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Abstract 
Ni0.5Cu0.25Zn0.25GdxFe2-xO4 (x = 0.0, 0.025, 0.05, 0.075, 0.1) ferrites were syn-
thesized using an oxalic-based precursor method. The TC for all the 
Ni0.5Cu0.25Zn0.25GdxFe2-xO4 (x = 0.0, 0.025, 0.05, 0.075, 0.1) samples was meas-
ured by using one of the double coil susceptibility setup. In all the samples it 
is observed that, at a certain temperature, susceptibility falls to zero indicating 
the Curie temperature (TC) and ferrimagnetic samples are converted into pa-
ramagnetic sample at that temperature. The electrical properties were inves-
tigated for these samples. Dielectric properties and ρdc properties were ob-
served to decrease with the increase in the frequency for all the Gd doped fer-
rite samples. 
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1. Introduction 

Spinel Ni-Cu-Zn ferrites are one of the potential materials used in high fre-
quency applications and in magnetic storage devices [1]. They are used as re-
cording heads, inductors, deflection yokes, transformer cores, etc. [2] [3]. These 
ferrites with different chemical compositions in different forms like, thin films 
and nano powder have been investigated for their structural, electrical and mag-
netic properties in recent years. In these ferrites, if partial doping of +2, +3 ions 
are replaced in the place of Fe3+ ions, it may lead to the structural distortion the-
reby enhancing the magnetic properties. Rare earth doped Ni-Cu-Zn ferrites re-
sults in the improved magnetic and optical properties [4] [5] [6] [7] [8]. Higher 
percentage of rare earth doping in ferrites usually contributes for the formation 
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of rare earth secondary phases, and is observed for only few kind of rare earth 
elements [9]. It is well known that the magnetic properties of the ferrite mate-
rials depends on the type, ionic radius and concentration of the doping ions 
(magnetic/nomagnetic nature) [10], grain and morphology of the samples and 
methods of preparation [11] [12]. Doping these ferrites with various transition 
elements leads to important changes in their structural, electrical and magnetic 
properties.  

Synthesis of Gd doped Ni-Cu-Zn ferrites is a challenging task because of 
co-existence of undesired phase like Fe2O3 along with the spinel. It is known that 
rare-earth ions play an important role in determining the magnetocrystalline 
anisotropy in 4f–3d intermetallic compounds [13]. The presence of Gd3+ ions in-
fluences mainly the magnetic anisotropy of the system. The magnetic properties 
of ferrites can be changed by the substitution of various kinds of divalent ions or 
by introducing a relatively small amount of rare-earth ions. Substitution of rare 
earth ion into the spinel structure has been reported to lead to structural distor-
tion and to induce strains and to significantly modify the electrical and magnetic 
properties [14] [15]. It is found that all the rare earth ions favor in the occur-
rence of secondary phases resulting in the increase of bulk density and electrical 
resistivity [16] [17]. From our literature review we observed that till now no re-
searcher have reported Gd doped Ni0.5Cu0.25Zn0.25Fe2O4 ferrite. Therefore, in this 
present work, we made an attempt for systematic doping of Gd in Ni-Cu-Zn fer-
rite synthesized using oxalic acid-based precursor method [18] [19] [20] to in-
vestigate their magnetic and electrical properties.  

2. Experimental Procedure 

Ni0.5Cu0.25Zn0.25GdxFe2-xO4 (x = 0.0, 0.025, 0.05, 0.075, 0.1) ferrite nanopowders 
were synthesized using an oxalate-based precursor method [18] [19] [20]. All the 
chemicals used were a.r. grade from Sigma–Aldrich and had purities ≥ 99%. In 
this synthesis process, nickel nitrate hydrate (Ni(NO3)2·6H2O), cupric nitrate 
hydrate (Cu(NO3)2·6H2O), zinc nitrate hydrate (Zn(NO3)2·6H2O), gadolinium 
oxide (Gd2O3) and ferric nitrate nonahydrate (Fe(NO3)3·9H2O) were used as the 
starting materials. The entire synthesis process is described elsewhere [19]. The 
resultant mixtures were evaporated on a hot plate at ~150˚C for 2 h. The ob-
tained raw powders were thermally heat treated at 450˚C for 4 h. The TC for all 
the Ni0.5Cu0.25Zn0.25GdxFe2-xO4 (x = 0.0, 0.025, 0.05, 0.075, 0.1) samples was 
measured by using one of the double coil susceptibility setup. The dielectric 
properties were measured using a Nova Control, Alpha high performance fre-
quency analyzer. 

