neural network architecture for image compres-
sion is having 64 input neurons, 16 hidden neurons and 
64 output neurons according to the requirements. The in- 
put layer encodes the inputs of neurons and transmits the 
encoded information to the hidden layer neurons. The out- 
put layer receives the hidden layer information and de- 
codes the information at the output. The outputs of hid- 
den layer are real valued and require large number of bits 
to transmit the data. The transmitter encodes and then tr- 
ansmits the output of the hidden layer 16 values as com- 
pared to the 64 values of the original image. The receiver 
receives and decodes the 16 hidden neurons output and 
generates the 64 outputs at the output layer. The te- 
chniques like Principal Component Analysis (PCA) and 
proposed Bipolar Coding with Linear transformations are 
required to incorporate with neural network to manage 
the input and output image data. PCA technique trans- 
forms an image data into small valued data which can be 
easily handled by neural network. 

3. Principal Component Analysis Technique 

The images obtained from the satellite are noisy and re- 
quire large memory space. To compress such type of im- 
ages, PCA based neural network model is used. However, 
adaptive neural network with PCA can also be used but it 
compresses the image in very less percentage [11,12]. 
Principal Component Analysis technique is called as Ka- 
rhaunen Loeve transform, Hotelling transform or proper 
orthogonal transformation. It is a factorization technique 
which is generally used in mathematical applications. 
PCA technique collects the data and transforms it to the 
new data which results in same statistical properties. The 
data transformation is performed in such a way that its 
originality remains at the end of transformation [13].  

The image data can be represented by a set of m vec-
tors: 1 2 , , , , ,i m A a a a a  

a
, where, i  represent n 

features. The vector i is depending on image applica-
tion. For example, in image compression each vector 

represents a major component of each vector features 
like color and size. The features of an image can be com- 
bined by considering the feature of each vector. Thus, 
data set A represent the features column vector k as: 
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This approach requires for the computation of the in- 
put data convergence matrix A  and extraction of the 
eigenvalues and eigenvectors. The feature column vec- 
tors can be grouped in a matrix form for easy processing. 
That is,  

C

 1 2, , ,A a a anC C C C                (2) 

where the values of a and k are varying from 1 to n.  
For compression of data, the component which has 

less importance has to be eliminated from the matrix. 
Therefore, the less important data is replaced by zero 
value. The new vectors which give the better classifica-
tion properties can be form the feature column vec-
tors ,a k . PCA method confirms that the important data 
which account maximum variation in the covariance ma-
trix to be considered. The Linear dependence between 
two random variables can be defined by the covariance 
measures. Therefore, by computing the covariance, the 
relationship between two data sets can be established. If, 

,1

C

( ,i i ,2 ,, , )i i nA a a a   then the covariance is defined by 
equation: 

   1, ,1 ,1 , ,A n A A A n A nE C μ C μ          (3) 

E   is the average value of the elements of the vector 
and ,A nμ  is the column vector obtained by multiplying 
the scalar value  ,A kE C  by unitary vector. It is impor- 
tant to note that the covariance measures a linear rela- 
tionship between the two values of sets. PCA method 
gives the simple solution in many applications like linear 
modeling, data compression, image compression, image 
restoration and pattern recognition etc.  

The image data can also be compressed using the con- 
cept of data transformation using PCA. The PCA algo- 
rithm for data transformation and data compression is 
summarized in the following steps [14]: 

Step 1: Obtain the feature column vector matrix  
from the given image data. 

AC

Step 2: Obtain the covariance matrix A . 
Step 3: Using characteristic equation   0i I A   , 

Obtain the eigenvalues. These eigenvalues forms the 
matrix y . 

Step 4: Also, calculate the eigenvectors matrix by W
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considering the eigenvalues i . 
Step 5: Obtain the Transformation  by considering 

the eigenvectors as their columns. 

TW

Step 6: Obtain the features vector matrix by . T
y AC C W

Step 7: For compression of an image, the dimensional- 
ity of the new feature vector is reduce by setting small 
eigenvalues i  to zeros.  

