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Abstract 
In this paper, we extend Kim (2013) [9] for the optimal foreign exchange 
(FX) risk hedging solution to the multiple FX rates and suggest its application 
method. First, the generalized optimal hedging method of selling/buying of 
multiple foreign currencies is introduced. Second, the cost of handling for-
ward contracts is included. Third, as a criterion of hedging performance 
evaluation, there is consideration of the Leontief utility function, which 
represents the risk averseness of a hedger. Fourth, specific steps are intro-
duced about what is needed to proceed with hedging. There is a computation 
of the weighting ratios of the optimal combinations of three conventional 
hedging vehicles, i.e., call/put currency options, forward contracts, and leav-
ing the position open. The closed form solution of mathematical optimization 
may achieve a lower level of foreign exchange risk for a specified level of ex-
pected return. Furthermore, there is also a suggestion provided about a pro-
cedure that may be conducted in the business fields by means of Excel. 
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1. Introduction 

Recently, foreign currency fluctuations are one of the key sources of risk in mul-
tinational business/investment operations because of the widespread adoption of 
the floating exchange rate regime in many countries after the breakdown of the 
Bretton Woods system.1 The U.S. Department of Commerce has also warned 
that “The volatile nature of the FX market poses a great risk of sudden and drastic 

 

 

1The number of countries with floating and free floating arrangements are 36 and 29 by 2014, re-
spectively, according to IMF (https://www.imf.org/external/pubs/nft/2014/areaers/ar2014.pdf). 
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FX rate movements, which may cause significantly damaging financial losses from 
otherwise profitable export sales” (Trade Finance Guide, Ch. 12).2 Furthermore, 
that Guide also suggested three FX risk management techniques that are consi-
dered suitable for small and medium-sized enterprises companies: non-hedging 
FX risk management techniques, FX forward hedges, and FX options hedges. 

However, for practical use by businesses or individuals, there has not been an 
analytical method with a closed form solution to choose from among the various 
available hedging tools to reduce the risk optimally, as correctly pointed out by 
Khoury and Chan (1988) [8]. For further studies on this issue, see Sercu and 
Uppal (1995) [11]. 

Khoury and Chan (1988) [8] gauge the preferences of finance officers in terms 
of the specific characteristics of a hedging tool, by relying on a questionnaire 
survey. Bodie, et al. (2002) [2] and Nancy (2004) [1] illustrate the technique of 
computerized optimization and simulation modeling to manage foreign ex-
change risk. However, their techniques are not a closed form optimal hedging 
solution that requires additional computational burden. So its application is li-
mited in the real business world. In this regard, Kim (2013) [9] introduced the 
optimal foreign exchange risk hedging solution by exploiting a standard portfo-
lio theory.3 Hsiao (2017) [7] applies the framework of Kim (2013) [9] to investi-
gate the effects of foreign exchange exposures on the performance of Taiwan 
hospitality industry and try to propose some hedging strategies and strengthen 
their corporate risk management. 

In this paper, we extend Kim (2013) [9] for the optimal single FX risk hedging 
solution and theory to the multiple FX rates and suggest its application method 
in the business fields. First, the generalized optimal hedging method of sell-
ing/buying of multiple foreign currencies is introduced. Second, the cost of han-
dling forward contracts is included. Third, as a criterion of hedging performance 
evaluation, we consider the Leontief utility (or profit for a firm) function, which 
represents the risk averseness of a hedger. Fourth, steps are introduced about 
what is needed to proceed with hedging. There is a computation of the weighting 
ratios of the optimal combinations of three conventional hedging vehicles, i.e., 
call/put currency options, forward contracts, and leaving the position open. As 
in the standard portfolio theory, the closed form solution of mathematical opti-
mization may achieve a lower level of foreign exchange risk for a specified level 
of expected return. There is also a suggestion provided for a procedure that may 
be conducted in the business fields by means of Excel.4 

The rest of this paper is as follows. Section 2 derives the expected return and 
return variance of the hedging vehicles. Section 3 analyzes the optimal hedging 
selection. Section 4 is on application of developed method, and Section 5 is the 
conclusion. 

 

 

2U.S. Department of Commerce, Trade Finance Guide, Ch. 12, “Foreign Exchange Risk Manage-
ment,” http://trade.gov/publications/pdfs/tfg2008ch12.pdf. 
3Kim (2013) [9] considered a single currency case and just for selling case. So its practical applica-
tions are very limited. 
4American currency option and currency future are not considered in this paper because of the spe-
culative nature. Thus, the focus is solely on the hedging of the FX risk. 
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2. Expectation and Variance of Hedging Tools’ Returns 

In this section, we construct an efficient hedging frontier composed of the ex-
pected value and variance of each hedging vehicle’s return for the multiple for-
eign exchanges. So, it is exactly matched with the portfolio possibilities curve in 
modern portfolio theory. Note an optimal combination of hedging vehicles is 
one that maximizes the expected return given a desired level of risk. For this ob-
jective, there is a need to compute the mean and variance of each tool. 

Before proceeding, we assume that a foreign investor needs to buy or sell 
m-different currencies ( )1 2, , , mθ θ θ ′Θ ≡   [ ]1m×  at a future time T where iθ  
is represented by the unit of i-th currency. He is worrying about the foreign ex-
change risk of domestic currency (e.g., US dollar) term translated value of Γ  
and to hedge it optimally at time 0. The m-foreign exchange rates at time t in 
terms of domestic currency, is denoted as ( )1 2, , ,t t t mtS e e e ′≡  . For instance, 

ite  is the dollar price of one euro or yen where the dollar is the domestic cur-
rency. It is presupposed that there are three hedging tools, i.e., European cur-
rency put (or call) option, forward contracts, and leaving the position open.5 
Furthermore, there are the following definitions: a forward contract rate vector 

( )1 2, , ,t t t mtF e e e ′≡  , a striking price vector ( )1 2, , , mK κ κ κ ′≡  , and its pre-
mium ( )1 2, , , mP p p p ′≡   at time t of a European put (or call) option with the 
common maturity T.6 Finally, ( )1 2, , , mC c c c ′≡   is a per unit handling cost 
vector for the forward contract tF  if a bank is used. 