3. Results and Discussions 

The Curie temperature (TC) for all the samples was measured by using one of the 
double coil susceptibility models available. The graphs of the magnetization vs 
absolute temperature T are plotted which are shown in Figure 1. The plots of all 
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the samples show ferrimagnetic behavior. In all the cases it is found that at a 
certain temperature, susceptibility falls to zero indicating the Curie temperature 
( CT ) and ferrimagnetic sample is converted into paramagnetic sample.  

In the present system Ni0.5Cu0.25Zn0.25GdxFe2-xO4 (x = 0.0, 0.025, 0.05, 0.075, 
0.1) we have obtained the Curie temperature as 426˚C for  
Ni0.5Cu0.25Zn0.25GdxFe2O4 samples. From this observation we can say that due to 
non-magnetic Gd doping CT  is decreased. Curie temperatures CT  of all the 
samples are given in Table 1 and the variation of TC with x is shown in Figure 2. 
From Figure 2, it is observed that CT  keeps on decreasing due to increasing 
non-magnetic Gd3+ content x. This indicates that ferrimagnetic behavior reduces 
with addition of non-magnetic Gd3+ ions. This is accredited to decrease in mag-
netic (A-B) interactions and increase in (B-B) interaction due to the substitution 
of Fe ions Gd ions. The substitution of Gd3+ ions reduces the active magnetic 
moment therefore the TC goes on decreasing with increase in non-magnetic Gd 
content x in this ferrite system. The results of A. C. susceptibility are in good 
agreement with those of magnetization. 
 
Table 1. Curie temperature (TC) of Ni0.5Cu0.25Zn0.25GdxFe2-xO4 (x = 0.0, 0.025, 0.05, 0.075, 
0.1) ferrites.  

x Tc (˚C) 

0 426 

0.025 385 

0.05 319 

0.075 252 

0.1 213 

 

 
Figure 1. Curie temperature (TC) measurements for Ni0.5Cu0.25Zn0.25GdxFe2-xO4 
(x = 0.0, 0.025, 0.05, 0.075, 0.1) ferrites samples. 
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Figure 2. Curie temperature (TC) with Gd content x for Ni0.5Cu0.25Zn0.25GdxFe2-xO4 
(x = 0.0, 0.025, 0.05, 0.075, 0.1) ferrites samples. 

 
The dielectric behavior among ferrites is considered to be one of the most 

important electrical properties that predominantly based on the synthesis tech-
nique, annealing time, annealing temperature and type of dopant and its quan-
tity. The variations in the dielectric constant (ε’) with frequency for  
Ni0.5Cu0.25Zn0.25GdxFe2-xO4 (x = 0.0, 0.025, 0.05, 0.075, 0.1) ferrites samples are 
shown in Figure 3. All the samples are observed to exhibit dielectric dispersion. 
The dielectric constant was observed to decrease initially with increasing fre-
quency and then to become almost constant at higher frequencies. Different 
grain sizes show different dielectric constants but the behaviors are same. At a 
certain frequency, these samples show a frequency-independent characteristic 
behavior that can be explained using the well-known Maxwell-Wagner-type in-
terfacial polarization, that is in accord with Koop’s theory [21] [22] [23]. The di-
electric polarization among ferrites is same as that of the conduction mechanism 
taking place with hopping of electronics. Hopping of electrons among the Fe3+ - 
Fe2+ in the applied field direction takes place to determine the polarization. With 
the increase in frequency the polarization decreases and attains a constant value. 
This is based on the fact, that after a particular applied frequency, the electron 
will exchange between Fe2+ ↔ Fe3+ which may not follow the alternating electric 
field. Higher dielectric constant values at lower frequencies will be due to greater 
number of Fe2+ ions, interfacial dislocations, grain boundary defects, oxygen va-
cancies [21] [22] [23] [24]. The decrease in the dielectric constant (ε’) with in-
creasing frequency is a natural phenomenon due to the fact that any element 
contributing to polarization will show a lagging effect with the applied field at 
larger frequencies. 