The dimensionality of input feature vector is changed 
by considering the small eigenvalues as zeros. The accu-
racy of the obtained results depends upon the selected 
threshold value of an eigenvalue. If the threshold value 
of eigenvalue is high, then the dimension of feature ei-
genvector is reduced more and hence the high compres-
sion can be achieved. This method considers only the 
data which has the maximum variation. Thus, PCA gives 
the simple solution to achieve high data compression, 
image compression and eigenface recognition. But, at 
high threshold eigenvalue, the loss of image data is very 
large. To overcome this drawback in PCA, authors sug-
gested a bottleneck type neural network which is used to 
change the dimension of feature eigenvector matrix effi-
ciently as well as reconstruction of an original image data. 
The architecture of such bottleneck type feed forward 
back propagation neural network for compression appli-
cation is shown in Figure 1. 

4. Training Algorithm for Feed Forward 
Neural Network 

To achieve the high compression and faithful decompres- 
sion of an image, the training algorithm of feed forward 
back propagation neural network is summarized in the 
following steps [15]: 

Step 1: Initially, weights are required to initialize to a 
small random values. Each input neuron receives the in- 
put signal xi and transmits to hidden units. 

Step 2: Hidden units of neural network sums its wei- 
ghted input signals along with biases as follows:  

1`

n

i

 inj oj i jiz v x v                (4) 

On application of activation function, the output jz   
and it sends this signal to all neurons of output 

layer. 
 injf z 

k

Step 3: Now, output neurons ( ), add all  , 1, ,ky k m 
p

weighted inputs, and applies its  
1ink j jkj

y w z w
ok 

activation function to calculate the output 

 k iny f y

 kt y

  

Step 4: Output unit compares the calculated output 
corresponding to a target and error is calculated as, 

k k inkσ f y 

Step 5: The error from the output is distributed to the 
hidden layer, then the each hidden unit , 
sums its inputs from units in the layer  

 , 1,...,jz j n

1

m

inj j jkk
w 


                  (6) 

The error is calculated as,   

 j inj injf z                   (7) 

Step 6: Each output neuron ( k ), updates its bias and 
weights

y
 1, ,j  

 
p and the weights get corrected by 

 jk k jw z   , similarly the bias corrected by the term 
Δ w  ok k  .  

Step 7: The new updated weights are represented by 
the following terms as;  

   updated old Δ  jk jkw w  jkw          (8) 

   updated old Δ  ok ok okw w  w          (9) 

Step 8: The weight correction term for hidden neurons, 

Δ  ij j iv α x                  (10) 

The bias correction term for hidden neurons, 

Δ   oj jv                    (11) 

Step 9: New updated weights are, 

   updated old Δij ij ijv v  v           (12) 

   updated old Δoj oj ojv v  v           (13) 

Along with PCA algorithm, the above feed forward 
back propagation algorithm is used to train the neural 
network. The accuracy of the decompression is depends 
upon the threshold eigenvalue at which the iteration pro- 
cess of learning is completed. In PCA technique, it is 
very difficult to obtain the correct covariance matrix. 
Similarly, the precise value of eigenvalues and eigenvec- 
tors is not possible due to computational error and hence 
the results are not satisfactory. Authors, used the neural 
network to minimize these errors in PCA, but the decom- 
pressed results are still not satisfactory. To overcome 
these problems in PCA, authors proposed another meth- 
od, Bipolar Coding with linear transformation along with 
feed forward back propagation neural network. 