Define the log of domestic currency term translated value of FX asset Γ  at 
time t is given as ( )lnt ts S′≡ Θ  which is a FX value. For instance, if 

( )10 Euro, 50 YenΘ =  and ( )1.5 Dollar Euro ,0.1 Dollar YentS = , then 
( )ln 20 Dollarts = . We assume the ( ts ) follows a random walk process: 

Assumption 2.1. We suppose 

1 1, 1, 2, ,t t ts s u t n+ += + =                   (2.1) 

where { }tu  is independent, identically and normally distributed sequence with 
the mean zero and variance 

2 0σ > . 
Note 1t t tE s s+ =  where tE  is a conditional expectation. Thus Assumption 

2.1 just a variant of the efficient FX market hypothesis.7 2σ  is consistently  

estimated by 
( )2

2 1ˆ
n

tt s
n

σ =
∆

= ∑ . 

Now we derive the return and its variance of different hedging tools, where 
the return is compared with the selling (or buying) a foreign currency (as a 
bench mark) by the spot rate 0s . 

2.1. FX Selling Case 

First, we derive the expected return Rn and its variance 2
nV  of the non-hedging 

(leaving the position open), as follows. 

 

 

5It is a non-hedging and to buy the foreign currency at time T. 
6The value of the put option was derived by Garman and Kohlhagen (1983) [5]. 
7See Diebold and Nason (1990) [3] for this issue. 
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Theorem 2.2. Suppose Assumption 2.1 holds. Then the expected return for 
non-hedging of FX asset Θ  is Rn = 0 and its variance during time T is 2 2

nV Tσ= . 
All proofs of the theorems are in the Appendix. 
Second, we derive the expected return Rf and its variance 2

fV  of the forward 
contract as follows. 

Theorem 2.3. Suppose Assumption 2.1 holds. Then the expected return of 
forward is 0f TR f s c= − −  and its variance is 2 0fV =  where ( )lnT Tf F′≡ Θ , 
and 0c C S′ ′≡ Θ Θ . 

Now we derive the expected return Rp and its variance 2
pV  of currency put 

option as follows. 
Theorem 2.4. Suppose Assumption 2.1 holds. Then, 
(a) the expected return of currency put option is given as: 

( ) ( )0 0 0pR x z T z pσ φ= Φ + −  

and 
(b) its variance of currency put option is: 

( ) ( ) ( ) ( ) ( )( )22 2 2 2
0 0 0 0 0 0 01p T TV x z T E z z z z x z T zσ σ φ = Φ + ≥ −Φ − Φ +  . 

where ( )lnk K′≡ Θ , 0p P S′ ′≡ Θ Θ , 0 0x k s≡ − , and ( )0 0z x Tσ=  where 
( )zφ  and ( )zΦ  are the standard normal density and distribution functions 

respectively and .0aF  denotes the distribution function of central ( )
2
qχ  distri-

bution with the degree of freedom q and: 

( ) ( )
( )

( )
( ) ( )

( )
( ) ( )

2
3,0 02

0 02
1,0 0

2 2
3,0 0 3,0 0

0 0 02 2
1,0 0 1,0 0

1
0

1

1
1 2 1 0.

1

T T

F z
E z z z if z

F z

F z F z
z z if z

F z F z

−
≥ = ≥

−

−
   = − Φ + −Φ − <   −

 

In the above Theorem 2.4, it was suggested that a form of 2
pV  represented by 

a ( )
2
1χ  distribution for the computation of conditional expectation 

( )2
0T TE z z z≥ . Otherwise, there is a need for integration by a formula 

( ) ( )
0

2 2
0T T T T Tz

E z z z z z dzφ
∞

≥ = ∫ , which requires an additional burden. 

Next, there is a derivation of the covariance among the three hedging tools. 
Note the covariance of returns between non-hedging (or option) and forward is 
obviously zero since the forward return is not random. Then the covariance of 
returns between put option and non-hedging is given as follows. 

Theorem 2.5. Suppose Assumption 2.1 holds. Then the covariance of returns 
between put option and non-hedging is:8 

( ) ( ) ( )2 2
0 0 0 01pn T TCov x T z T E z z z zσ φ σ  = − + ≥ −Φ  . 

2.2. FX Buying Case 

First, note we have the same expected return 0nR =  and its variance 

 

 

8See Theorem 2.4 for the definitions. 
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2 2
nV Tσ=  of the non-hedging, as given in Proposition 2.2 for buying a foreign 

exchange case. 
Second, we derive the expected return fR  and its variance 2

fV  of forward 
contract as follows. 

Theorem 2.6. Suppose Assumption 2.1 holds. Then the expected return of 
forward9 is 0f TR s f c= − −  

and its variance is 2 0fV = . 
Now we derive the expected return cR  and its variance 2

cV  of currency call 
option as follows. 

Theorem 2.7. Suppose Assumption 2.1 holds. Then, 
(a) the expected return of currency call option is given as: 

( ) ( )0 0 01cR T z x z pσ φ  = − −Φ −   

and 
(b) its variance of currency call option is: 

( ) ( ) ( ) ( ) ( )( )22 2 2 2
0 0 0 0 0 0 01 1c T TV x z T E z z z z x z T zσ σ φ   = −Φ + < Φ − −Φ −     

where 

( ) ( )
( )

( )
( ) ( )

( )
( ) ( )

2
3,0 02

0 02
1,0 0

2 2
3,0 0 3,0 0

0 0 02 2
1,0 0 1,0 0

1
0

1

1
1 2 0.

1

T T

F z
E z z z if z

F z

F z F z
z z if z

F z F z

−
< = <

−

−
 = − Φ − + Φ − ≥  −

 

The covariance of returns between call option and the non-hedging is given as 
follows. 