The observed dielectric constant values for our NiCuZnGd ferrite samples are 
little more than those reported for NiCuZn ferrite synthesized by using different 
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processes and different compositions. The conduction mechanism among the 
ferrites is majorly due to the hopping of electrons of the same element with dif-
ferent oxidation states. The lower dielectric constant values are observed among 
ferrites that are annealed at lower temperatures due to the low chance of ions 
existing with different valance states which reduces the probability of hopping 
electrons [24] [25] [26] [27] [28]. Also, the grain/particle size, density, stoichi-
ometry and homogeneity of the ferrites are observed to affect the dielectric con-
stant values [26]. Therefore, as our samples are annealed at higher temperatures, 
the dielectric constants are observed to be more.  

The tanδ with the applied frequency is measured at room temperature. The 
dielectric loss tangent data plotted in Figure 4 clearly shows that in all the sam-
ples the dielectric loss tangent slowly increased with the increase of frequency till 
a particular frequency, after which it slowly decreases. Different grain sizes show 
different dielectric loss tangent curves and different values. With the application 
of an external alternating field having the same frequency, the maximum elec-
trical energy will be transfer to the oscillating ions; due to this, the power loss in 
the ferrites rises [24] [27]. The peaks in the dielectric loss tangent appear with 
the applied field time is in phase with the dielectric and when the condition, ωτ 
= 1 is satisfied, where ω = 2πf, f is the applied field frequency, τ is the relaxation 
time, which is connected to the jumping probability unit time p using the equa-
tion τ = p/2; i.e., the peak frequency (fmax) is relative to the jumping probability. 
With the increase in fmax and in the annealing temperature, the jumping or hop-
ping probability increases. 

Figure 5 shows, the temperature dependent dc resistivity, represented as (log 
ρdc) vs (1000/T), for all the synthesized samples. It is clearly seen that ρdc in all  
 

 
Figure 3. Variations of the dielectric constant for Ni0.5Cu0.25Zn0.25GdxFe2-xO4 (x = 0.0, 
0.025, 0.05, 0.075, 0.1) ferrites. 
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Figure 4. Variations of the dielectric loss tangent for Ni0.5Cu0.25Zn0.25GdxFe2-xO4 (x = 0.0, 
0.025, 0.05, 0.075, 0.1) ferrites. 
 

 
Figure 5. The variation of log (ρ) with 1000/T for Ni0.5Cu0.25Zn0.25GdxFe2-xO4 (x = 0.0, 
0.025, 0.05, 0.075, 0.1) ferrites. 
 
the samples decreased with the increase in temperature. This kind of results are 
somewhat common feature among ferrites signifying the normal semiconduct-
ing nature explained by Arrheneus relation (1) [29]. 

0 exp
B

E
K T

ρ ρ
 

=  
 

                      (1) 

where ρ0 is the resistivity at infinitely high temperature, K is the Boltzmann con-
stant, T is the absolute temperature and ΔE is activation energy. 
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Further, from Figure 5 that, each of these curves can be differentiated into the 
two regions having different activation energies. Contrary, the transition tem-
peratures, Tρ, in between the first region and the second region was observed to 
be near to the values measured from magnetic measurements [30]. The transi-
tion taking place at Tρ is the activation energy at which the magnetic transition 
is taking place from ferrimagnetic state to the paramagnetic (region one to re-
gion second) state. The activation energies in ferrimagnetic and paramagnetic 
regions were designated as EF and EP. The activation energies values were de-
termined from the least square method as the function of Gd3+ ions [31]. The 
impact of these magnetic transitions of ferrites on the electrical applications was 
reported in literature by several researchers [32] [33]. It is evident that the EP 
values are higher than the EF in all the samples accordance with [34]. As a mat-
ter of fact, all most all the ferrites exhibit a change at the activation energy 
around TC so that EP > EF [32]. The increase in the activation energy near the 
paramagnetic region compared to the ferrimagnetic region can be accredited to 
the development of spin polarons [35] [36]. It is observed that the condition for 
the formation of spin polaron is, the activation energy in EP > 0.2 eV, as in sim-
ilar to our samples [35] [37]. Therefore our entire sample favors spin polarons 
formation [38] [39] [40].  

4. Conclusion 

The Ni0.5Cu0.25Zn0.25GdxFe2-xO4 (x = 0.0, 0.025, 0.05, 0.075, 0.1) ferrite samples 
were successfully prepared using the oxalic method. XRD results showed single 
phase spinel ferrite structure. The Curie temperature (TC) was observed to de-
crease with increasing Gd concentration. The dielectric properties and ρdc were 
observed to decrease with the increase in the frequency for all the Gd doped fer-
rite samples.  
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