5. Bipolar Coding Technique 

The Bipolar Coding technique is a new approach in the 
field of image processing. The Bipolar Coding transfor- 
mation is based on the bipolar activation function. The 
authors have proposed and applied this technique along 
with neural network for image compression. The sets of 
data obtained from an image are in analog form and re-
quired to convert into digital form. This conversion is po- 
ssible using bipolar coding with linear scaling. The scal- 
ing has the advantage of mapping the desired range of               (5) 
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maximum and minimum analog value of the data set. 
The conversions are based on certain ranges where ana-
log form is scaled between value 0 and 1. Thus, for con-
verting analog values into digital form, different binary 
values can be assigned. In this technique, each value is 
converted into the range between 0 and 1 using the for-
mula as follows [15]: 

max minX X    

 minIntercept Y C X X           (14) 

These converted values are used as the input to the 
neural network. Even though the neural network archi- 
tecture takes input from 64 nodes down to 16 nodes, no 
actual compression has been occurred because unlike the 
64 original inputs which are 8-bit pixel values, the out- 
puts of the hidden layer are also real-valued, which re- 
quires possibly an infinite number of bits for transmis- 
sion. True image compression occurs when the hidden 
layer outputs are digitized before transmission. The Fig- 
ure 2 shows a typical digitization scheme using 3 bits as 
reported in [16]. In this scheme, there are 8 possible bi- 
nary codes: 000, 001, 010, 011, 100, 101, 110, and 111. 

Each of these codes represents a range of values for a 
hidden unit output. For example, consider the first hidden 
output, when the value is between –0.1 and –0.75, then 
the code 000 is transmitted and when the value is betw- 
een 0.5 and 0.75, the code 110 is transmitted. The conce- 
pt of residual blocks conversion also used by G. Qiu et al. 
[17] but the PSNR observed was very less. The proposed 
Bipolar Coding technique using feed forward back pro- 
pagation neural network is summarized in the following 
steps: 

Step 1: Divide the image into small 8 × 8 chucks. 
These chucks are in square matrix form. It is easy to 
perform operation on such symmetric matrix.  

Step 2: Obtain the values of pixels (0 to 255) of matrix 
and convert these values in the bipolar range –1 to 1. 
This is called as pixel to real number mapping.  

Step 3: Now apply these values of bipolar range to the 
feed forward back propagation neural network. This 

 

 

Figure 2. Digitization of hidden unit output. 

neural network must have 64 input neurons as the chucks 
are of the size 8 × 8. Train the neural network using 
training algorithm as explained in Section 4. 

Step 4: The bipolar values with weight and biases feed 
to the hidden layer which may have 2, 4, 8, 16, 32, and 
64 hidden neurons. Convert these values in digital bits as 
explain in Section 5. 

Step 5: Select the 8 × 8 chucks in a sequence after the 
completion of training of the neural network.  

Step 6: Digital bits are now converted to real values.  
Step 7: Matrix ranges bipolar values from –1 to 1 re- 

converted from real value to (0 to 255) pixel mapping. 
Step 8: Finally, recall phase demonstrate the decom-

pressed image (output image) at the output of the output 
layer of neural network. Pixel to real value and real value 
to pixel conversion is done during the compression and 
decompression process. 

The proposed Bipolar Coding technique using feed 
forward back propagation neural network converts deci- 
mal values into its equivalent binary code and reconvert 
in decompression phase. The compression and quality of 
image depends on number of neurons in the hidden layer. 
The quality of output image improves and the data loss 
reduces as the number of hidden neurons increases. 

In PCA technique, the eigenvector matrix obtained 
from the covariance matrix is consisting of large decimal 
values. The statistical calculation using these values re- 
sults in erroneous results. The proposed Bipolar Coding 
uses the normalized –1 to 1 decimal value and its equi- 
valent binary bits to represent the image data. The st- 
atistical calculation in Bipolar Coding becomes less com- 
plex and therefore the loss of data is reduced. Thus, this 
technique gives the better result as compared to PCA te- 
chnique. On other hand, as it is an iterative, it requires 
large time for data conversion and iterations. It needs lar- 
ge memory space to store the subsequent results. Some- 
times, if the image is of more pixel size, then system is 
unable to perform required number of iterations as it re- 
quired the more storage space.  