Theorem 2.8. Suppose Assumption 2.1 holds. Then the covariance of returns 
between put option and non-hedging is: 

( ) ( ) ( )2 2
0 0 0 0cn T TCov x T z T E z z z zσ φ σ= + < Φ . 

3. Efficient Hedging Frontier Construction 

Based upon above derivation of expected return (R) and return variance (V2) 
structure, now we can derive the efficient hedging frontier. It is exactly matched 
with the portfolio possibilities curve in a standard portfolio theory (e.g., Elton, et 
al. (2007) [4]). 

For this purpose, first, there is consideration of a portfolio composed of 
non-hedging and put in the option (for FX selling) that are all risky. Let the 
weight of non-hedging be as w and 1-w for the option where w is a real number. 
Then, from the above derivation in Section 2, its expected return is defined as 
follows.10 

( ) ( ) ( )1 1n p pR w wR w R w R= + − = −                (3.1) 

 

 

9Buying the foreign exchange means outflow of domestic currency. So, a negative of the forward 
amount is taken. 
10In case of call option, pR , 2

pV  and pnCov  are replaced by cR , 2
cV  and cnCov  respectively. 
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because 0nR =  for the non-hedging, and its variance is given as: 

( ) ( ) ( )22 2 2 21 2 1n p npV w w V w V w w Cov= + − + − . 

Therefore note ( )0 pR R= , ( )1 0nR R= = , ( )2 20 pV V=  and ( )2 21 nV V= . 
In this case, the return of forward has zero variance with the expected return, 

say, fR . Thus, it is regarded as a riskless asset in the standard portfolio theory. 
Now the hedging allocation line (a line of R and V)11 connecting the riskless 
forward contract and a combination of non-hedging and put option is defined as 
follows. 

( )
( )

f
f

R w R
R R V

V w
 −

= +   
 

,                 (3.2) 

where R denotes the return and V denotes the standard deviation of return (as a 
risk); ( ) ( )fR w R V w −   is a constant slope for a given w where 
( ) ( )2V w V w= . 
Then the efficient hedging allocation line12 is given by solving following problem: 

( )
( )

max f

w

R w R
V w

−
                    (3.3) 

that is maximizing the slope of Equation (3.2) with the argument w. The prob-
lem (3.3) may be solved without restriction, according to Elton, et al. ([4]: pp. 
100-103), as follows. 

( )
( ) ( )( )

2
* 1

2 2
1 2

p f np p f

f np p n np p f

V R Cov R Rmw
m m R Cov V V Cov R R

− − −
= =

+ − + − −
     (3.4) 

where 
12

1
2

2

fn np

p fnp p

Rm V Cov
R Rm Cov V

−
−    

=        −    
 assuming 

2

2 0n np

np p

V Cov
Cov V

≠ . 

If [ ]* 0,1w ∉ , then the maximization problem (3.3) should be solved under 
the restriction [ ]0,1w∈  using a typical Kuhn-Tucker condition. 

Finally, the efficient hedging frontier is given by: 

( )
( )
*

*

f
f

R w R
R R V

V w

 −
 = +
 
 

 of the left of ( ) ( )* *,R w V w 
   if [ ]* 0,1w ∈  (3.5) 

( ) ( ),R w V w=     of the right of ( ) ( )* *,R w V w 
    otherwise. 

For the given efficient frontier in (3.5), the optimal hedging (cf., separation 
theorem) is conducted as follows. First, the hedging ratio between non-hedging 
and option are set as ( )* *,  1w w− . See Figure 1. Second, ρ  is set for the for-
ward and 1 ρ−  is set for the first combination of non-hedging and option. So if 

1ρ = , then the forward becomes the unique hedging tool. 
Finally, ( ) ( )( )* *, 1 , 1 1w wρ ρ ρ − − −   becomes the optimal hedging ratio of 

the forward, non-hedging, and put option. Note the expected utility maximization  

 

 

11It is called as the capital allocation line in the portfolio theory. 
12It is called as the capital market line in the portfolio theory. 
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Figure 1. Efficient hedging frontier. (A: Forward only solution, B: 
Non-Forward solution). 

 
may be a rule to determine an optimal ρ . The following section suggests an op-
timal hedging solution through determining an optimal ρ  under the Leontief 
utility function. 

4. Optimal Hedging under Leontief Utility Function 

A Leontief utility (or profit for a firm) function is considered ( )min ,U R Vα β= +  
as a criterion for hedging performance evaluation where 0β < . Note, for the 
maximization of a Leontief utility function under the efficient hedging frontier 
in Figure 1, a pair (V, R) should satisfy a line: 

.R Vα β= +                          (4.1) 
To show it, let us derive an indifference curve. For this, suppose 0 0R Vα β= +  

(as in Figure 2). Then a utility of ( )0 ,V R  has the same utility with ( )0 0,V R  
for 0R R≤  because a utility of ( )0 ,V R  is ( ) ( )0 0 0min , min ,R V R R Rα β+ = =  
while the utility of ( )0 0,V R  is ( )0 0 0min ,R V Rα β+ =  from 0 0R Vα β= + . Simi-
larly, a utility of ( )0,V R  has the same utility with ( )0 0,V R  for 0V V≤  because 
a utility of ( )0,V R  is ( )0 0min ,R V Rα β+ =  using 0 0V V Rα β α β+ ≥ + =  
while the utility of ( )0 0,V R  is ( )0 0 0min ,R V Rα β+ =  from 0 0R Vα β= + . So 
the North-West direction indicates the increase of utility in a space of (V, R). 

Later, the above Equation (4.1) will be called a utility maximizing locus 
(UML). The UML might be interpreted as that which denotes how V is trans-
formed into R with the same utility. It also denotes a cost of the standard devia-
tion (volatility) for a hedging portfolio. See Figure 2 where the cost for the vola-
tility 0V  is evaluated as 0 0R Vα β= +  in terms of return. 