The output values of the neural network are used for 
calculation of the updated weights and biases in the next 
iteration. This problem of neural network learning can be 
considered as a function of optimization, where network 
is trying to determine the parameters like weights and 
biases to minimize the network errors. Authors proposed 
the use of Levenberg-Marquardt algorithm which acts as 
optimization technique for fast reduction of an error. Au- 
thors tried to use these advantages of Levenberg-Mar- 
quardt in image compression application. The LM algo-
rithm overcomes the drawbacks of PCA with neural 
network and proposed Bipolar Coding technique. 

6. Levenberg-Marquardt Algorithm 

Neural networks are suitable for linear as well as highly 
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nonlinear functions with the adjustable biases and wei- 
ghts. The Levenberg-Marquardt (LM) algorithm can be 
used for nonlinear functions. It is very simple, but robust 
method for approximating the nonlinear function that 
locates the minimum of a multivariate function which is 
expressed as the sum of squares of non-linear real valued 
function [18,19]. LM is a combination of two methods, 
steepest descent and the Gauss-Newton method. The 
steepest decent is a first order optimization method to 
find the local minimum of a function. The algorithm be-
haves like a steepest descent method when the current 
solution is far from the correct one. The steepest descent 
method is widely popular among researchers due to its 
easy concept and relatively less work steps. Consider the 
function F(x) which can be defined and differentiable 
within a given boundary. The negative gradient of F(x) 
represents the directions of fastest decrease of the func-
tion. To obtain the local minimum of F(x), the Steepest 
Descent is employed, where it uses a zigzag path from an 
arbitrary point 0X and gradually slide down the gradient, 
until it reaches to the actual point of minimum. Mathe-
matically, this step can be defined by iterative form as,  

  1n n n n n nw w F w w g w       n     (15) 

Here, the term  ng w  is the gradient at a given point 
and n  should be used as a step in the gradient direction. 
The Gauss-Newton algorithm is a method that solves the 
nonlinear least square problems. If m functions are given, 

m  of n variables 1 2 3 n1 2 3, , ,r ,r r r , , , ,x x x x x  , with 
 the Gauss–Newton method finds the minimum 

of the sum of squares, 
,nm 

   2

1
Sum

m

ii
x r x


               (16) 

If,  0x is the initial Gauss for the minimum, then the 
method executes by iterations, . In this, 

is the solution of the normal equations, 

 sum 1 sum Δx x  
  T  Δ TJ J J r . 

Where, r is the vector function, J is the Jacobian matrix 
of r. It is slow but guaranteed correct solution. The LM 
algorithm incorporates the advantages of steepest descent 
and Gauss-Newton algorithm. Authors proposed and im- 
plemented successfully the LM mathematical technique 
in the application of image processing. The normal LM 
equation for image compression application can be modi- 
fied as,  

 T  δ TJ J I J E                (17) 

where J is the Jacobian matrix,   is the Levenberg’s 
damping factor,   is the weight update vector and E is 
the error vector. The TJ J  matrix is called as Hessian 
matrix. The damping factor   is required to adjust after 
each iteration and it guides the optimization process. The 
Jacobian is a matrix contains first derivatives of the net-
work errors with respect to the weights and biases. It can 

be obtained by taking the partial derivatives of output 
with respect to weight as given below: 

     

     
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 
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



   



(18)  

where  F ,ix w  is the network function evaluated using 
the weight vector w for the  input vector. Hessian 
doesn’t need to be calculated as it is approximated by us- 
ing the Jacobian matrix. This approximation of the Hes- 
sian holds good if the residual errors at the solution are 
small enough. The general Levenberg-Marquardt algori- 
thm consists of the following steps: 

thi

Step 1: Obtain the Jacobian matrix J. It is recom- 
mended to use finite difference or chain rule for calcula- 
tion of J. 