Note, the above Leontief utility function and conformable UML represent an 
extreme risk averseness. It is related to the marginal rate of substitution of the vo-
latility to a return at the utility maximizing point along UML, which is +∞ , i.e., 
the marginal increase of V requires an infinite return increase (as compensation 
for augmented risk) for the same utility, whereas, a marginal decrease of V does 
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Figure 2. Indifference curve under Leontief utility function. 

 
not require any return to be at the same utility level. This assumption is not so 
unrealistic because this model is not designed for the speculator but for the 
hedger/firms in the real world of business who are concerned with the volatility 
of fund flow.  

Now to estimate α  and β  by an ordinary least square regression, we re-
write Equation (4.1) as: 

( ) ( ) 2
E R E z E zα β= + −    

or approximately 

Ti Ti TiR z zα β ε= + − +  for 1,2, ,i n=                (4.2) 

where ( )1Ti Ti T iz s s −≡ −  is a change rate of FX asset during a maturity from 0 to 
T, z  is a sample average of Tiz , and Tiε  is assumed as a mean zero error term 
that is not correlated with Tiz . 

Now note the intersection of UML (4.1) and the efficient hedging frontier 
(3.5), which is given as follows. 

( )
( )
*

*

f

f

R
V

R w R

V w

α

β

−
=

−
−

  and R Vα β= +  , 

after solving two Equations (3.5) and (4.1) with two unknowns R and V when 
*0 1w≤ ≤ . The above solution point ( ),V R   helps to find the optimal weight 

for the riskless forward contract as 

( )
*

*
1 V

V w
ρ = −



13                        (4.3) 

when 
( )*

0 1V
V w

≤ ≤


. See Figure 3. 

Consequently 

 

 

13It is also equivalently written as ( )*
1 fR R

R w R
ρ

−
= −

−





 from the property of the proportional triangular. 
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Figure 3. Derivation of optimal weight for forward. 

 

( ) ( )( )* * * * *, 1 , 1 1w wρ ρ ρ − − −                    (4.4) 

becomes the optimal hedging ratio of forward, non-hedging, and put option us-
ing (4.3) for the vector Θ . So, for instance, the weight *ρ  of Θ  needs to be 
distributed to the forward. 

Note, if the slope coefficient β  as a marginal cost of volatility V is decreased 
to ( )β β′ < , then the new optimal weight for the forward contract (riskless) is  

decreased as 
( )

* *
*

' 1 V
V w

ρ ρ
′

= − <


. So more risk can be admitted because the  

marginal cost of volatility is decreased. See Figure 3 to see this change. 
However, if V  is larger than ( )*V w  because β  is sufficiently small, then 

the weight for the forward contract (remind 0nR = ) may become zero.14 In this 
case, *w  is not any further an optimal weight between the leaving open position 
and the option. Rather, we have to choose it from the intersection of UML and 
the locus of ( ) ( ),V w R w    which depends on the weight parameter w. The 
new solutions ,V R    for the optimization are computed as follows.15 

Theorem 4.1: Suppose a pair (V, R) satisfies a line (4.1). Then 
2b b acR

a
− ± −

=  and RV α
β
−

=  assuming 2 0b ac− ≥  where 

2
2 2

2 2p
n p pn

R
a V V Cov

β
= − − + , 

2
2

2
p

p n pn p

R
b R V Cov Rα

β
= − + − , 

2 2
2 2

2
p

p n

R
c R V

α
β

= − . 

In Theorem 4.1, we may have two different solutions that need to be selected 
to maximize the utility. So, we need to select one R  among them maximizing 
the utility and define a conformable optimal expected return as 

( )* arg max max min ,R RR U R Vα β≡ = + . See following Figure 4. 
Finally, the optimal hedging ratio of the forward, non-hedging, and put op-

tion becomes ( )0, , 1w w−    where 

 

 

14It is when the marginal cost of V is small and thus a riskless forward contract is not chosen. 
15Remind that any forward is not used in this case. 
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Figure 4. Optimal hedging without forward contract. 

 
*

p

p

R R
w

R
−

= −                         (4.5) 

from solving (3.1) for the weight w. 
Finally, if 1ρ ≥ , then a weighting vector (1, 0, 0) that is just selling the for-

ward becomes the optimal hedging ratio. 

5. Application Procedures 

In application, suppose, at time 0, an investor hopes to sell one unit of foreign 
exchange at a future time T. Then following steps need to be carried out for 
hedging. 

1) Select three vehicles of hedging as: forward contracts, leaving the position 
open (Selling foreign exchange case) and European currency put option. 

2) Compute mean, variance, and covariance of each tool using the formula in 
Section 2. 

3) Compute a weighting coefficient *w  as in (3.4) or w  as in (4.5) if V V<  
or leaving the position open against the put option. 

4) Decide α  and β  using OLS regression as in (4.2). 
5) Compute an optimal weighting coefficient for the forward against for the 

portfolio of option and leaving the position open ρ  as in (4.3). 
6) Finally compute the optimal hedging ratio of the forward, non-hedging, and 

option. ( ) ( )( )* * * * *, 1 , 1 1w wρ ρ ρ − − −   as in (4.4). 
Consequently, we summarize the optimal weighting vectors of forward, op-

tion, and non-hedging for optimal hedging, as shown in Table 1. 
Then we apply the developed method for the exchange rate of the euro against 

the US dollar. The data frequency and period are presented on a monthly basis 
from January 1999 to March 2015. All data have been taken from FRED of FRB 
St. Louis. 

Thus we assume, at time 0, i.e., June 1, 2015, 1.1235 dollar price of one euro 
with 0.024σ =  $/€, a hedger hopes to sell one unit of foreign exchange at a  
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Table 1. Optimal hedging weighting vector. 

 * 0w <  *0 1w≤ <  *1 w≤  

* 0ρ <  (0,0,1) ( )0, , 1w w−    (0,1,0) 

*0 1ρ≤ <  ( )* *,0, 1ρ ρ −   ( ) ( )( )* * * * *, 1 , 1 1w wρ ρ ρ − − −   * *,1 ,0ρ ρ−    

*1 ρ≤  (1,0,0) (1,0,0) (1,0,0) 

 

 
(a) 

 
(b) 

Figure 5. Optimal weighting ratio change as β decrease. (a) Selling FX case; (b) Buying 
FX case. 

 
future time T = 6 months. Further we suppose that there are three hedging tools, 
i.e., European currency put option, forward contracts, and leaving the position 
open. Assume a forward contract rate F = 1.1 $/€, selling cost for the forward 
contract C = 0.1 $, a striking price K = 1.15 $/€, and its premium P = 0.03 $/€ for 
European put option with the maturity T = 6, respectively. Note 0 0 0z k s= − >  
in this case. 
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We assume 0.01α = . See Figure 5 for the optimal weighting ratio in (4.4) 
change as β  decreases16. Note, if β  as a marginal cost of volatility V is de-
creased, then the optimal weight for the forward contract (riskless) is decreased, 
as expected in the above theoretical explication (see Section 3). 

6. Conclusions 

This paper introduced the optimal foreign exchange risk hedging solution by 
exploiting a standard portfolio theory, thus extending Kim (2013) [8] in its fol-
lowing features. First, the case of the selling/buying of multiple foreign curren-
cies is also considered. Second, the cost of handling forward contracts is in-
cluded. Third, as a criterion of hedging performance evaluation, we consider the 
Leontief utility function, which represents the risk averseness of a hedger. Fourth, 
steps are introduced about what is needed to proceed with hedging. There is a 
computation of the weighting ratios of the optimal combinations of three con-
ventional hedging vehicles, i.e., call/put currency options, forward contracts, and 
leaving the position open. The closed form solution of mathematical optimiza-
tion may achieve a lower level of foreign exchange risk for a specified level of 
expected return. There is also a suggestion provided about a procedure that may 
be conducted in the business fields by means of Excel. 

The structure may be extended to cover the futures and American options and 
it will be a future research topic for us. However, I hypothesize that a similar 
logic may be readily applied to these extensions applying developed method in 
this paper. Furthermore, a development of a convenient computer program for 
FX risk hedging users, based on above results, would be a useful project. 
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Appendix: Proofs of Theorems 

Proof of Theorem 2.2: Note the return of non-hedging is approximately the 
value of following17: 

( )0
0

0

T
T

S S
s s

S
′Θ −

≅ −
′Θ

                         (1) 

assuming ( )0TS S′Θ −  is small. Then, under Assumption 2.1, the claimed re-
sults hold as: 

( )0 0TE s s− Ω =  and ( )2 2
0TE s s Tσ − Ω =  .           (2) 

Proof of Theorem 2.3: Note the expected return for forward is the value of 
following: 

( )0
0

0

T
T

F S C
f s c

S
′Θ − −

≅ − −
′Θ

                   (3) 

assuming ( )0TF S C′Θ − −  is small. Its variance is obviously zero since the re-
turn is not random.                                                


 

Proof of Theorem 2.4: (a) Note the inflow of selling weighted put option at 
time T is given as ( )max ,TS K P′Θ −   . Thus its return is given as following: 

( )

[ ] [ ]

( ) ( )

0

0

0 0

0 0 0

0 0 0

max ,

max ,

max , max ,

T

T

T T

S K P S
S

S S K S P
S S S

s s k s p x x p

′Θ − −  
′Θ

′ ′ Θ − Θ − ′Θ
= − ′ ′ ′Θ Θ Θ 
≅ − − − ≡ −

           (4) 

assuming 0TS S−  and 0K S−  are small. 
Now the expected return conditional on Ω  in (4) is computed as: 

( ) ( ) ( )0 0 0 0max ,TE x x p x z T z pσ φ Ω − = Φ + −   

from (4) where 0T Tx s s≡ − , since18 

( ) ( ) ( )
( ) ( )

( ) ( ) ( )

( ) ( )
( ) ( )

( ) ( )

0 0 0 0

0 0 0

0 0 0 0

0
0 0 0

0

0 0 0

max , max , , Pr

max , , Pr

Pr , Pr

1
1

T T T T

T T T

T T T T

E x x E x x x x x x

E x x x x x x

x x x E x x x x x

z
x z T z

z

x z T z

φ
σ

σ φ

   Ω = < Ω <   
 + ≥ Ω ≥ 

= < + ≥ Ω ≥

 = Φ + −Φ −Φ

= Φ +

    (5) 

from the definition of conditional expectation, where ( )2~ 0,Tx N Tσ  from 
Assumption 2.1 and 

 

 

17It is negative for buying of foreign currency (also for the forward contract) because it means the 
outflow of domestic currency. 

18Note ( ) ( )
[ ] [ ] ( )

[ ] [ ] ( ) ( )d Pr d Pr | |
Pr PrA B

f x f x
E x x x A x x B E x A E x B

A B
= + = +∫ ∫  where x A B∈ ∪ . 
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( ) ( )
( )
0

0
0

,
1T T

z
E x x x T

z
φ

σ≥ Ω =
−Φ

                 (6) 

for the third equality (5) from Greene ([6]: p. 759), and 

( ) ( ) ( )0
0 0 0Pr Pr Pr 1T

T T
xxx x z z z

T Tσ σ
 ≥ = ≥ = ≥ ≡ −Φ 
 

       (7) 

where T Tz x Tσ= . 
(b) The return’s variance of (4) is defined as: 

( ) ( )( )
( )( ) ( )( )

2

0 0

22
0 0

max , max ,

max , max ,

T T

T T

E x x E x x

E x x E x x

 − Ω Ω 

   = Ω − Ω   
            (8) 

Note the second term of right hand side in (8) is derived from (5) directly. 
Then the first term of right hand side in (8) is arranged as: 

( )( ) ( )( ) ( )

( )( ) ( )