Step 2: Obtain the error gradient Tg J J  
Step 3: Now, Hessian matrix can be approximated us-

ing the cross product of Jacobian as: TH J J  
Step 4: The value of   can be obtained by solving 

the equation  T TJ J I  δ J E  . 
Step 5: Use the value of   to update the network 

weights w.  
Step 6: Using the updated weights w, recalculate the 

sum of squared errors. 
Step 7: If sum of the squared errors has not further re-

duced then discard the new weights values and increase 
the value of  . 

Step 8: Else decrease   and calculate new values of 
w using  till the error reaches at the desired value and 
stop. 

Here,   start from very small value such as 0.1 and 
if it becomes large then iterations stops and the value of 
  again decreases.  

In this algorithm, if the damping used at one iteration 
reduces the error, the damping is divided by a reduction 
factor before the next iteration and the convergence 
speed up towards the best result. If the error increases, 
then the damping multiplied by the factor, ensure the 
correct result. Thus, the algorithm switches from one to 
another smoothly. If the proper value of damping se-
lected in LM, then its iterations completed within the 
short duration and produced the best results at decom- 
pressed phase. The LM algorithm thus required the less 
number of iteration and less time as compared to PCA 
technique as well as the Bipolar Coding technique. The 
memory requirement in LM method is also less as the 
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

number of iteration reduces. 

7. Experimental Evaluation and Results 

The quality of an image is measured using the parameters 
like Mean Square Error (MSE) and Peak Signal to Noise 
ratio (PSNR). MSE and PSNR are the parameters which 
define the quality of an image reconstructed at the output 
layer of neural network. The MSE between the target 
image and reconstructed image should be as small as 
possible so that the quality of reconstructed image should 
be near to the target image. Ideally, the mean square er-
ror should be zero for ideal decompression.  The com-
pression-decompression error is evaluated by comparing 
the input image and decompressed image using normal-
ized mean square error formula [16]. 

 2

kE t y                   (19) 

where t is the target value and  is the output of the 
neural network.  

ky

An alternative to MSE, as indication of decompressed 
image quality, peak signal to noise ratio (PSNR) is also 
introduced which is defined as [17]: 

   
2

10PSNR dB 10 log dB
MSE

L 
   

 
        (20) 

where L is the maximum value of pixels of an image. 
The peak signal to noise ratio depends on the maximum 
value of pixels of an image and MSE. Therefore, the 
PSNR also defines the quality of image. The PSNR of 
reconstructed image should be as high as possible and 
MSE as minimum as possible so that the almost same 
quality of image can be obtained after decompression. 
For various experimentation in different techniques de-
scribed above, Leena and Lussy images are considered 
which are shown in Figure 3(a). Specifications of im-
ages are obtained by reading images in Adobe Photoshop 
7.0.1 image editing software. 
 Specifications of image: Leena  
Dimensions = 256 × 256 pixels, Size: 64 K, 
Resolution = 28.346 pixels/cm. 
Width = 7.57 cm, Height = 6.96 cm. 
 Specifications of image: Lussy  
Dimensions = 32 × 32 pixels, Size: 1 K, 
Resolution = 28.346 pixels/cm. 
Width = 1.13 cm, Height = 1.13 cm 
The input images Leena and Lussy are first converted 

into 8 × 8 pixels blocks. The image compression is ex- 
perimented with various numbers of neurons in the hid- 
den layer along with the different parameters of the neu- 
ral network. The neural network configuration with one 
hidden layer and different number of neurons in hidden 
layer as 2, 4, 8, 16 & 32 can be easily represented by 

binary bits respectively. Therefore 2, 4, 8, 16 & 32 hidden 
neurons are considered for experiments while 64 input 
neurons and 64 output neurons are used according to the 
requirement of selected input image pixels blocks size.  

A number of experiments are carried out to test the 
PCA algorithm using feed forward back propagation 
neural network. For various experiments a common im- 
ages, Leena and Lussy are considered which are shown in 
Figure 3(a). The 1000 epochs are considered, as the best 
results are obtained at 1000 epochs.  