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

2 2
0 0 0 0

2
0 0 0

2 2
0 0 0 0

2 2
0 0 0 0

2 2 2
0 0 0 0

max , max , , Pr

max , , Pr

Pr , Pr

, 1

1

T T T T

T T T

T T T T

T T

T T

E x x E x x x x x x

E x x x x x x

x x x E x x x x x

x z E x x x z

x z T E z z z zσ

   Ω = < Ω <   

 + ≥ Ω ≥ 

= < + ≥ Ω ≥

 = Φ + ≥ Ω −Φ 

 = Φ + ≥ −Φ 

  (9) 

where 

( ) ( )
( )

( )
( ) ( )

( )
( ) ( )

2
3,0 02

0 02
1,0 0

2 2
3,0 0 3,0 0

0 0 02 2
1,0 0 1,0 0

1
if 0

1

1
1 2 1 if 0

1

T T

F z
E z z z z

F z

F z F z
z z z

F z F z

−
≥ = ≥

−

−
   = − Φ + −Φ − <   −

 

because, for the second term in last equation in (9), we may show that 

( ) ( )2 2 2
0 0T T T TE x x x T E z z zσ≥ = ≥                 (10) 

from 

( ) ( )
( )

( )
( )

( )

0

0

2 2
0

0

2 2

0

2 2
0

d

d

T

T

T
T T T Tx x

T

T
T Tz z

T

T T

g x
E x x x x x

G x x

g T z
T z T z

G z z

T E z z z

σ
σ σ

σ

≥

≥

≥ =
≥

=
≥

= ≥

∫

∫  

since 
( )
( )0

T

T

g T z
T

G z z

σ
σ

≥
 is the truncated density function of variable Tz  where 

( )
( )

( )
( )0 0

0 0

1 d d
T T

TT
T Tx x z z

T T

g T zg x
x T z

G x x G z z

σ
σ

≥ ≥
= =

≥ ≥∫ ∫  

from the change of variable formula where g and G denote the density and dis-
tribution functions of Tx  respectively, and d dT TT z xσ =  since T Tz x Tσ=  
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by definition. Note Tz  has a standard normal, 2
Tz  has a central ( )

2
1χ  distribu-

tion respectively. 
and; 

Case 1: if 0 0z ≥ , then 

( ) ( ) ( ) ( )
( )

2 2 2 2
0 1,0 02 2 2 2

0 0 2
1,0 0

1  

1
T T

T T T T

E z z z F z
E z z z E z z z

F z

− <
≥ = ≥ =

−
       (11) 

because 

( ) ( )

( ) [ ] ( ) [ ]

( )

2 2 2 2
0 0 0

0 02 2
0 02 2 2 2

0 0

2
0

or

Pr Pr
Pr Pr

T T T T T

T T
T T T T

T T

T T

E z z z E z z z z z

z z z z
E z z z E z z z

z z z z

E z z z

≥ = ≥ < −

> < −
= ≥ + < −

   ≥ ≥   

= ≥

(12) 

from [ ] [ ]0 0
2 2 2 2

0 0

Pr Pr 1
2Pr Pr

T T

T T

z z z z
z z z z

≥ < −
= =

   ≥ ≥   
 and 

( ) ( ) ( ) ( )0

0

2 2 2 2
0 0d d

z
T T T T T T T T T Tz

E z z z z z z z z z E z z zφ φ
∞ −

−∞
≥ = = = < −∫ ∫    (13) 

using the symmetry of normal distribution; and 

( ) ( ) ( )
( )

2 2 2 2
0 1,0 02 2 2

0 2
1,0 0

1  

1
T T

T T

E z z z F z
E z z z

F z

− <
≥ =

−
            (14) 

solving following equation for ( )2 2 2
0T TE z z z≥  

( ) ( ) ( ) ( ) ( )2 2 2 2 2 2 2 2 2
0 1,0 0 0 1,0 01  1T T T T TE z E z z z F z E z z z F z = = < + ≥ −   

for the final equality of (11). Further note 

( ) ( ) ( )
( ) ( )

( )
( )

2 2
3,0 0 3,0 3,0 02 2 2

0 2 2
1,0 0 1,0 1,0 0

3
022

1 0
2

T T

F z F F z
E z z z

F z F F z

 Γ  − < = =
  −Γ 
 

          (15) 

from Marchand ([10]: p. 26 and Remark 4), where 
1 π
2

 Γ = 
 

 and  

3 π
2 2

 Γ = 
 

, where ( ) ( ) ( )2
1,0 0 1,00,1,0 0h F z F= −  and  

( ) ( ) ( )2
3,0 0 3,00,3,0 0h F z F= −  in Marchand ([10]: p. 26 and Remark 4) where 

( ) ( )1,0 3,00 0 0F F= =  with p = 1, 1α =  and 0λ =  that is a non-centrality pa-
rameter. 

Plugging (15) into (11) results in 

( )

( )
( ) ( )

( )
( )
( )

2
3,0 0 2

1,0 02 2
1,0 0 3,0 02

0 2 2
1,0 0 1,0 0

1
1

1 1T T

F z
F z

F z F z
E z z z

F z F z

−
−

≥ = =
− −

.        (16) 
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Case 2: 0 0z <  

( )
( ) [ ]
( ) [ ]

( ) ( ) ( ) ( )

2
0

2
0 0 0 0 0

2
0 0 0

2 2 2 2
0 0 0 0

, Pr

, Pr

1 2 1

T T

T T T T

T T T T

T T T T

E z z z

E z z z z z z z z z

E z z z z z z z

E z z z z E z z z z

≥

= ≥ ≤ < − ≤ < −

+ ≥ − < − <

   = < − Φ + − < −Φ −   

 

( ) ( ) ( ) ( )

( ) ( )
( ) ( )

( ) ( )

( )
( ) ( )

( )
( ) ( )

2 2 2 2 2 2
0 0 0 0

2 2 2 2
0 1,0 02 2 2

0 0 02
1,0 0

2 2
3,0 0 3,0 0

0 02 2
1,0 0 1,0 0

1 2 1

1
1 2 1

1

1
1 2 1

1

T T T T

T T
T T

E z z z z E z z z z

E z z z F z
E z z z z z

F z

F z F z
z z

F z F z

   = < − Φ + < −Φ −   

− <
   = < − Φ + −Φ −   −

−
   = − Φ + −Φ −   −

 (17) 

from (12) for the third equality, from (14) for the fourth equality and from (16) 
for the final equality. 