The results of 256 × 256 pixels Leena and 32 × 32 pix- 
els Lussy images using PCA technique are summarized 
in Table 1. These are the measurements for constant 
values of learning rate α = 0.2 and momentum factor (m.f.) 
= 0.5. Decompressed image for 32 hidden neuron results 
into good quality image compared to 2, 4, 8 and 16 hid- 
den neurons. The decompressed images for 32 hidden 
neurons are shown in Figure 3(b). 

From the results, it is observed that the decompressed 
image is distorted due to the loss of data during computa- 
tion. Also, the error remain constant due to saturation of 
the network and therefore decompressed images for 2, 4, 
8, 16 and 32 hidden neurons is also approximately same 
which are shown in Figure 3(b). Figure 4 shows that the 
error saturates and becomes constant which leads to more 
distortion in the output. 

Now, consider the Leena and Lussy as input images 
with same specifications for proposed Bipolar Coding 
with linear scaling technique. Table 2 shows experimen-
tal results for Bipolar Coding with linear scaling algo-
rithm. These are the measurements for constant values of 
learning rate α = 0.2 and momentum factor (m.f.) = 0.5. 
The 1000 epochs are considered for Leena and Lussy input 
images. The image in Figure 3(c) shows the decom- 
pressed images for 32 hidden neurons. Also, the variation 
of an error with respect to number of epoch performed is 
shown in Figure 5.  

 

 

Figure 3. (a) Original Input images for experiments; (b) De- 
compressed images using PCA technique; (c) Decompressed 
images using proposed Bipolar Coding technique; (d) De- 
compressed images using Levenberg-Marquardt algorithm. 
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Figure 4. Error versus Epochs for PCA technique. 
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Figure 5. Error versus Epochs for proposed Bipolar Coding 
technique 
 
Table 1. Results for Leena and Lussy image using PCA te- 
chnique, α = 0.2 and m.f. = 0.5. 

Hidden Leena Lussy 

Neurons Epoch PSNR (dB) Error PSNR (dB) Error 

2 1000 29.9798 30.9755 30.2798 32.9755

4 1000 29.3997 30.9775 30.3047 30.9775

8 1000 29.3559 30.5693 30.3554 30.9693

16 1000 30.1157 30.5375 30.3657 30.9775

32 1000 30.3463 30.5070 30.3863 30.9770

Table 2. Results for Leena and Lussy image using Bipolar 
Coding technique (α = 0.2 and m.f. = 0.5). 

Hidden Leena Lussy 

Neurons Epoch PSNR (dB) Error PSNR (dB) Error 

2 1000 42..412 20.38 68.9702 0. 2641

4 1000 48.7998 19.645 72.0297 0.0082 

8 1000 59.5776 9.6119 72.7644 0.0041 

16 1000 64.6756 0.1232 85.5733 5.3E-03

32 1000 68.4563 0.0089 88.9967 1.9E-05

 
From these results, it is observed that the Bipolar Cod- 

ing with linear scaling algorithm gives better resuslts 
than statistical PCA method. But in Bipolar Coding, if 
the size of data set is large (Leena image), then iterations 
stops without minimizing the error. This occurs due to 
the saturation of the network. Also, it requres the large 
memory area to store the iterated results. Such type of 
problem of neural network learning can be overcome by 
Levenberg-Marquardt algorithm. The results further can 
be improved and errors can be minimised by applying the 
Levenberg-Marquardt algorithm.  

The experiments are carried out for images shown in 
Figure 3(a) with same specifications for 2, 4, 8, 16 and 
32, hidden neurons and 1000 epochs. In LM technique, 
error is very less and PSNR is very high as compared to 
PCA and Bipolar Coding proposed technique. Also, it is 
observed that the decompressed images are approxima- 
tely same as the target images (input images). In Figure 
3(d), LM Leena and LM Lussy images show the decom- 
pressed images for 32 hidden neurons for 1000 epochs. 
Levenberg-Marquardt algorithm results are summarized 
in Table 3. Figure 6 shows the relation between the 
variation of error and epochs performed using LM algori- 
thm. Figure 7 shows the relative variation of the PSNR 
(dB) with respect to epochs performed. If Leena image is 
considered as an input image for Levenberg-Marquardt 
algorithm, due to large size of image, the matrix size is 
also large and it is not possible to perform more iteration. 
Therefore, it is convenient to perform 200 - 1000 itera- 
tions for large images. Even with the small number of 
iterations, the results using Levenberg-Marquardt algori- 
thm for large image are quite good and the error is very 
less as compared to the other methods. 