Consequently we get, 

( )( ) ( )( )
( ) ( ) ( ) ( ) ( )( )

222
0 0

22 2 2
0 0 0 0 0 0 0

max , max ,

1

p T T

T T

V E x x E x x

x z T E z z z z x z T zσ σ φ

   = Ω − Ω   

 = Φ + ≥ −Φ − Φ + 

 

from (5) and (9).                                                  


 
Proof of Theorem 2.5: Note the covariance between non-hedging and put 

option conditional on Ω  is defined as: 

( ) ( )( )
( ) ( )( )
( ) ( ) ( )
( )

0 0

0 0

0 0

0

max , max ,

max , max ,

max , max ,

max ,

T T T

T T T

T T T T

T T

E x x p E x x p x

E x x E x x x

E x x x E x x E x

E x x x

  − − − Ω Ω  
  = − Ω Ω  
   = Ω − Ω Ω   
 = Ω 

 

since ( )0max ,TE x x Ω   is constant conditional on Ω  for the second equali-
ty and the fourth equality holds from ( ) 0TE x Ω = . 

Now the claimed result is derived since 

( )
( ) ( )
( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( )

0

0 0 0

0 0 0

2
0 0 0 0 0

2
0 0 0 0 0

2 2
0 0 0 0

max ,

max , , Pr

max , , Pr

, Pr , Pr

, , 1

1 .

T T

T T T T

T T T T

T T T T T T

T T T T

T T

E x x x

E x x x x x x x

E x x x x x x x

x E x x x x x E x x x x x

x E x x x z E x x x z

x T z T E z z z zσ φ σ

 Ω 
 = < Ω < 
 + ≥ Ω ≥ 

= < Ω < + ≥ Ω ≥

 = < Ω Φ + ≥ Ω −Φ 

 = − + ≥ −Φ 

 

from (10) and 

( ) ( )
( )

0
0

0

,T T

z
E x x x T

z
φ

σ< Ω = −
Φ

                (18) 
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from Greene ([6]: p. 759) for the last two equations.                    


 
Proof of Theorem 2.6: Note the expected return for forward is the value of 

following: 

( )0
0

0

T
T

S F C
s f c

S
′Θ − −

≅ − −
′Θ

                   (19) 

assuming 0TF S−  is small. Its variance is obviously zero since the return is not 
random.                                                         


 

Proof of Theorem 2.7: (a) Note the outflow of buying call option at time T is 
given as ( )min ,TS K P+ . Thus its return normalized by 0S  is given as the 
negative value of following: 

( )

[ ] [ ]

( ) ( )

0

0

0 0

0 0 0

0 0 0

min ,

min ,

min , min ,

T

T

T T

S K P S
S

S S K S P
S S S

s s k s p x x p

′Θ + −  −
′Θ

′ ′ Θ − Θ − ′Θ
= − − ′ ′ ′Θ Θ Θ 
≅ − − − − ≡ − −

            (20) 

assuming 0TS S−  and 0K S−  are small. 
Now the expected return conditional on Ω  is value of following: 

( ) ( ) ( )0 0 0 0min , 1TE x x p T z x z pσ φ   − Ω − = − −Φ −            (21) 

from (17) where 0T Tx s s≡ − , since 

( ) ( ) ( )
( ) ( )

( ) ( ) ( )
( )
( ) ( ) ( )

( ) ( )

0 0 0 0

0 0 0

0 0 0 0

0
0 0 0

0

0 0 0

min , min , , Pr

min , , Pr

, Pr Pr

1

1

T T T T

T T T

T T T T

E x x E x x x x x x

E x x x x x x

E x x x x x x x x

z
T z x z

z

T z x z

φ
σ

σ φ

   Ω = < Ω <   
 + ≥ Ω ≥ 

= < Ω < + ≥

 = − Φ + −Φ Φ

 = − + −Φ 

   (22) 

from the definition of conditional expectation, where ( )2~ 0,Tx N Tσ  from 
Assumption 2.1 and (18) 
and 

( ) ( ) ( )0
0 0 0Pr Pr PrT

T T
xxx x z z z

T Tσ σ
 

< = < = < ≡ Φ 
 

       (23) 

where 0 0z x Tσ=  and T Tz x Tσ= . 
(b) The return’s variance of call option conditional on Ω  is given as: 

( ) ( )( )
( )( ) ( )( )

2

0 0

22
0 0

min , min ,

min , min ,

T T

T T

E x x E x x

E x x E x x

 − Ω Ω 

   = Ω − Ω   
           (24) 

Note the second term of right hand side in (24) is derived from (21) directly. 
Then the first term of right hand side in (24) is arranged as: 
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( )( ) ( )( ) ( )

( )( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

2 2
0 0 0 0

2
0 0 0

2 2
0 0 0 0

2 2
0 0 0 0

2 2 2
0 0 0 0

min , min , , Pr

min , , Pr

, Pr Pr

, 1

1

T T T T

T T T

T T T T

T T

T T

E x x E x x x x x x

E x x x x x x

E x x x x x x x x

E x x x z x z

T E z z z z x zσ

   Ω = < Ω <   

 + ≥ Ω ≥ 

= < Ω < + ≥

 = < Ω Φ + −Φ 

 = < Φ + −Φ 

  (25) 

where 

( ) ( )
( )

( )
( ) ( )

( )
( ) ( )

2
3,0 02

0 02
1,0 0

2 2
3,0 0 3,0 0

0 0 02 2
1,0 0 1,0 0

1
if 0

1

1
1 2 if 0

1

T T

F z
E z z z z

F z

F z F z
z z z

F z F z

−
< = <

−

−
 = − Φ − + Φ − ≥  −

 

from ( ) ( )2 2 2
0 0T T T TE x x x T E z z zσ< = <  as similarly in (10) and 

Case 1: 0 0z <  

( ) ( )( ) ( ) ( )
( )

2
3,0 022 2 2 2

0 0 0 2
1,0 0

1

1T T T T T T

F z
E z z z E z z z E z z z

F z

−
< = − − ≥ − = ≥ =

−
  (26) 

From symmetry and Tz  has a standard normal distribution, from (12) for 
the second equality, from (11) and (16) for the final equality. 

Case 2: 0 0z ≥  

( ) ( ) [ ]
( ) [ ]

( ) ( ) ( ) ( )

( )
( ) ( )

( )
( )

2 2
0 0 0 0 0 0

2
0 0 0

2 2 2 2
0 0 0 0

2 2
3,0 0 3,0 0

0 022
1,0 01,0 0

, Pr

, Pr

1 2

1
1 2

1 ( )

T T T T T T

T T T T

T T T T

E z z z E z z z z z z z z z

E z z z z z z z

E z z z z E z z z z

F z F z
z z

F zF z

< = < − < < − < <

+ < < − < −

 = < − Φ − + < − Φ − 

−
 = − Φ − + Φ −  −

  (27) 

from (15) and (16) for the final equality. Consequently, we get, 

( )( ) ( )( )
( ) ( ) ( ) ( ) ( )( )

222
0 0

22 2 2
0 0 0 0 0 0 0

min , min ,

1 1

c T T

T T

V E x x E x x

T E z z z z x z T z x zσ σ φ

   = Ω − Ω   

   = < Φ + −Φ − − + −Φ   

 

from (25) and (22).                                                


 
Proof of Theorem 2.8: Note the covariance between non-hedging and call 

option conditional on Ω  is defined as: 

( ) ( )( )( )

( ) ( )( )
( ) ( ) ( )
( )

0 0

0 0

0 0

0

min , min ,

min , min ,

min , min ,

min ,

T T T

T T T

T T T T

T T

E x x p E x x p x

E x x E x x x

E x x x E x x E x

E x x x

  − − − − − Ω − Ω  
  = − Ω Ω  
   = Ω − Ω Ω   
 = Ω 

 

since the fourth equality holds from ( ) 0TE x Ω = . 
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Now the claimed result is derived since 

( )
( ) ( )
( ) ( )

( ) ( ) ( ) ( )

0

0 0 0

0 0 0

2
0 0 0 0 0

min ,

min , , Pr

min , , Pr

, Pr , Pr

T T

T T T T

T T T T

T T T T T T

E x x x

E x x x x x x x

E x x x x x x x

E x x x x x x E x x x x x

 Ω 
 = < Ω < 
 + ≥ Ω ≥ 

= < Ω < + ≥ Ω ≥

 

( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( )

( ) ( ) ( )

2
0 0 0 0 0

02 2
0 0 0 0

0

2 2
0 0 0 0

, , 1

1
1

T T T T

T T

T T

E x x x z x E x x x z

z
T E z z z z x T z

z

T E z z z z x T z

φ
σ σ

σ σ φ

 = < Ω Φ + ≥ Ω −Φ 

 = < Φ + −Φ −Φ

= < Φ +

 

from (6) and from ( ) ( )2 2 2
0 0T T T TE x x x T E z z zσ< = <  as similarly in (10) for 

the last two equations.                                             


 
Proof of Theorem 4.1: To get such a solution point, we solve following three 

equations: 

( )1 pR w R= −                            (28) 

( ) ( )22 2 2 21 2 1n p pnV w V w V w w Cov= + − + −              (29) 

and 

RV α
β
−

=                            (30) 

from the UML  R Vα β= + . Note 

p

p

R R
w

R
−

≡
−

 and 1
p

Rw
R

− ≡                    (31) 

from (28). Therefore 
2 22

2 2 2p p
n p pn

p p p p

R R R RR R RV V Cov
R R R R

α
β

      − − −
= + +              − −        

     (32) 

by plugging (30) and (31) into (29). Then we solve (32) as 

( ) ( ) ( )
2

22 2 2 2
2 2p

p n p pn p

R
R R R V R V Cov R R Rα

β
− = − + − − . 

or 
2 2

2 2 2 2
2 2

2 2
2 2

2

2 2

0

p p
n p pn p n pn p

p
p n

R R
V V Cov R R V Cov R R

R
R V

α
β β

α
β

   
− − + + − + −   

      

+ − =

     (33) 

which is the second order polynomial equation of unknown R. 
Now solving (33) results in two roots 

2

1
b b acR

a
− + −

=  and 
2

2
b b acR

a
− − −

=  
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assuming 2 0b ac− ≥  where 
2

2 2
2 2p

n p pn

R
a V V Cov

β
= − − + , 

2
2

2
p

p n pn p

R
b R V Cov Rα

β
= − + − , 

2 2
2 2

2
p

p n

R
c R V

α
β

= − . 

Then we select i
i

R
V

α
β
−

=  for 1,2i = .                             


 

 

DOI: 10.4236/tel.2018.814181 2913 Theoretical Economics Letters 
 

https://doi.org/10.4236/tel.2018.814181

	Optimal Foreign Exchange Risk Hedging: Closed Form Solutions Maximizing Leontief Utility Function
	Abstract
	Keywords
	1. Introduction
	2. Expectation and Variance of Hedging Tools’ Returns
	2.1. FX Selling Case
	2.2. FX Buying Case

	3. Efficient Hedging Frontier Construction
	4. Optimal Hedging under Leontief Utility Function
	5. Application Procedures
	6. Conclusions
	Conflicts of Interest
	References
	Appendix: Proofs of Theorems