The momentum factor and learning rate parameter de- 
cides the speed and error of the feed forward back pro- 
pagation neural network. If momentum factor and learn- 
ing rate is small then training of the neural network is 
slow and therefore required more time for compression. 
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On other hand, if both parameters chosen with high value 
then the oscillations occurs in the network. Thus, the 
proper selection of these parameters is an important task 
in PCA, Bipolar Coding and LM technique. Typically, 
momentum factor value is 0 . . 0.m f   and learning 
rate value is 0.05 0.8   is considered. Table 4 shows 
the statistical comparison of all three techniques at dif-
ferent values of learning rate and momentum factor. 
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All the discussed techniques can also be compared us-
ing the parameter like speed with respect to epochs per-
formed. Table 5 shows the comparison between the dif-
ferent techniques. These reading are for Hidden neurons 
= 32, α = 0.2 and m.f. = 0.5. Lussy image is considered 
for experimentations. From Table 5, it is observed that 
PCA technique requres more time as compared to Bipo- 
lar coding and LM technique. It is also seen that the LM 
technique is faster than PCA and Bipolar coding techni- 
que. For following results, the system with following 
specifications is used: Intel(R) Core™ 2 Duo CPU, 
T5670 @1.80 GHz, 789 MHz Processor. 

Figure 6. Error versus Epochs for LM technique. 
 

 
Table 3. Results for Leena and Lussy image using LM Algo-
rithm technique (α = 0.2 and m.f. = 0.5). 

Hidden Leena  Lussy 

Neurons Epoch PSNR (dB) Error PSNR (dB) Error 

2 1000 117.9094 1.1E-07 138.3854 9.8E-10

4 1000 119.7014 7.2E-08 140.0208 6.7E-10

8 1000 130.045 6.7E-09 140.0228 6.7E-10

16 1000 149.9405 6.9E-11 148.9903 8.5E-11

32 1000 150.017 6.7E-11 151.1854 5.1E-11
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Figure 7. PSNR versus Epochs for PCA, Bipolar and LM 
technique. 

 
Table 4. Comparison of PSNR (dB) and Error for PCA, Bipolar Coding and Levenberg-Marquardt techniques. 

α = 0.8, Momentum factor (m.f.) = 0.2 α = 0.5, Momentum factor (m.f.) = 0.4 

PCA Bipolar coding LM Algorithm PCA Bipolar coding LM Algorithm Epochs 

PSNR Error PSNR Error PSNR Error PSNR Error PSNR Error PSNR Error 

100 36.3038 30.9795 82.5924 0.3039 166.40 1.50E–12 36.3882 32.5755 85.237 0.2241 166.34 1.58E-12
200 36.3723 30.9775 84.0024 0.2584 171.73 4.41E–13 36.3993 32.5693 88.642 0.1514 171.89 4.40E-13
300 36.4023 30.9774 87.0002 0.1707 174.57 2.30E–13 36.4013 32.9774 90.111 0.1279 174.73 2.29E-13
400 36.4085 30.9774 90.3853 0.1239 176.43 1.48E–13 36.3661 32.543 91.063 0.1146 176.59 1.49E-13
500 36.5692 30.5692 92.0072 0.1028 177.79 1.10E–13 36.392 32.9837 93.416 0.0874 177.95 1.09E-13
600 36.3392 30.9794 92.0948 0.1018 178.87 8.48E–14 36.3246 32.9775 94.667 0.0772 178.99 8.58E–14
700 36.4301 30.9794 92.6368 0.1073 179.71 7.10E–14 36.3413 32.5693 95.206 0.0711 179.88 7.00E–14
800 36.3971 30.5692 94.5684 0.0765 180.46 5.91E–14 36.3444 32.5692 96.145 0.0638 180.62 5.90E–14
900 36.3961 30.9834 96.8211 0.0592 181.11 5.09E–14 36.325 32.9774 96.967 0.0620 181.26 5.08E–14

1000 36.3734 30.9774 98.8979 0.0522 181.69 4.45E–14 36.3847 32.5692 98.606 0.0041 181.84 4.44E–14
1500 36.4723 30.7765 104.342 0.0034 184.55 2.28E–14 36.3661 32.9774 105.251 0.0024 184.79 2.26E–14
2000 36.4743 30.6795 106.544 0.0027 185.65 1.90E–14 36.4323 32.4755 107.625 0.0017 185.77 1.80E–14
2500 36.7723 30.5885 107.656 0.0019 187.11 1.30E–14 36.5423 32.5664 108.124 0.0011 187.25 1.29E–14
3000 36.7973 30.5705 109.887 0.0008 188.32 9.75E–15 36.4973 32.5554 110.621 0.0005 188.85 9.72E–15

 



New Approaches for Image Compression Using Neural Network 228 

 
Table 5. Comparison of execution time required for PCA, 
Bipolar Coding and Levenberg-Marquardt techniques. 

Time( Min:Sec:div) 
Epoch 

PCA Bipolar Coding LM 

100 0:13:04 0:10:25 0:02:53 

200 0:17:07 0:12:36 0:08:11 

300 0:21:15 0:14:07 0:11:08 

400 0:32:51 0:18:44 0:15:26 

500 0:41:20 0:23:04 0:18:04 

600 0:48:36 0:37:07 0:21:56 

800 1:10:15 1:05:10 0:28:15 

1000 1:25:53 1:21:14 0:35:10 

 

8. Conclusions 

In this work, PCA, proposed Bipolar Coding and LM 
technique, based on artificial neural network are applied 
for image compression application. In PCA technique, 
the accuracy of the results obtained depends upon the 
threshold value of eigenvalue at which the iteration 
process of learning is terminated. Also, some of the in-
formation below the threshold value is removed or repla- 
ced by zero and therefore more information is removed 
from the feature vector matrix and hence from image 
data. Thus, the reconstructed image result is not satisfac- 
tory as well as the convergence speed is very slow.  

The Bipolar Coding Technique and LM algorithm are 
proposed and implemented for image compression and 
got the satisfactory results as compared to PCA tech- 
nique. The Bipolar coding network is trained with the 
small 8 × 8 blocks of image and tested. It is observed 
from the results that using this method, a good quality of 
decompressed image is obtained. It has high PSNR and 
very less error. Thus, this method achieves high com-
pression. But, the neural network is trying to determine 
the updated weights and biases in each step to minimize 
the systems errors. This is step by step process that re- 
quires more time and more memory space to store the 
subsequent results. To overcome these problems and to 
improve the results, the mathematical Levenberg-Mar- 
quardt algorithm is proposed. It is observed from the ex- 
perimental results that the image compression using Lev- 
enberg-Marquardt algorithm performs better than the PCA 
and Bipolar coding and is having more convergence 
speed. It is also seen that the Levenberg-Marquardt algo- 
rithm suits the best for small as well as large image com- 
pression. This algorithm is fast in operation as well as it 
requires less memory to store the results. The Bipolar 
Coding technique and LM algorithm can be applied for 
many image processing applications where the data is 

highly nonlinear. The images taken by satellite or remo- 
tely sensed images are generally noisy and therefore it is 
necessary to perform lossless compression. The proposed 
methods are most suitable for such compression as PSNR 
is very high and less error. The adaptive nature of the 
proposed methods (Bipolar Coding and LM algorithm) 
results into variety of applications in image processing. 
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